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A Fusion Deraining Network Based on Swin Transformer and
Convolutional Neural Network

Junhao TANG†, Nonmember and Guorui FENG†a), Member

SUMMARY Single image deraining is an ill-posed problem which also
has been a long-standing issue. In past few years, convolutional neural net-
work (CNN) methods almost dominated the computer vision and achieved
considerable success in image deraining. Recently the Swin Transformer-
based model also showed impressive performance, even surpassed the
CNN-based methods and became the state-of-the-art on high-level vision
tasks. Therefore, we attempt to introduce Swin Transformer to deraining
tasks. In this paper, we propose a deraining model with two sub-networks.
The first sub-network includes two branches. Rain Recognition Network
is a Unet with the Swin Transformer layer, which works as preliminar-
ily restoring the background especially for the location where rain streaks
appear. Detail Complement Network can extract the background detail be-
neath the rain streak. The second sub-network which called Refine-Unet
utilizes the output of the previous one to further restore the image. Through
experiments, our network achieves improvements on single image derain-
ing compared with the previous Transformer research.
key words: Swin Transformer, convolutional neural network, multi-scale
dilated convolution, single image deraining

1. Introduction

With the development of industry cameras and monitoring
video, the requirements of deraining in images are con-
stantly growing. Removing rain streaks and restoring back-
ground content are needed to obtain better background scene
for downstream computer vision tasks and human percep-
tion. Recent methods [1], [2] were mostly based on convo-
lutional neural network (CNNs), which achieved impressive
results. Moreover, some probes attempt to utilize Trans-
former [3], [4] to accomplish the rain removal task.

For single image deraining, the traditional method and
the deep-learning based method are the two main cate-
gories. Recently, the deraining method based on Trans-
former is emerging and has achieved great performance im-
provement on benchmark public datasets. Traditional meth-
ods: Some researches concentrate on physical peculiarity of
the rain streaks and background scenes with a well-designed
optimization model. Typical methods include information
of frequency [7], modeling streaks via Gaussian Mixture
Model (GMM) [8], normalizing rain layers with Discrimina-
tive Sparse Coding (DSC) [9]. Deep-Learning-based meth-
ods: Some researches utilize residual information to accom-
plish deraining tasks [10]. Authors in [11] introduce atten-
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tion mechanism to better recovery the image. In [12], au-
thors enhance the image quality via progressive structural
boosting constraints. In [21], a well-designed autocoder is
made for embedding supervision. The model can get great
performance on severely-degraded datasets.

Transformer-based methods: Authors in [3] focus
on building a single encoder-decoder. They propose
a transformer-based encoder with intra-patch transformer
(Intra-PT) blocks, which focuses on attention inside the
main patches to remove the degradation. Although the
Transformer model overcomes the defects of CNNs (i.e.,
limited receptive field), the complexity of computation in-
creases quadratically with spatial resolution. In that case,
Restormer [4] is proposed, which is computationally effi-
cient. To reduce computational complexity, authors intro-
duce multi-Dconv head transposed attention (MDTA) mod-
ule and gated-Dconv feed-forward network (GDFN). These
two networks can model global context and perform con-
trolled feature transformation respectively. Nevertheless,
the baseline which based on Transformer can achieve better
performance when cooperating with a recovery mechanism
based on CNNs. Therefore, we attempt to fuse Transformer
and CNNs to complete deraining tasks. Recently, authors
in [5] present Swin Transformer, which achieves great per-
formance improvement on image classification. Moreover,
in more computer vision tasks including image segmenta-
tion [5] and inpainting [6], methods that adopt Swin Trans-
former have surpassed those based on CNNs.

In this paper, we propose a new approach to perform
single image deraining via a fusion network based on Swin
Transformer and convolutional neural network. The major
contributions of our work are summarized as follows. 1)
We utilize a Unet with Swin Transformer for single image
deraining. The mentioned network works as detecting the
location of rain streaks and outputting the preliminary rain-
free image. 2) We design a multi-scale feature complement
network to improve the performance on texture restoration.
In order to reduce the loss of texture information, we extract
features of different scales.

2. Proposed Method

The proposed network is based on Swin Transformer. There
are two sub-networks in the overall framework as shown
in Fig. 1. The first sub-network has two branches, includ-
ing Rain Recognition Network and Detail Complement Net-
work. The second sub-network is Refine-Unet.
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Fig. 1 The structure of proposed network. The network takes the rainy image as input and outputs
the clean background. There are two main sub-networks corresponding to different functions. The first
sub-network is two-branch architecture, including Rain Recognition Network and Detail Complement
Network. Rain Recognition Network is a Unet embedded with Swin-Transformer. Detail Complement
Network consists of 20 Multi-Scale Detail Restoration Resblocks in series. The second sub-network is
Refine-Unet shown in Fig. 4.

Fig. 2 The structure of two Swin Transformer Layers (STLs).

2.1 Rain Recognition Network

Although Transformer-based methods has excellent perfor-
mance on specific vision tasks, there are two main prob-
lems: 1) Transformer is inferior when modeling the long se-
quence because the computational complexity will increase
quadratically with the spatial resolution. 2) Transformer
does poor in dealing with the tasks like instance segmenta-
tion [13]. However, Swin Transformer well solves the men-
tioned two problems. Due to the addition of shifted-window,
the parameter of networks is decreased thus improving the
performance on pixel-wise vision tasks.

To let the network focus on global feature, in Rain
Recognition Network, we adopt Swin Transformer Block
(STB) to replace the common-used convolution layer. As
shown in Fig. 2, the number of Swin Transformer Lay-
ers (STLs) is multiples of two, each of which includes
window multi-head self-attention (W-MSA) and shifted-
window multi-head self-attention (SW-MSA). As described
above, there exists matters when directly appling Trans-
former on vision tasks. Thus, the author proposed cyclic
shift to reduce operation time while preserving the features
of convolution. In our network, one STB includes eight
Swin Transformer Layers. Processes of two STLs are re-
spectively represented as:

f̂ L = W − MS A(LN( f L−1)) + f L−1,

f L = MLP(LN( f̂ L)) + f̂ L,
(1)

Fig. 3 The structure of Multi-Scale Detail Restoration Resblock (MS-
DRRB).

f̂ L+1 = S W − MS A(LN( f L)) + f L,

f L+1 = MLP(LN( f̂ L+1)) + f̂ L+1
(2)

where LN(.) represents Layer Normalization. MLP is
multi-layer perceptron in which two layers with Gaussian
Error Linear Unit (GELU) are connected.

2.2 Detail Complement Network

Inspired by [14], we design our Detail Complement Net-
work based on the multi-scale aggregated recurrent Resnet.
To fully utilize multi-scale features of background beneath
the rain streaks, we adopt 20 Multi-Scale Detail Restoration
Resblock (MSDRRB) which are connected in series to form
the complete Detail Complement Network. As shown in
Fig. 3, to acquire larger receptive field in order to get more
texture information, we adopt dilated convolutions with one,
three and five dilation scales respectively. To recovery the
dimension of feature maps to the input dimension, we add a
K3D1 (Kernel 3 and Dilation 1) convolution [14] in the end
of the sub-block. The output of Detail Complement Net-
work can complement the rain-free image from Rain Recog-
nition Network, providing richer texture information for fur-
ther restoration.
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Fig. 5 The deraining performance comparisons on Rain200H.

Fig. 4 The structure of Refine-Unet. We replace the common-used trans-
pose convolution with dual Up-sample when generating the feature map.

2.3 Refine Unet

Normally, Up-sample in Unet is realized by transpose con-
volution. Inspired by [15], to reduce transmission loss dur-
ing convolution, we use dual Up-sample module which con-
sists of Bilinear and PixelShuffle [16]. The improvement
brought by dual Up-sample will be illustrated in Chapter 3.

2.4 Loss Function

We train our network in an end-to-end manner with Mean
Square Error (MSE) loss for image deraining:

Loss1 = ||O1 − B||22 (3)

where O1 denotes the result of Rain Recognition Network
and B is the target rain-free image. Loss1 focuses on the
difference between the target image and the rain-free image
output from Rain Recognition Network.

Loss2 = ||O1 + O2 − B||22 (4)

where O2 denotes the result of Detail Complement Network.
Loss2 focuses on the difference between the target image
and the combination of O1 and O2.

Loss3 = ||O3 − B||22 (5)

where O3 denotes the final output of the entire network. B is
the target rain-free image. Loss3 focuses on the difference
between the target image and the output of the entire work.

Loss = κLoss1 + μLoss2 + λLoss3 (6)

where κ, μ and λ are tradeoff parameters. In our work, we
set κ, μ as 0.1 and λ is set as 1.

3. Experimental Results

3.1 Experimental Setups

For all experiments, we activate the network by using

Table 1 Ablation study on different settings of our method on Rain200H.

M1 M2 M3 M4 M5 M6

STB
MSDRRB 20 20 20 17 21 22

d-Up
PSNR 28.54 30.75 30.96 29.98 30.90 30.88
SSIM 0.8752 0.8981 0.9018 0.8876 0.9015 0.8996

NVIDIA GeForce RTX 3090 GPUs, adopting Adam opti-
mizer [17] with the batch size of 10 and the patch size of
128×128. The learning rate is 1 × 10−4. The total epoch is
100. In our experiment, Rain200L [18] and Rain200H [18]
are used to validate proposed method, which contain light
and heavy synthetic rain-streaks degradation respectively.
We employ the common-used Peak Signal to Noise Ratio
(PSNR) [19] and Structural Similarity (SSIM) [20] to evalu-
ate the result on synthetic datasets.

3.2 Ablation Study

To show the effectiveness of deraining on severely degraded
rainy images, we take the performance on Rain200H as
demonstration of the ablation study. We adopt PSNR and
SSIM to quantitatively analyze the performance. Table 1
shows the influences brought by different components.

• STB indicates using Swin Transformer Block to re-
place the common-used convolution in Rain Recogni-
tion Network.
• MSDRRB indicates the number of Multi-Scale Detail

Restoration Resblock (MSDRRB) connected in series.
• d-Up indicates using dual Up-sample to replace trans-

pose convolution in Refine-Unet.

The result proves that STB greatly promotes SSIM for
making better use of global information. In addition, MS-
DRRB greatly promotes PSNR when considering larger re-
ceptive field. Moreover, for the reason that small amount
of texture information still exists in the preliminary output
with not thoroughly removed rain streaks, the final Refine-
Unet seems to be particularly important. The introduction
of dual Up-sample can reduce the loss when generating the
final output.

3.3 Experiments on Synthetic Data

We compare our method with several recently proposed
methods: TransWeather [3], Restormer [4], MPRNet [1],
ECNet [21], and EfficientDeRain [22]. All these methods
share the same training and testing datasets.

Compared with other methods, we fully consider both
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Table 2 Quantitative results evaluated with respect to average PSNR and
SSIM.

Datasets Rain200L Rain200H
Metrics PSNR SSIM PSNR SSIM

MPRNet [1] 36.40/0.9634 29.51/0.8902
EfficientDeRain [22] 35.63/0.9776 28.17/0.8837

TransWeather [3] 35.03/0.9675 26.78/0.8557
Restormer [4] 38.51/0.9743 30.11/0.8992

ECNet+LL [21] 38.86/0.9865 30.15/0.9101
ours 38.92/0.9798 30.96/0.9018

global and multi-scale feature, so that our method obtains
the better score on PSNR. Moreover, the result of a sim-
ple baseline with Transformer on deraining tasks tends to
be slightly inadequate. Combination of Transformer and
CNNs can better cope with images with severe degradation.
It should be noticed that the baseline of ECNet can get ex-
cellent performance on SSIM. The idea, of which enables
the encoder-decoder to predict rain layer which is as close
as groundtruth rain layer, can better derive accurate rain-free
background.

4. Conclusions

This paper proposes a deraining model with the combina-
tion of Swin Transformer and CNNs. The proposed network
concludes two sub-networks. The first sub-network includes
two branches. Rain Recognition Network is a Unet with the
Swin Transformer layer, which focuses on global feature of
rain images. Detail Complement Network works as extract-
ing the background detail beneath the rain streak, which fo-
cuses on multi-scale information. Refine-Unet utilizes the
output of previous two branch networks to further restore
the image. Experiments show that our network can achieve
performance improvement on single image deraining com-
pared with the previous researches based on Transformer.
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