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Inverse Heat Dissipation Model for Medical Image Segmentation

Yu KASHIHARA†a), Nonmember and Takashi MATSUBARA†b), Member

SUMMARY The diffusion model has achieved success in generating
and editing high-quality images because of its ability to produce fine de-
tails. Its superior generation ability has the potential to facilitate more de-
tailed segmentation. This study presents a novel approach to segmentation
tasks using an inverse heat dissipation model, a kind of diffusion-based
models. The proposed method involves generating a mask that gradually
shrinks to fit the shape of the desired segmentation region. We comprehen-
sively evaluated the proposed method using multiple datasets under varying
conditions. The results show that the proposed method outperforms exist-
ing methods and provides a more detailed segmentation.
key words: deep learning, diffusion-based models, inverse heat dissipation
models, and medical segmentation

1. Introduction

Segmentation is a critical task in computer vision that sep-
arates the regions of an image into subregions, each corre-
sponding to a class. Segmentation has many applications in
the medical field, such as disease detection and organ recog-
nition. Automated segmentation plays an essential role for
physicians by assisting in diagnosis, reducing undiagnosed
diseases, and improving work efficiency. Medical segmen-
tation requires the capability to capture the details of the
disease. Inappropriate segmentation can lead to the mis-
interpretation of disease progression, resulting in medical
errors. Several medical segmentation methods have been
proposed [1]–[3]. UNet [1] is a segmentation model trained
to minimize cross-entropy or squared error and generates
masks for each pixel. The neighborhood of a definitively
diagnosed area has a high probability of suffering from that
disease, and it is inefficient to predict whether each indepen-
dent pixel is a disease. Convolutional neural networks can
capture features in patches and represent relationships be-
tween pixels. However, this is a network structure approach,
and an approach from a theoretical perspective is desired.
We propose a method for capturing the context of an image
from a theoretical perspective to facilitate the development
of segmentation tasks in medicine.

Diffusion-based models [4]–[6] have shown impressive
performance in image generation and editing [7], [8]. Their
contribution stems from their ability to produce high-quality
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Fig. 1 Mask generation by IHDM conditioned on a medical image. The
boundary is sharpened step by step from a coarse initial mask. Sampling
does not remove noise as in the regular diffusion model, but rather restores
the high-frequency components of the image.

images. In this paper, we suppose that the model’s high
generation capacity enables detailed segmentation with high
accuracy. Diffusion-based models consist of two stochas-
tic transitions: diffusion and reverse processes. During the
diffusion process, the information in the image is lost little
by little. The reverse process gradually generates an image
by following the diffusion process in the reverse direction.
The iterative reverse process is defined as a Markov chain in
which the next image is generated from the previous step’s
image. The reverse process is obtained by a joint probability
distribution defined by the Markov chain. Stochastic transi-
tions allow the model to capture the context of the image
rather than at the pixel level. However, these methods suf-
fer from unstable generation owing to long stochastic tran-
sitions. In addition, a segmentation mask is often a continu-
ous set of pixels. Therefore, small discontinuous masks can
hardly exist. Typical denoising-based diffusion models [4]
may produce unexpected discontinuous masks due to large
noise addition.

This study proposes a diffusion-based model segmen-
tation method to capture contextual features to avoid undi-
agnosed diseases. We propose a segmentation method using
the inverse heat dissipation model (IHDM) [9]. IHDM is in-
spired by diffusion models and generates samples by model-
ing inverse heat dissipation. During diffusion, IHDM grad-
ually averages the input images rather than converting them
to noise. The diffusion process is equivalent to the opera-
tion of gradually reducing the high-frequency components
of an image. Sampling was performed by modeling the in-
verse heat dissipation using a deep learning model. IHDM
generates the image by restoring the high-frequency com-
ponents of the image and gradually sharpening the bound-
aries, as shown in Fig. 1. Mask generation by restoring high-
frequency components does not produce unexpected discon-
tinuous masks. The proposed method uses coarse segmenta-
tion as input and reconstructs it with short stochastic transi-
tions to generate a mask with high accuracy. Sampling from
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the initial mask allows the model to focus only on correcting
the details of the mask.

2. Method

2.1 Inverse Heat Dissipation Model

IHDM [9] is a diffusion-based generative model consisting
of diffusion and reverse processes. In the diffusion process,
the pixel values of the image gradually approach the aver-
age value of the input image and information is lost. In the
reverse process, the model generates samples through the
inverse heat equation. The heat equation, expressed by the
following linear partial differential equation, defines the dif-
fusion process.

∂

∂t
u(x, y, t) = Δu(x, y, t). (1)

Here, u(x, y, t) is a continuous two-dimensional image plane
for each color channel and Δ is the Laplace operator. Neu-
mann boundary conditions (∂u/∂x = ∂u/∂y = 0) define
the image boundary conditions. In the diffusion process,
as time t approaches infinity, pixel values become the aver-
age of the intensities of the input image. The heat equation
is reversible if assumed to have infinitely continuous states.
However, for discrete values in real-world problems, this be-
comes an ill-posed problem.

The heat equation in Eq. (1) can be represented in the
evolution equation form of u(x, y, t) = F (t)u(x, y, t)|t=t0 ,
where F (t) is an evolution operator. We solve this equa-
tion using the eigenbasis of the Laplace operator. Under
Neumann boundary conditions, a cosine basis is used for
the eigenbasis. An image of finite resolution can be rep-
resented by a grid whose spectrum is bounded by Nyquist
frequency. In a finite-dimensional evolution model, the im-
age u(tk) exhibits a frequency decay at time tk controlled by
the discrete time sequence t1, t2, . . . , tK . In the following,
we use uk as a simplified notation for u(tk). The evolution
operator is defined as Δ = VΛV� in the finite eigendecom-
position: where V� is the projection matrix on a cosine basis
and Λ is the negative squared frequency that corresponds to
the frequency decay. Thus, the image with frequency decay
at time tk with a finite resolution is represented as follows:

uk = F(tk)u0 = exp(VΛV�tk)u0, (2)

where F(tk) is the evolution operator for a finite dimension
and u0 is the initial state. Instead of using the Markov chain
obtained by Eq. (2), we add the noise and sample as ûk ∼
N(uk, σ

2I).
The reverse process of the heat equation is a Markov

chain starting from the image utK , defined by a joint proba-
bility distribution, as follows:

pθ(u0:K) = uK
∏K

i=1N(ui−1|μθ(ui, i), δ2I), (3)

where μθ is the model that predicts a slightly less blurred
image uk−1 from blurred image uk. We add normal noise

with variance δ2I and sample stochastically to improve the
sampling performance and manipulate the frequency infor-
mation in the image u0.

The model is trained by minimizing ‖μθ(ûk, k)−uk−1‖22.,
which is obtained by transforming and simplifying the neg-
ative log likelihood. The diffusion process in IHDM is not
a Markov chain, and diffusion and noise addition are per-
formed separately. Therefore, denoising score matching
could not be performed, and the loss function used in IHDM
directly minimizes the error in the mean of the distribution.

2.2 Proposed Method

We propose a method to generate a mask that fits the de-
tails by refinement of the coarse segmentation; the pro-
posed method uses a diffusion-based model to generate a
mask through a reverse process. To predict the segmentation
mask, the medical image is conditioned on the mask as prior
information, thereby providing the model with information
for segmentation. This image-conditioning method is used
in many diffusion-based model segmentation methods [10]–
[12]. In practice, the model takes the concatenation of the
mask and the medical image as input, and predicts the mask
for the next step. In image generation with IHDM, the sum
of the pixel values at each step does not change from step to
step. As a result, the size of the mask is limited, and thus
masks are generated in stable sizes and shapes. As the ini-
tial state, the proposed method uses Mprior, a coarse mask
generated by another segmentation model. The initial mask
must have a coarse shape and should not require detailed
accuracy. Therefore, it is possible to use a mask from a
segmentation model at a low training cost. The proposed
method uses coarse masks to guide the generation trajec-
tory, thereby allowing the model to focus on generating de-
tails. Figure 2 shows the mask generation flow using the
proposed method. The mask was reconstructed by applying
a k-step diffusion process to the initial mask, followed by a
k-step reverse process. Therefore, the stochastic transitions
of the mask generation can be represented as follows:

pθ(u0:k) = uk
∏k

i=1 pθ(ui−1|ui), (4)

= F(tk)Mprior
∏k

i=1N(ui−1|μθ(ui, i), δ2I), (5)

where δ2I is the variance matrix, a hyperparameter that con-
trols the frequency features of the generated image. The
mask is generated using a joint probability distribution de-
fined by a Markov chain. The transitions are defined per
image and not per pixel. Therefore, it is possible to obtain
a relationship between the pixels. Diffusion-based models
with joint probability distributions can generate masks that
can capture the context of an image. The number of recon-
struction steps k can be considered as the confidence level
of the initial mask. For an initial mask with low confidence,
the shape of the mask can be changed significantly by per-
forming a large number of reconstruction steps. On the other
hand, it is possible to generate a mask with only the details
adjusted by taking a few reconstruction steps for an initial
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Fig. 2 Segmentation using IHDM. The proposed method receives a coarse mask from another seg-
mentation model. The proposed method performs k-step reconstruction on the initial mask Mprior to
produce a mask that fits the details. The mask is generated as the contours become gradually sharper.

Table 1 Comparison of segmentation methods. The values in the table indicate the mean and standard
deviation.

Method Initial mask
LIDC-IDRI [13] STARE [14] BraTS [15]

IoU Dice IoU Dice IoU Dice
DeepLabv3+ [16] - 0.375±0.231 0.459±0.261 0.540±0.112 0.685±0.114 0.518±0.166 0.644±0.179

UNet++ [17] - 0.427±0.238 0.512±0.262 0.574±0.103 0.716±0.102 0.547±0.149 0.679±0.151
DDPM Seg [10] - 0.402±0.250 0.474±0.283 0.351±0.123 0.493±0.148 0.250±0.174 0.342±0.214

SegDiff [11] - 0.402±0.259 0.468±0.289 0.552±0.116 0.694±0.119 0.545±0.173 0.665±0.185
MedSegDiff [12] - 0.370±0.232 0.450±0.267 0.409±0.102 0.564±0.120 0.483±0.170 0.610±0.182

IHDM Seg (Ours) DeepLabv3+ 0.439±0.233 0.526±0.233 0.562±0.107 0.705±0.105 0.538±0.162 0.664±0.172
IHDM Seg (Ours) UNet++ 0.460 ± 0.232 0.548 ± 0.259 0.595 ± 0.095 0.735 ± 0.092 0.574 ± 0.145 0.703 ± 0.145

mask with high confidence.

3. Experiments

3.1 Datasets

Our experiments used three datasets with different targets
In the LIDC-IDRI dataset [13] of lung nodules, we used
only nodules diagnosed as ground-glass opacity (GGO). The
GGO is challenging to detect and is a barrier to diagnosis.
The experiment was performed on 64 × 64 CTs scans, fo-
cusing on the target lung nodules. The STARE dataset [14]
is a retinal-segmentation dataset. The original images were
resized to 512 × 512 pixels and divided into 16 segments of
128 × 128 pixels each. The BraTS dataset [15] is a dataset
of brain tumor cases. After the MRI preprocessing, the
T1-weighted MRI data were resized to 128 × 128 pixels.
We only used samples from slices containing brain tumors.
The image results shown in this study were upsampled for
boundary visualization.

3.2 Experimental Setup

In the experiment, the number of steps for IHDM was set
to K=300. The reconstruction steps used in the proposed
method was set to k = 100, the optimal reconstruction steps,
through experimentation. The standard deviation of the nor-
mal noise added in the diffusion process was set toσ = 0.01,
and that added in the reverse process was set to δ = 0.0125.
For the initial masks of the proposed method, we used two
methods: UNet++ [17] and DeepLabv3+ [16]. We used
the pre-trained ResNet-50 [18] as the backbone model for
these two models, and trained 100 epochs on each dataset.

We also experimented with denoising diffusion probabilis-
tic model (DDPM) based segmentation methods [10]–[12]
for a comparison. For a fair comparison between the pro-
posed method and DDPM-based methods, the same archi-
tecture of UNet++ [17] was used for their backbone model.
DDPM-based segmentation methods typically use mask en-
sembles [10]–[12]. The mask ensemble obtains the mask by
averaging the masks of the multiple generations. The mask
ensemble prevents mask fluctuations due to stochastic pro-
cesses. The proposed method and DDPM-based methods
used mask ensemble in the experiments.

3.3 Experimental Results

The segmentation ability of the methods was evaluated us-
ing IoU (Intersection over Union) and Dice coefficient. The
experimental results are shown in Table 1 as mean ± stan-
dard deviation. The proposed method performed better than
the methods used for the initial mask Mprior. In addition,
the performance of the proposed method improved, regard-
less of the dataset and initial masks. In particular, we find
that IoU improves by more than 0.03 on the LIDC-IDRI
dataset. The GGO nodules are difficult to detect owing to
their blurred shading. The proposed method could identify
subtle boundaries within the background. The segmentation
performance with thin segmentation areas was also signif-
icantly improved in the retinal dataset. In such datasets,
slight segmentation errors accumulated, leading to signifi-
cant score degradation. These results suggest that the pro-
posed method is advantageous for detailed segmentation.
The improved performance in all the results indicates that
the proposed method is generally applicable regardless of
the data type and the initial mask.

Figure 3 shows an enlarged view of the mask generated
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Fig. 3 Enlarged view of the generated masks. The masks of the area en-
closed by the blue frame in (c) Input are shown. The red line is the contour
of the ground truth. (a) UNet++ [17], (b) Proposed method, (c) Input. The
proposed method refines the coarse mask of UNet++ and generates a mask
that fits the details.

Fig. 4 Visualizations of the segmentation masks for each method. The
red line is the contour of the ground truth. DDPM Seg failed to iden-
tify a disease for the example shown in the figure of BraTS dataset. (a)
UNet++ [17], (b) DDPM Seg [10], (c) Proposed method, (d) Input.

by the proposed method using UNet++ for the initial mask.
The proposed method refines the coarse mask of UNet++
and generates a mask that fits the details. Segmentation
models such as UNet++ capture targets independently on
a pixel-by-pixel basis. In contrast, the diffusion model cap-
tures the image in a joint probability distribution, allowing
segmentation using the features of the surrounding pixels.
Consequently, it is possible to complement the masks of
discontinuous missing areas, as shown in the STARE and
BRATS results. However, some regions were not segmented
sufficiently in detail. One reason is that the average value of
the initial mask limited the output mask of IHDM segmenta-
tion model. This limitation causes the area of the masked re-
gion in the image to be dependent on the initial mask. IHDM
segmentation model, which allows for a wide range of mask
sizes, is a future challenge.

The proposed method also showed better segmentation
performance than DDPM-based segmentation method [10].
Figure 4 shows a visualization of the segmentation masks
for each method. The proposed method can predict anoma-
lous regions, whereas DDPM Seg [10] cannot. Long
stochastic transitions produce a variety of products in the
generation task, but can be an uncertain mask in the seg-
mentation task. The proposed method allows stable seg-
mentation using short stochastic transitions and the initial

mask.

4. Conclusion

In this study, we proposed a segmentation method based
on IHDM, which is a new types of diffusion-based model.
The proposed method reconstructs coarse segmentation as
an initial state. Unlike existing methods, we succeeded in
using an initial mask to support the generation trajectory.
The proposed method is based on a joint probability dis-
tribution and succeeds in capturing the features of the entire
image rather than pixel-by-pixel. We evaluated the proposed
method using different datasets and initial masks and found
that all showed improvements. These results indicate that
the proposed method can improve performance regardless
of the dataset and model used for the initial mask.
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