1922

IEICE TRANS. INF. & SYST., VOL.E106-D, NO.11 NOVEMBER 2023

[LETTER

Switch-Based Quorum Coordination for Low Tail Latency in

Replicated Storage

SUMMARY Modern distributed storage requires microsecond-scale
tail latency, but the current coordinator-based quorum coordination causes a
burdensome latency overhead. This paper presents Archon, a new quorum
coordination architecture that supports low tail latency for microsecond-
scale replicated storage. The key idea of Archon is to perform the quorum
coordination in the network switch by leveraging the flexibility and capa-
bility of emerging programmable switch ASICs. Our in-network quorum
coordination is based on the observation that the modern programmable
switch provides nanosecond-scale processing delay and high flexibility si-
multaneously. To realize the idea, we design a custom switch data plane.
We implement a Archon prototype on an Intel Tofino switch and conduct a
series of testbed experiments. Our experimental results show that Archon
can provide lower tail latency than the coordinator-based solution.

key words: in-network computing, programmable switches, latency

1. Introduction

Microservice applications like distributed data stores sup-
ported by NoSQL key-value stores [1]-[3] are the funda-
mental building block of modern online services. They in-
teract via Remote Procedure Calls (RPCs). The runtime of
RPCs is getting smaller, and most of the RPCs last only
tens to hundreds of microseconds [4], [5]. Therefore, the un-
derlying infrastructure is expected to provide microsecond-
scale tail latency to meet strict Service Level Objectives
(SLOs). Meanwhile, object data is typically replicated with
multiple servers for high availability [6]. Replicated stor-
age often uses quorum consistency (e.g., Cassandra [7], Dy-
namo [8]) to achieve the balance between availability and
performance. In quorum consistency, data reads and writes
require agreement from a quorum of replicas.

Requests in quorum-based replicated storage are han-
dled by a coordinator node, which lies between the client
and storage replicas. The coordinator propagates requests
to replicas and aggregates the replies to commit the request.
Specifically, a client first sends a request to the coordina-
tor. For read requests, the coordinator propagates the re-
quest to a subset of replicas. The size of this subset called
the quorum (R) is determined by the replication factor (F).
In a typical quorum-based replicated storage system, R is
set to F/2 + 1, meaning that a majority of replicas must be
queried to satisfy the quorum. For write requests, the co-
ordinator sends the request to all replicas. The coordinator

Manuscript received June 30, 2023.
Manuscript publicized August 22, 2023.
"The author is with the Department of Computer Engineering,
Sungshin Women’s University, Seoul, Republic of Korea.
a) E-mail: gykim@sungshin.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2023EDL8038

Gyuyeong KIM'®, Nonmember

commits the read/write request when the number of aggre-
gated replies is equal to R.

Unfortunately, with the current coordinator-based quo-
rum coordination, it is hard to achieve microsecond-scale
tail latency. This is because the coordinator is a com-
modity server with a CPU, incurring tens of microseconds
of latency overhead to coordinate requests even with opti-
mized networking techniques like kernel bypass. Since the
get/put operation only takes tens of microseconds, the la-
tency overhead caused by the coordinator is crucial to over-
all request latency. In this context, we ask the following
question: how can we achieve microsecond-scale tail la-
tency in quorum-based replicated storage?

We answer the question by presenting Archon, a new
quorum coordination architecture, which provides fast quo-
rum coordination for replicated storage. Our key idea is to
leverage the network switch as an in-network quorum co-
ordinator. Specifically, we directly request propagation and
reply aggregation to the network switch. This idea is based
on the following observations. First, switches are highly op-
timized for I/O operations. The switch can process a single
packet within hundreds of nanoseconds, and its processing
throughput is a few billion packets per second. Second, un-
like traditional fixed-function switch ASICs, emerging pro-
grammable switch ASICs like Intel Tofino [9] allow us to
define a custom packet processing pipeline. This means that
we have the opportunity to coordinate quorum requests at
a nanosecond-scale. While there exist in-network solutions
for replicated storage [10], [11], they do not consider quo-
rum consistency.

Unfortunately, realizing the idea is challenging because
the programmable switch has strict hardware constraints.
Therefore, we address technical challenges when designing
a custom switch data plane. Our switch data plane consists
of two modules. The first is the request propagation module,
which forwards requests to replicas. The second one is the
reply aggregation module. This module aggregates replies
and commits the request only if a majority of replicas ac-
knowledged the request. We implement a Archon prototype
on an Intel Tofino switch and conduct a series of experi-
ments. Our experimental results demonstrate that Archon
can achieve higher throughput and lower latency than the
coordinator-based quorum coordination.

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

LETTER

Existing Protocols Archon Header

] 5 []
[mm{ Read Write
Type Request ID Request ID

Fig.1 Archon packet format.

Index for
Coordination

PAYLOAD

Quorum
Group ID

Algorithm 1 Request Processing in Switch Data Plane

— pkt: Packet to be processed

— RegR: Register array for pending reads
— ReqW: Register array for pending writes
— rid: Register for read request ID

— wid: Register for write request ID

1: if pkt.type == READ then

2 rid « rid + 1 > Increase request ID
3 pkt.rid « rid > Assign request ID
4 if ReqR|pkt.rid] == EMPTY then

5: ReqR| pkt.rid] < OCCUPIED > Lock the slot
6: Propagate(pkt.grp, pkt.idx) > Forward to a quorum
7 else

8: Drop(pkt) > Drop if occupied
9: end if

10: else if pkt.type == WRITE then

11: wid «— wid + 1

12: pkt.wid «— wid

13: if ReqW|pkt.wid] == EMPTY then

> Increase request ID
> Assign request ID

14: ReqW|pkt.wid] <~ OCCUPIED > Occupy the slot
15: Propagate All(pkt.grp, pkt.idx) > Broadcast request
16: else

17: Drop(pkt)

18: end if

19: end if

2. Archon Design
2.1 Packet Format

Figure 1 shows the packet format of Archon. Archon uses
a custom L7 protocol message. We reserve a L4 port num-
ber for Archon so that the switch can apply different parser
logic for Archon packets and normal packets. The Archon
message has the header consisting of the following fields.

e OP: the operation type, which can be READ, WRITE,
R-REPLY, and W-REPLY.

e RID: monotonically-increasing sequence numbers for
read request IDs, which are assigned by the switch.

e WID: monotonically-increasing sequence numbers for
write request IDs, which are assigned by the switch.
The value of this field is the version of data.

e GRP: the quorum group ID, which identifies a group of
replicas that meets the quorum.

e IDX: the index for request propagation.

2.2 Request Processing

The Archon data plane consists of the request propagation

1923
—R t
— Riﬂfyes Client l

S ZM Progsrjvri‘rggable

2 88 8 &

Servers Servers
(b) Archon

—

(a) Coordinator-based solution

Fig.2 Read and write processing in Archon. Unlike the existing
coordinator-based solution, request propagation and reply aggregation are
done by the network switch directly, improving tail latency.

Algorithm 2 Reply Processing in Switch Data Plane

— AggR: Register array for number of aggregated read replies
— AggW: Register array for number of aggregated write replies
— Ver: Register array for the version of returned values
— Candi: Register array for candidate values
— QUORUM: Configured quorum number
1: if pkt.type == R-REPLY then
2 if pkt.wid > Ver[pkt.rid] then
3 Candi[pkt.rid] « pkt.value
4 Ver|pkt.rid] « pkt.wid
S: end if
6.
7
8

> More recent data?

AggR[pkt.rid] « AggR|pkt.rid] + 1
if AggR|[pkt.rid] == QUORUM then
: pkt.value — Candi[pkt.rid]
9: AggR|pkt.rid] < 0

10: ReqR[pkt.rid] < EMPTY > Free slot
11: Forward(pkt) > Commit read
12: else

13: Drop(pkt)

14: end if

15: else if pkt.type == W-REPLY then
16: if ReqW|pkt.wid] == OCCUPIED then

17: AggW|pkt.wid] « AggW|pkt.wid] + 1

18: if AggW|pkt.wid] == QUORU M then

19: AggW|pkt.wid] < 0

20: ReqW|pkt.wid] « EMPTY > Free slot
21: Forward(pkt) > Commit write
22: else

23: Drop(pkt) > Need more replies
24: end if

25: else

26: Drop(pkt) > Drop reply since already commited
27: end if

28: end if

module and the reply aggregation module. Algorithm 1
is the pseudocode of request processing in the switch data
plane.

Read requests. Upon receiving a read request, the
switch increases the request ID and assigns the ID to the
request (lines 1-3). After that, the switch inserts the request
into the list of pending reads by trying to lock the register
slot. If the slot is empty, the switch locks the slot and propa-
gates the request to a quorum of replicas by referring to the
GRP and IDX fields (lines 4-6). Locking the slot is to pre-
vent overwriting by possible duplicate IDs. Otherwise, the
switch simply drops the request (lines 7-8).

Write requests. When receiving a write, the switch as-
signs the request ID after increasing it by one (lines 10-12).

1924

The request ID acts as the version of the object as well. The
switch then inserts the request ID into the pending request
list for reply aggregation if the matched slot is empty (lines
13-14). After that, the switch propagates writes to replicas
(line 15). Otherwise, the request is dropped (lines 16-17).

2.3 Reply Processing

Algorithm 2 is the pseudocode of reply processing in the
switch data plane.

Read replies. When the switch receives read replies, it
first compares the version of the data in the WID field of the
packet and the that of stored one in the switch. If the arriving
packet has more recent data, the switch updates the stored
object data and the version for the object (lines 1-5). With
this, the switch can maintain the data, which is considered
the most recent data. After that, the switch increases the
number of aggregated replies for the requested object by one
(line 6). If the number of aggregated replies is equal to the
quorum of replicas, the switch commits the read request by
clearing related metadata and forwarding the packet to the
client (lines 7-11). Otherwise, the packet is simply dropped
since it needs more replies to be committed (lines 12-13).

Write replies. Upon receiving a write reply, the switch
first checks whether the matched slot is occupied (line 16).
This is because, unlike reads, the write is committed if the
quorum is satisfied regardless of the remaining replies. If
occupied, the switch increases the number of aggregated
replies by one (line 17). If the condition to commit the write
is met, the switch forwards the reply to the client after clear-
ing related data slots (lines 18-21). Otherwise, the switch
drops the packet (lines 22-23). If the slot is not occupied,
the switch also drops the packet (lines 25-26).

3. Data Plane Implementation

We now describe our data plane implementation. Pro-
grammable switch ASICs like Intel Tofino[9] provide
flexibility but have limited on-chip resources, which in-
clude match-action stages, stateful memory, and opera-
tion types. This is because it is not designed to perform
compute/memory-intensive jobs. Therefore, implementing
quorum coordination in the switch data plane imposes sev-
eral technical challenges, and we design a custom switch
data plane using various techniques like recirculation and
hashing as follows.

Our data plane is written in P4[12] and is compiled
to P4 SDE 9.7.0. Archon consumes only 5 match-action
stages, 7.19% match input bar, 7.98% hash bits, 11.25%
gateway, 15.50% SRAM, and 20.00% ALU. Our resource
usage does not exceed the available resource budget of the
programmable switch ASIC, hence the switch can preserve
line-rate throughput.

3.1 Request Propagation

To propagate requests, we need to replicate requests inside

IEICE TRANS. INF. & SYST., VOL.E106-D, NO.11 NOVEMBER 2023

the switch. To implement this, we leverage the multicast
function that the switch clones packets to multiple desig-
nated output ports. However, since the multicast function is
performed at the link-layer level, the switch does not update
the destination IP address of each packet. This results in the
packet drop by the network stack of storage replicas because
the destination IP address is not equal to that of the replica.

To address this, we leverage packet recirculation,
which forwards the packet to the loopback input port for
further packet processing. We explain this in detail. The
client sets the GRP field to a random number, which iden-
tifies the preconfigured quorum of replicas. For read re-
quests, the IDX field is set to the quorum number. In the
case of write requests, we use the number of replicas for
the IDX field. The switch decreases the IDX field by one
every packet. If the IDX field is zero, the propagation is fin-
ished. When propagating a request, the switch forwards the
original packet to the matched output port and recirculates
the replicated packet for further processing. The switch per-
forms the same processing for replicated packets until the
IDX field reaches to O.

3.2 Reply Aggregation

We need to maintain the list of pending requests and the list
of the number of aggregated replies for each request. These
lists can be implemented using register arrays. However, the
current switch architecture allocates a small portion of on-
chip memory to each match-action stage statically. There-
fore, we can use only a limited number of register slots while
the request ID can be larger than the number of register slots.

To address this, we use hashing for the slot index.
Specifically, we use a hash of the RID/WID field as an in-
dex key, which guarantees that the index does not exceed
the number of register slots. Each register array for the lists
has 128K slots, which are enough to serve millions of re-
quests per second.

4. Performance Evaluation
4.1 Methodology

Testbed setup. To evaluate Archon, we use a cluster con-
sisting of 8 commodity servers, which are connected by an
APS Networks BF6064X-T switch. The switch data plane
is based on a 6.5 Tbps Intel Tofino switch ASIC [9]. The
servers are equipped with a Intel i5-12600K @ 3.7 Ghz, 32
GB of DDRS5 memory, and a single-port 100GbE RDMA-
capable NIC. The servers run Ubuntu 20.04 LTS with Linux
kernel 5.15.0. Unless specified, 2 servers act as clients to
generate requests, 5 servers are used as worker servers, and
1 server acts as the quorum coordinator node. Therefore,
our replication factor is 5 and the quorum number is 3.
Applications and compared scheme For evaluation,
we implement an open-loop application in C with NVIDIA
Messaging Accelerator library (VMA) [13], which provides
kernel-bypass networking, minimizing the host-side packet

LETTER

4r : ‘ ‘ . —
10 -@-C-Quorum
= Archon
=
>
810%¢]
i)
©
-
N
D
S 102 ¢ =]
0 50 100 150 200
Throughput (KRPS)
Fig.3 Main result.
‘ ‘
Py —®-C-Quorum
ol Archon
n
2
x \'\
5 *~
o <
2 e
[e]
_E \\ Y
— ,\,
‘ ‘ ‘ \‘/ ,;;;\\’\/
0 20 40 60 80 100

Write Ratio (%)

Fig.4 Impact of write ratio on throughput.

processing delay. We use Redis[1], a popular key-value
store. We use a read-heavy workload with 1M 32-bit objects
5% of write ratio, which is a typical production-like work-
load [10]. We compare Archon with the coordinator-based
quorum coordination scheme, which we call C-Quorum.

4.2 Results

Throughput vs. latency. Figure 3 shows the 99th per-
centile tail latency as throughput grows. We can see that
Archon generally provides lower latency than C-Quorum.
This is because, in Archon, quorum messages do not visit
additional nodes (i.e., quorum coordinator). As throughput
grows, the gap between C-Quorum and Archon goes large
because the coordinator node becomes the performance bot-
tleneck. These results demonstrate that Archon can reduce
the tail latency of quorum-based replicated storage.

Impact of write ratio. Figure 4 is the throughput with
different write ratios. C-Quorum and Archon do not have
distinct differences. This is because Archon does not in-
crease server loads and requires only a few nanosecond pro-
cessing delays to add quorum coordination functionality in

1925

the switch. Furthermore, though omitted, the tail latency is
improved across the given write ratios.

5. Conclusion

This paper presented Archon, an in-network quorum coor-
dination architecture for replicated storage. Archon pro-
vides low tail latency by directly performing request propa-
gation and reply aggregation in the emerging programmable
switch. We have implemented a Archon prototype and
conducted testbed experiments. The experimental results
demonstrated that Archon provides better performance than
the existing coordinator-based quorum coordination.

Acknowledgements

This work was supported by the Sungshin Women’s Univer-
sity Research Grant of 2023.

References

[1] “Redis key-value store,” https://redis.io/

[2] B. Fitzpatrick, “Distributed caching with memcached,” Linux J.,
vo0l.2004, no.124, p.5, Aug. 2004.

[3] “Rocksdb: A persistent key-value store for flash and ram storage,”
https://rocksdb.org/

[4] J.Zhao, I. Uwizeyimana, K. Ganesan, M.C. Jeffrey, and N.E. Jerger,
“Altocumulus: Scalable scheduling for nanosecond-scale remote
procedure calls,” Proc. IEEE/ACM MICRO, pp.423-440, 2022.

[5] K. Kaffes, T. Chong, J.T. Humphries, A. Belay, D. Mazieres, and
C. Kozyrakis, “Shinjuku: Preemptive scheduling for usecond-scale
tail latency,” Proc. USENIX NSDI, Boston, MA, pp.345-359, Feb.
2019.

[6] P. Hunt, M. Konar, F.P. Junqueira, and B. Reed, “Zookeeper: Wait-
free coordination for internet-scale systems,” Proc. USENIX ATC,
USA, p.11, 2010.

[7] “Apache cassandra,” https://cassandra.apache.org/

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels, “Dynamo: Amazon’s highly available key-value store,”
Proc. ACM SOSP, New York, NY, USA, vol.41, no.6, pp.205-220,
2007.

[9] “Intel tofino programmable ethernet switch,” https://github.com/
barefootnetworks/Open-Tofino

[10] G. Kim and W. Lee, “In-network leaderless replication for
distributed data stores,” Proc. VLDB Endow., vol.15, no.7,
pp-1337-1349, March 2022.

[11] G. Kim, “Netclone: Fast, scalable, and dynamic request cloning for
microsecond-scale rpcs,” Proc. ACM SIGCOMM, Sept. 2023.

[12] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIG-
COMM Comput. Commun. Rev., vol.44, no.3, pp.87-95, July 2014.

[13] “Nvidia messaging accelerator (vma),” https://docs.nvidia.com/
networking/spaces/viewspace.action?key=VMAv940

https://dl.acm.org/doi/10.5555/1012889.1012894
http://dx.doi.org/10.1109/micro56248.2022.00039
https://dl.acm.org/doi/10.5555/3323234.3323264
https://dl.acm.org/doi/10.5555/1855840.1855851
http://dx.doi.org/10.1145/1323293.1294281
http://dx.doi.org/10.14778/3523210.3523213
http://dx.doi.org/10.1145/2656877.2656890

