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LETTER
Shared Latent Embedding Learning for Multi-View Subspace
Clustering∗

Zhaohu LIU†, Nonmember, Peng SONG†a), Member, Jinshuai MU†, and Wenming ZHENG††, Nonmembers

SUMMARY Most existing multi-view subspace clustering approaches
only capture the inter-view similarities between different views and ignore
the optimal local geometric structure of the original data. To this end,
in this letter, we put forward a novel method named shared latent embed-
ding learning for multi-view subspace clustering (SLE-MSC), which can
efficiently capture a better latent space. To be specific, we introduce a
pseudo-label constraint to capture the intra-view similarities within each
view. Meanwhile, we utilize a novel optimal graph Laplacian to learn the
consistent latent representation, in which the common manifold is consid-
ered as the optimal manifold to obtain a more reasonable local geometric
structure. Comprehensive experimental results indicate the superiority and
effectiveness of the proposed method.
key words: multi-view learning, subspace clustering, latent representation,
graph Laplacian

1. Introduction

With the advent of information technologies, a large amount
of multi-view data from different areas or multiple sources
have rapidly emerged. Multi-view learning has attracted
extensive attention in the field of machine learning [1]. In
practice, an object is often pictured from distinct aspects [2].
For instance, given a picture, we might consider different fea-
tures such as pixel, color, saturation, and brightness, which
are different aspects of the picture, etc. In these situations,
it is a big challenge to obtain accurate clustering results for
multi-view clustering.

To tackle the above issue, over the past decade, a va-
riety of multi-view subspace clustering methods have been
presented. For instance, in [3], Zhang et al. present a latent
multi-view subspace clustering (LMSC) approach, which
aims to seek the latent representation to perform data recon-
struction. In [4], Zhou et al. propose a dual learning method
to mine the shared information and simultaneously maintain
the specific property of each view. In [5], Niu et al. develop
a one-step multi-view subspace clustering with incomplete
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Fig. 1 The framework of SLE-MSC.

views (OMVSC-IV) framework, which simultaneously per-
forms the non-negative embedding and spectral embedding
subspace clustering. In [6], Si et al. develop an exclusivity
constraint to explore the diversity of different views. How-
ever, there exist some shortcomings in the above methods.
They do not fully take into account the intra-view similarities
of each view. Meanwhile, they do not pay attention to the
optimal local geometric structure of the original data space.

To address the above-mentioned issues, in this letter, we
present a new multi-view subspace clustering method, called
shared latent embedding learning for multi-view subspace
clustering (SLE-MSC). Specifically, we perform multi-view
subspace clustering based on matrix factorization, and utilize
the pseudo-labels to fully explore the intra-view similarities
within each view. Moreover, we apply an optimal graph
regularization strategy to preserve the local geometry of the
original data space. The overall framework of SLE-MSC is
demonstrated in Fig. 1.

2. Proposed Method

Denote X = [X1; X2; . . . ; Xm] ∈ R
∑m

f =1 d
f ×n as a set of

multi-view data with m different views, where X f ∈ Rd f ×n

represents the data matrix of the f -th view. In this work, we
assume that there exists a consistent latent representation for
multiple views, which can well describe the data in essence
and mine the shared latent structure. Note that the kernel
norm cannot be easily solved and thus we use the Frobenius
norm instead of the kernel norm. The objective function is
formulated as follows:

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers
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min
W ,H ,S

∥X − WH∥2
F + λ∥H − HS∥2

F + γ∥S∥2
F (1)

s.t. ∥W:, j ∥2
2 ≤ 1, S ≥ 0, diag(S) = 0, rank(Ls) = n − c

where ∥ · ∥F is the Frobenius norm, H ∈ Rd×n is the con-
sistent latent representation, and W = [W1; W2; . . . ; Wm] ∈
R
∑m

f =1 d
f ×d is the multi-view basis matrix, in which W f ∈

Rd
f ×d and S ∈ Rn×n are the basis matrix of the f -th view

and the self-representation matrix of H, respectively, and d f

and d are the corresponding dimensionalities, diag(·) rep-
resents the main diagonal elements of a matrix, and λ and
γ are balancing parameters. ∥W:, j ∥2

2 ≤ 1 is used to pre-
vent H from being too small when scaling, and ∥S∥2

F is a
regularization term to avoid overfitting. rank(Ls) = n − c
makes that the number of clusters c equals the number of the
connected components in S. Ls = D − ST+S

2 is the Laplace
matrix of S, and D ∈ Rn×n denotes a diagonal matrix with
Dii =

∑n
j
Si j+S j i

2 .
Note that Eq. (1) aims to obtain the consistent latent

representation of all views, the intra-view similarities within
each view are often neglected. To cope with the above is-
sue, we introduce a linear projection matrix of each view to
project the consistent latent representation to the discrimina-
tive pseudo-label space. Thus, we can capture the intra-view
similarities of the original data space. Equation (1) can be
rewritten as follows:

min
W ,H ,S,Q f

∥X − WH∥2
F + α

m∑
f=1

∥Y f − Q f H∥2
F

+ λ∥H − HS∥2
F + γΨ(Q f ,S)

(2)

s.t. ∥W:, j ∥2
2 ≤ 1, S ≥ 0, diag(S) = 0, rank(Ls) = n − c

where Ψ(Q f ,S)=∥Q f ∥2
F + ∥S∥2

F , in which ∥ · ∥2
F is used to

avoid overfitting, Y f ∈ Rc×n and Q f ∈ Rc×d are the pseudo-
label matrix and the linear projection matrix of the f -th
view, respectively, γ is a balancing parameter, and ∥Q f ∥2

F

is a regularization term to avoid overfitting. Note that Y f

can be computed by using clustering approaches on the data
matrix of the f -th view.

To discover a more reasonable local geometric structure
of data space, we introduce an optimal graph regularization,
which treats a common manifold as the optimal manifold.
The optimal graph regularization is formulated as follows:

min
H

Tr(HL∗HT ) (3)

where L∗ = D∗ − M∗ denotes the optimal manifold. D∗ ={
d∗
ii

}n×n represents a diagonal matrix with d∗
ii =

∑n
j=1 m∗

i j ,
and M∗ is the optimal similarity matrix, which can be de-
fined by taking the minimum similarity value of all views as
follows:

M∗ =
{
m∗
i j

}n×n
, m∗

i j = min
{
m f
i j

}
f=1..m

(4)

Next, given a data matrix of the f -th view X f =

[X f
1 , . . . ,X

f
n ] ∈ Rd

f ×n, the adjacency matrix Mf ∈ Rn×n is
obtained by using the k-nearest neighbors (KNN) algorithm.
Then, the similarity matrix Mf =

{
m f
i j

}n×n
is defined as

follows:

m f
i j =

{
simi j, if X f

i ∈ N k(X f
j ) or X f

j ∈ N k(X f
i )

0, otherwise
(5)

where N k(X f
i ) is a set of the k nearest neighbors of X f

i , and
simij represents the similarity measurement between X f

i and
X f
j . The similarity can be measured by different methods

such as heat kernel, binary, cosine and dot-product [7]. For
simplification, here we choose the binary strategy.

Combining Eqs. (2) and (3), the overall objective is
written as

min
W ,H ,S,Q f

∥X − WH∥2
F + α

m∑
f=1

∥Y f − Q f H∥2
F

+ βTr(HL∗HT ) + λ∥H − HS∥2
F + γΨ(Q f ,S)

(6)

s.t. ∥W:, j ∥2
2 ≤ 1, S ≥ 0, diag(S) = 0, rank(Ls) = n − c

where α and β are balancing parameters controlling the
pseudo-label constraint and the optimal graph regulariza-
tion, respectively. According to the Ky Fan’s Theorem [8],
the final objective function of the proposed SLE-MSC is
formulated as

min
W ,H ,S,Q f ,F

∥X − WH∥2
F + α

m∑
f=1

∥Y f − Q f H∥2
F

+ βTr(HL∗HT )+ λ∥H − HS∥2
F + γΨ(Q f ,S)+ θTr(FT LsF)

s.t. ∥W:, j ∥2
2 ≤ 1, S ≥ 0, diag(S) = 0, FT F = I

(7)

where F ∈ Rn×c represents an indicator matrix.
To solve Eq. (7), we propose an iterative optimization

scheme. The problem is divided into several sub-problems,
and the optimization steps are listed as follows:

(1) Fix W , H, F and S, and update Q f : the problem
in Eq. (7) can be written as

£ f = min
Q f
α∥Y f − Q f H∥2

F + γ∥Q f ∥2
F (8)

Setting the partial derivative ∂£ f

∂Q f = 0, we can obtain

Q f = αY f HT (αHHT + γI)−1 (9)

(2) Fix Q f , H, F and S, and update W: By intro-
ducing an auxiliary variable T ∈ R

∑m
f =1 d

f ×d , we can get the
following objective function:

min
W ,T

∥X − WH∥2
F s.t. W = T, ∥T:, j ∥2

2 ≤ 1 (10)

To address the above problem, we utilize the alternating
direction method of multipliers (ADMM) algorithm [9], and
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can get
Wr+1 = arg min

W
∥X − WH∥2

F + µ∥W − Tr + Jr ∥2
F

Tr+1 = arg min
T
µ∥Wr+1 − T + Jr ∥2

F s.t. ∥T:, j ∥2
2 ≤ 1

Jr+1 = Jr +Wr+1 − Tr+1, update µ if appropriate
(11)

where r is the number of iterations, and J ∈ R
∑m

f =1 d
f ×d

denotes an intermediate variable. As the ADMM algorithm
has good convergence performance, W can converge rapidly
in each optimization step.

(3) Fix Q f , W , F and S, and update H: The optimiza-
tion for H in Eq. (7) can be equivalently rewritten as

min
H

∥X − WH∥2
F + α

m∑
f=1

∥Y f − Q f H∥2
F

+ βtr(HL∗HT ) + λ∥H − HS∥2
F

(12)

The above equation is a smooth and convex optimization
problem that can be efficiently solved. By differentiating
Eq. (12) with respect to H and setting it to zero, we can get
the following optimal solution H∗:

P1 ∗ H∗ + H∗ ∗ P2 = P3 (13)

where P1 = WTW +α
∑m

f=1 Q f TQ f , P2 = λ(I −S)(I −S)T +
βL∗, and P3 = WT X +α

∑m
f=1 Q f TY f . As discussed in [10],

the above problem in Eq. (13) has been successfully solved.
(4) Fix Q f , W , F and H, and update S: We can get

the following optimization problem:

min
S

∥H − HS∥2
F +
γ

λ
∥S∥2

F +
θ

λ
Tr(FT LsF)

s.t. S ≥ 0, diag(S) = 0
(14)

By introducing an intermediate variable K ∈ Rn×n = HT H
and an auxiliary variable Z ∈ Rn×n, the problem can be
equivalently rewritten as follows:

min
S

Tr(K − 2KS + ST KS) + γ
λ
∥Z ∥2

F +
θ

λ
Tr(FT LsF)

s.t. S ≥ 0, Z = S, diag(S) = 0
(15)

By using the augmented Lagrange multiplier (ALM) algo-
rithm [9], we can obtain the following augmented Lagrange
function:

ℜ(Z,S,Φ) = Tr(K − 2KS + ST KS) + γ
λ
∥Z ∥2

F

+
θ

λ
Tr(FT LsF) + δ

2
∥Z − S +

Φ

δ
∥2
F

(16)

where Φ ∈ Rn×n is a Lagrange multiplier, and δ > 0 is a
penalty parameter. We can fix other variables to minimize
the above problem with respect to Z , S and Φ alternatively.

• By setting P = S − Φδ , we can update Z element-wisely
as follows:

Zi j = max(|Pi j | −
γ

λδ
,0) · sign(Pi j) (17)

• By setting E = Z + Φδ , we can update S element-wisely
as follows:

min
Si

STi (
δ

2
I + K)Si + (

θ

2λ
aTi − δET

i − 2ki,:)Si (18)

where ai ∈ Rn×1 represents a column vector with the j-
th element ai j = ∥Fi,:−Fj ,:∥2. By setting the derivative
of Eq. (18) with respect to Si to zero, we can obtain S.

• We can update the variable Φ as follows:

Φ = Φ + δ(Z − S) (19)
(5) Fix Q f , W , S and H, and update F: The optimiza-

tion for F in Eq. (7) can be equivalently rewritten as

min
F

Tr(FT LsF) s.t. FT F = I (20)

By utilizing the c eigenvectors of Ls corresponding to the c
smallest eigenvalues, we can get the optimal solution of F,
and update Q f , W , H, S and F until convergence. Finally,
we take the optimal F as the input and perform K-means to
get the final clustering results.

3. Experiments

3.1 Experimental Setup

In our experiments, we utilize four multi-view datasets,
including Yale [1], ORL [2], 3-Source [11], and HW [12].
Several conventional and state-of-the-art clustering methods
are selected for comparison, including K-means, LMSC [3],
AWNLRR [13], GMC [11], JSMC [14], and AGLMF [2]. To
ensure fairness, we download all codes of the compared
methods from the authors’ homepages, and adjust the param-
eters according to the recommendations. For our method,
we choose the values of α and β by searching the range of
{10−3,10−2,10−1,1,10,102,103}.

In our experiments, three metrics in terms of accuracy
(ACC), normalized mutual information (NMI), and Purity,
are adopted, and the average clustering results and standard
deviations are recorded by running 10 times.

3.2 Results and Discussions

The experimental results are shown in Table 1. From the
table, we can have the observations as follows.

First, our algorithm achieves better clustering results
than the baseline algorithms on all datasets, which manifests
the superiority of our algorithm.

Second, multi-view clustering methods are more advan-
tageous in comparison with single-view clustering methods
on multi-view datasets. This indicates that the multi-view
algorithms are more suitable for multi-view data in compar-
ison with the single-view algorithms.
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Last, compared with multi-view subspace approaches
based on the latent representation, i.e., LMSC, the SLE-
MSC algorithm gains much better clustering performance.
The main reason is that LMSC only considers the inter-view
similarities between different views to learn the consistency
latent matrix. By contrast, our method fully considers the
intra-view similarities within each view while considering

Table 1 Comparison results of all methods on Yale, ORL, 3-Sources,
and HW datasets (mean±standard deviation).

Datasets Methods ACC NMI Purity

Yale

K-means 59.33±1.23 63.14±1.37 61.33±1.75
LMSC 62.48±3.55 64.70±2.80 62.90±3.38

AWNLRR 63.33±0.90 64.45±0.49 64.42±0.54
GMC 65.45±0.00 67.36±0.00 66.06±0.00
JSMC 68.48±0.00 70.07±0.00 68.48±0.00

AGLMF 70.30±0.00 71.77±0.00 70.30±0.00
SLE-MSC 73.94±0.00 76.53±0.00 73.94±0.00

ORL

K-means 62.25±1.50 78.37±1.26 65.55±0.90
LMSC 77.00±4.01 89.58±2.05 80.55±4.02

AWNLRR 66.92±0.16 78.40±0.15 67.82±0.16
GMC 65.25±0.00 81.66±0.00 72.50±0.00
JSMC 77.50±0.00 88.03±0.00 80.00±0.00

AGLMF 72.00±0.00 87.00±0.00 77.75±0.00
SLE-MSC 84.00±0.00 91.88±0.00 86.75±0.00

3-Sources

K-means 53.85±3.55 27.52±5.14 59.47±4.44
LMSC 56.92±6.45 49.44±2.76 71.77±2.82

AWNLRR 75.14±0.26 59.82±0.18 75.14±0.26
GMC 69.23±0.00 54.80±0.00 74.56±0.00
JSMC 77.51±0.00 69.52±0.00 82.24±0.00

AGLMF 69.82±0.00 64.14±0.00 78.10±0.00
SLE-MSC 83.43±0.00 76.84±0.00 86.98±0.00

HW

K-means 75.18±5.15 70.73±1.86 76.32±3.38
LMSC 83.72±4.19 76.61±3.14 83.75±4.16

AWNLRR 61.10±0.05 62.04±0.04 64.85±0.05
GMC 82.95±0.00 85.86±0.00 85.50±0.00
JSMC 55.35±0.00 52.69±0.00 58.95±0.00

AGLMF 83.75±0.00 86.74±0.00 86.40±0.00
SLE-MSC 92.35±0.00 87.10±0.00 92.35±0.00

Fig. 3 Parameter sensitivity analysis of the proposed method in terms of ACC results, i.e., α, β, λ and γ.

inter-view similarities. Meanwhile, our method fully takes
into account the local geometric structure of the original data
space, which can help learn better consistent latent represen-
tation.

Moreover, we also conduct ablation experiments. We
remove the influence of the pseudo-label constraint term, the
local geometric structure of the original data space, and the
matrix regularization term by setting α = 0, β = 0, and
γ = 0 in Eq. (7), and can get three corresponding variants of
SLE-MSC, called SLE-MSC1, SLE-MSC2, and SLE-MSC3.
Figure 2 illustrates the comparison results. From the figure,
we can observe that each regularization term plays a vital
role in the proposed model.

3.3 Parameter Sensitivity Analysis

In this section, we also conduct experiments to analyze the
parameter sensitivity of the proposed method, i.e., α, β, λ,
and γ. The experimental results are shown in Fig. 3. As
shown in the figure, for the parameters α and β, we set
the parameter values in the range of 10−3 ∼ 103. For the
parameters λ and γ, we set different ranges on different

Fig. 2 Clustering results of SLE-MSC and its special cases.
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Fig. 4 The convergence analysis of SLE-MSC on all datasets.

datasets. For example, λ and γ are both set as 0.02 ∼ 0.14
on the Yale dataset. On the ORL dataset, λ and γ are set
as 0.2 ∼ 1.4 and 0.002 ∼ 0.014, respectively. On the 3-
Sources dataset, λ and γ are both set to 5 ∼ 11. On the
HW dataset, λ and γ are set to 2 ∼ 14 and 0.001 ∼ 0.007,
respectively. From these results, we can conclude that the
α, β are less sensitive to different values, and λ and γ are
relatively sensitive to different values.

3.4 Convergence Analysis

Figure 4 depicts the convergence results of the proposed
algorithm. In the figure, the objective value is represented by
the vertical axis, and the number of iterations is represented
by the horizontal axis. As can be seen from the figure,
with the number of iterations increasing, the objective values
decline steadily, and can converge within about 25 iterations.

3.5 Complexity Analysis

For the optimization of our method, it can be divided
into five parts. For updating Q f , the time complexity is
O(mt(cnd + nd2)). For updating W , the time complexity is
O(t((∑m

f=1 d f )2d)). For updating H, the time complexity is
O(t(d3)). For updating S, the time complexity is O(t(n3)).
For updating F, the time complexity is O(t(cn2)). Note
that we initialize the pseudo-label matrix Y f by perform-
ing K-means on the feature matrix of each view. Thus the
time complexity of this process is O(mcd ′nT ′), where d ′

denotes the maximum dimension of all views, and T ′ de-
notes the number of iteration of matrix factorization and
clustering. Its time complexity can be ignored compared
with the other five parts. We normally set c < d and c < n
in this paper. To sum up, the overall time complexity is
O(mtnd2 + t((∑m

f=1 d f )2d + n3 + d3)), where t is the number
of iterations.

4. Conclusion

In this letter, we have proposed a novel multi-view clus-
tering framework, called shared latent embedding learning
for multi-view subspace clustering (SLE-MSC). Our model
integrates the pseudo-label learning and optimal graph learn-
ing into the latent representation based multi-view subspace
clustering framework, which can simultaneously mine the
intra-view similarities of each view and the optimal local

geometric structure of the data space. Moreover, a novel
iterative optimization scheme is developed to solve SLE-
MSC. Extensive experiments on several datasets validate
the superiority and effectiveness of our model.
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