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LETTER
Re-Evaluating Syntax-Based Negation Scope Resolution∗

Asahi YOSHIDA†a), Nonmember, Yoshihide KATO††, Member, and Shigeki MATSUBARA† ,††, Senior Member

SUMMARY Negation scope resolution is the process of detecting the
negated part of a sentence. Unlike the syntax-based approach employed
in previous researches, state-of-the-art methods performed better without
the explicit use of syntactic structure. This work revisits the syntax-based
approach and re-evaluates the effectiveness of syntactic structure in negation
scope resolution. We replace the parser utilized in the prior works with
state-of-the-art parsers and modify the syntax-based heuristic rules. The
experimental results demonstrate that the simple modifications enhance the
performance of the prior syntax-based method to the same level as state-of-
the-art end-to-end neural-based methods.
key words: negation, negation detection, negation scope resolution, syn-
tactic parser

1. Introduction

Negation is a common linguistic phenomenon that frequently
appears in natural language. Consequently, its detection is
crucial for various NLP applications, including sentiment
analysis, relation extraction and medical data mining. Typi-
cally, the negation detection task is broken down into two
subtasks: (i) detecting negation cues (words, affixes, or
phrases that express negations) and (ii) resolving their scopes
(parts of a sentence affected by the negation cue). In exam-
ple (1) below, the word “not” is the negation cue (marked in
bold) and word sequences “He did” and “go to school” form
the scope (underlined parts).

(1) He did not go to school and stayed home.

This work addresses the second subtask: negation scope
resolution. Prior works used syntactic features for resolving
the scope of negations [1]–[4]. Read et al. [1] tackled this
issue with syntax-based approach and obtained the best per-
formance on the token-level evaluation in *SEM2012 shared
task [5]. Recently, many studies treat this task as a sequence
labeling problem and use deep-learning techniques [6]–[8].
Without explicitly utilizing syntactic structure, they argued
that end-to-end neural approaches can outperform earlier
syntax-based ones. However, the prior works proposed in
*SEM2012 shared task used the parser of that time∗∗. The
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performances of parsers have considerably improved since.
The effectiveness of the syntax-based approach will increase
with the usage of accurate parsers. Furthermore, syntax-
based methods have an advantage over deep-learning tech-
niques: high interpretability.

Motivated by the point mentioned above, this work re-
visits the syntax-based approach for negation scope resolu-
tion. We use state-of-the-art parsers to re-evaluate the ear-
lier syntax-based approach. We also modify the syntactic-
based heuristic rules used in the prior syntax-based method.
Our experimental results demonstrate that the prior method,
based on heuristics for syntax structure, can obtain the same
level of performance as state-of-the-art methods based on
end-to-end neural networks.

2. Related Work

This section describes the syntax-based method proposed by
Read et al. [1], based on which we re-evaluate the usefulness
of syntax for negation scope resolution. Their approach as-
sumes that the scope of negation corresponds to a constituent.
As an example, let us consider the sentence (2).

(2) I know that he is not a student.

Figure 1 shows the constituent parse tree of the sen-
tence. In this sentence, the scope of the negation cue “not”
corresponds to the constituent S whose left end is “he” and

Fig. 1 Constituent parse tree of sentence (2), highlighting candidate
scope constituents.

∗∗The syntactic information provided by the parser is annotated
on the datasets utilized in *SEM2012 shared task. Participants in
the shared task applied this syntactic information.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



166
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.1 JANUARY 2024

whose right end is “student”. This method resolves the scope
of the negation cue according to the following steps:

1. Parse the sentence and select the constituents on the path
from the cue to the root as candidates (The candidates
are marked in bold in Fig. 1).

2. Select one constituent corresponding to the scope ei-
ther using heuristics or the Support Vector Machine
classifier.

3. Adjust the scope by removing certain elements from the
constituent selected in the second step.

In the first step, the sentence is parsed and all the con-
stituents that dominate the negation cue are considered as
scope candidates. For example, in sentence (2), six con-
stituents highlighted in Fig. 1 are selected as candidates. In
the second step, one constituent is selected from the candi-
dates using either heuristics or a classifier. We describe the
heuristic method, which we use in this work. This method
selects one constituent from the candidates using scope res-
olution heuristics shown in Fig. 2. The 14 rules that form
the heuristics are applied in order from top to bottom; the
rules are listed in a specific-to-general order. Each rule
is represented as a path pattern and some rules have ad-
ditional constraints (if part). For example, the fifth rule

Fig. 2 Scope resolution heuristics. Each row displays one rule, which is
presented in the order that they should be applied. Each rule is represented
as a path pattern. A/B denotes that B is the parent of A, A//B implies B is
an ancestor of A, and A\B means B is a child of A. (#) is the rule we modify
in this work.

Fig. 3 Constituent parse tree of sentence (1), enclosing removed parts in
boxes.

“DT//SBAR if SBAR\WHADVP” will be activated and the
constituent SBAR is selected when the negation cue is a de-
terminer (DT), provided that it has an ancestor SBAR if the
SBAR has a child WHADVP. If no rule is activated, it uses
a default scope, which expands the scope to the left and the
right of the negation cue until either a sentence boundary or
a punctuation is found.

The alignment of the constituent and the scope is not
always straightforward. Sentence (1) is one of such illustra-
tion. In this sentence, the scope of the negation cue “not”
does not cross the coordination boundary: the coordinat-
ing conjunction “and”, its following conjunct “stayed home”
and the punctuation “.” are not included in the scope. To
deal with such a case, Read et al. [1] adopted some heuristic
rules to remove certain elements from the constituent. These
rules remove elements that are not within the scope, such as
constituent-initial interjections and sentential adverbs.

For sentence (1), the scope “He did, go to school” is cor-
rectly resolved using the series of process. The constituent S
is selected as the scope of the cue according to the first and
second steps. In the third step, the coordinating conjunc-
tion “and”, its conjunct “stayed home” and the punctuation
“.” are removed by the heuristic rules (removed parts are
enclosed in Fig. 3).

3. Revisiting the Syntax-Based Method

In this section, we revise the method described in the pre-
vious section to re-evaluate the syntax-based approach in
negation scope resolution. Section 3.1 describes the parsers
we use in this work. Sections 3.2 and 3.3 discuss the modi-
fications we made for the second and the third steps of Read
et al.’s method [1], respectively.

3.1 Replacement of the Parser

The dataset used in *SEM2012 shared task [9], also known
as the Conan Doyle dataset, is one of the primary datasets
used for negation scope resolution. This dataset also con-
tains syntactic information, which was assigned using the
reranking parser of Charniak and Johnson [10]. As Read et
al. mentioned, syntactic information contains parse errors.
They suspected that parse errors cause scope resolution er-
rors in their method. To mitigate this issue, we parse the
sentences in the dataset using state-of-the-art, high-accuracy
parsers. We use two parsers: Berkeley Neural Parser [11],
[12] with BERT [13], and Attach Juxtapose Parser [14] with
XLNET [15]. Table 1 shows the performances of the parsers
on Penn Treebank [16].

Table 1 Performances of the parsers in Penn Treebank Section 23.
Parser F1 score (%)
Reranking Parser [10] 91.02
Berkeley Neural Parser [11], [12] 95.77
Attach Juxtapose Parser [14] 96.34
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Table 2 Scope resolution performances for gold cues using the three different parsers. The upper
figure in each row demonstrates the result with modified rules discussed in Sects. 3.2 and 3.3; the lower
figure shows the result without modifications. Note that in the case of the rule to remove sentential
adverbs from the scope in the third step, we were not able to reproduce the Read et al.’s method because
the sentential adverb list is not publicly available. Thus, both the upper and the lower figures describe
the results of our modified rule.

Parser Scope-level Token-level
Pre. (%) Rec. (%) F1 (%) Pre. (%) Rec. (%) F1 (%)

Reranking Parser 97.21 69.88 81.31 86.87 93.07 89.86
(97.14) (68.27) (80.19) (85.48) (93.63) (89.37)

Berkeley Neural Parser 98.91 72.69 83.80 89.78 92.96 91.34
(98.88) (70.68) (82.43) (87.88) (93.57) (90.64)

Attach Juxtapose Parser 98.94 74.70 85.13 90.62 94.68 92.61
(98.90) (72.29) (83.53) (88.70) (95.24) (91.85)

3.2 Modification of Scope Resolution Heuristics

Read et al. used scope resolution heuristics shown in Fig. 2
to detect the constituent corresponding to the scope of the
negation cue. The first rule of Read et al. (denoted with
(#) in Fig. 2) is considered to extract relative clauses, but
this rule does not work properly. In relative clauses in Penn
Treebank, SBAR directly dominates not VP but S (and the
S has a child VP). To accurately capture this structure, we
modify the rule as follows:

(3) RB//VP/S/SBAR if SBAR\WHNP

This modification is based on the preliminary experiment
conducted on the training data.

3.3 Modification of Scope Adjustment

As indicated in Sect. 2, Read et al.’s method adjusts the
constituent in the third step. This work partially modifies
their heuristics.

First, we present the following additional rule to the
original ones:

• Remove initial PP (prepositional phrase) if delimited by
a comma.

This modification was motivated by the annotation guideline
of the Conan Doyle dataset [17]. According to this guideline,
discourse markers are excluded from the scope. Comma-
delimited prepositional phrases often function as discourse
markers, such as “In my opinion” in example (4). In this
case, we should remove them from the scope.

(4) In my opinion, he should not go.

Also, we modify one of the Read et al.’s rules: remov-
ing sentential adverbs from the scope. Read et al. compiled
a list of sentential adverbs from the training data and used it
for this processing. Instead, in this work, we simply remove
“comma-delimited ADVP (adverbial phrase) or INTJ (inter-
jection)” from the scope along with the commas. This is a
generalization of Read et al.’s processing. As an example
of a comma-delimited ADVP that functions as a discourse-
level adverbial and should be excluded from the scope, see

sentence (5) below.

(5) There was no trace, however, of anything.

Again, this modification of scope adjustment rules is based
on the training data.

4. Experiment

4.1 Experimental Settings

To re-evaluate the syntax-based approach to negation scope
resolution, we conducted an experiment† using the evalua-
tion data of the Conan Doyle dataset, which was employed
in *SEM2012 shared task. We created new constituent parse
trees for the sentences in the dataset using Berkeley Neural
Parser and Attach Juxtapose Parser. We conducted nega-
tion scope resolution using the modified version of Read et
al. [1] discussed in Sects. 3.2 and 3.3. Other experimental
setups are similar to those of *SEM2012 shared task, with
the scope-level F1 score and the token-level F1 score as the
evaluation metrics. We used the official script distributed in
the shared task†† for evaluation.

4.2 Experimental Results

Table 2 shows the experimental results with three different
parsers to provide the constituent parse trees. The results
demonstrate that the use of accurate parsers leads to an in-
crease in performance in negation scope resolution for both
scope-level and token-level metrics. We also verified that
the rule modifications introduced in this work contributed to
the performance improvement.

Several previous works, including state-of-the-art meth-
ods, incorporate punctuation tokens for evaluation, which
were omitted in *SEM2012 shared task. To compare our
results with these methods, we also assessed F1 score in-
cluding punctuation tokens. Table 3 shows the results. The
performance of the syntax-based method tested in this work
obtained 91.74% in F1 score including punctuations, which
is only 1.11 points behind values reported by the state-of-the-

†The code is available at https://github.com/asahi-y/
revisiting-nsr

††https://www.clips.ua.ac.be/sem2012-st-neg/data.html
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Table 3 Comparison to previous methods. The results of this work
are the ones obtained by using syntactic information generated by Attach
Juxtapose Parser, and by applying modified rules. Note that the results are
for negation scope resolution using gold cues.

Method
Token-level F1 (%)
Including Excluding

punctuations punctuations
This work 91.74 92.61
Fancellu et al. (2016) [6] 88.72 -
Li and Lu (2018) [19] - 89.4
Khandelwal and Sawant (2020) [7] 92.36 -
Truong et al. (2022) [8] 91.24 -
Wu and Sun (2023) [18] 92.85 -

art method (92.85%), obtained by Wu and Sun [18]. This
result shows that the prior method based on heuristics for
syntax, with the use of a high-performance parser, can ob-
tain performance close to the results obtained by the best-
performing deep learning methods.

5. Conclusion

This work re-evaluated the syntax-based approach in nega-
tion scope resolution. We replaced the parser used in the
prior works with the state-of-the-art parsers. We also slightly
modified the syntax-based heuristic rules designed in the
prior work. The experimental results demonstrate that the
prior syntax-based approach can obtain high performance
comparable to those of state-of-the-art methods. This work
gives a strong baseline for the negation scope resolution task
and opens up the possibility of accurate and interpretable
negation scope resolution.

In future work, we will introduce a tree-based neural
model into the constituent selection process to enhance the
performance of the scope prediction. It would also be in-
teresting to apply the syntax-based approach to the scope
resolution of other linguistic phenomena, for example, spec-
ulation or quantifier.
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