
234
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.2 FEBRUARY 2024

LETTER
A Data Augmentation Method for Fault Localization with Fault
Propagation Context and VAE

Zhuo ZHANG†, Donghui LI†a), Lei XIA††b), Ya LI†††, Nonmembers, and Xiankai MENG††††, Member

SUMMARY With the growing complexity and scale of software, detect-
ing and repairing errant behaviors at an early stage are critical to reduce the
cost of software development. In the practice of fault localization, a typical
process usually includes three steps: execution of input domain test cases,
construction of model domain test vectors and suspiciousness evaluation.
The effectiveness of model domain test vectors is significant for locating
the faulty code. However, test vectors with failing labels usually account
for a small portion, which inevitably degrades the effectiveness of fault
localization. In this paper, we propose a data augmentation method PVaug
by using fault propagation context and variational autoencoder (VAE). Our
empirical results on 14 programs illustrate that PVaug has promoted the
effectiveness of fault localization.
key words: debugging, fault localization, VAE, fault propagation

1. Introduction

Debugging has been recognized as one of the most impor-
tant processes for software development. It usually needs
much manual involvement and costs. Researchers have
proposed various fault localization techniques to help in-
crease developers’ productivity and reduce the development
cost. Among these techniques, spectrum-based fault local-
ization (SBFL) [1] and deep-learning-based fault localiza-
tion (DLFL) [2] are two of the most popular ones and provide
tremendous improvement in accuracy [3]. These two types
of fault localization methods are based on an information
model which is a matrix constructed by dynamic coverage
information from test executions and reflects whether a state-
ment is covered by a test case. In the information model, each
line could be recognized as a model-domain test vector which
corresponds to an input-domain test case. An element in the
vector is 1 denotes the corresponding statement is executed
by the test case while 0 means otherwise. Fault localization
techniques utilize these vectors from the information model
to calculate the suspicious values of statements and rank
them in descending order as a result.

Manuscript received August 9, 2023.
Manuscript revised October 4, 2023.
Manuscript publicized October 25, 2023.
†The authors are with the School of Electrical and Information

Engineering, Tianjin University, Tianjin 30072, China.
††The author is with the No.83 Army Joint and Truma Disease

Treatment Centre of PLA, Xinxiang 453000, China.
†††The author is with the Ningbo Artificial Intelligence Institute,

Shanghai Jiaotong University, Ningbo, 315000, China.
††††The author is with the College of Computer and Information

Engineering, Polytechnic University, Shanghai 200127, China.
a) E-mail: lidonghui@tju.edu.cn (Corresponding author)
b) E-mail: drxialei154371@163.com (Corresponding author)

DOI: 10.1587/transinf.2023EDL8052

The computation process of fault localization illustrates
that model domain test vectors are significant for seeking out
the faulty code. These vectors usually include vectors with
passing labels and vectors with failing labels. Fault localiza-
tion techniques heavily rely on enough number of these two
types of vectors to conduct the calculation process with either
statistical correlation coefficients [1] or deep learning mod-
els [2]. However, in the process of software development,
the number of passing vectors is far more than the number
of failing ones. This imbalance phenomenon adversely af-
fects the effectiveness of fault localization. As a matter of
fact, many studies have deeply investigated the correlation
between model domain test vectors and fault localization re-
sult. They illustrated that the asymmetry of these vectors,
especially the fact that passing vectors outnumber failing
ones inevitably leads to negative impact. There are exist-
ing studies [4], [5] proposed try to reproduce a given failure
using either symbolic execution methods or search-based
methods. However, they only focus on generating test cases
from input-domain, which is difficult to generate enough
number of failing test cases and achieve a balanced data set.
The reason lies in the fact that generating input-domain fail-
ing test cases needs real inputs that lead to program failures,
which account for quite a small part of the input domain.
Searching for these sporadic or even random inputs from the
distribution of input domain is not an easy task. Meanwhile,
these vectors could not reflect the propagation relationships
between suspicious statements, which could facilitate under-
standing of programs and help analyze the root causes of a
failure. Therefore, it is necessary to generate more vectors
with failing labels according to fault propagation contexts.

In view of this, we investigate more on how to gen-
erate useful vectors according to fault propagation contexts
and propose a data augmentation method PVaug to bene-
fit fault localization. Specifically, we attempt to build fault
propagation contexts that reflect the information of related
statements that have correlation with the failure output and
then utilize variational autoencoder (VAE) to generate new
failing vectors based on the contexts. The aim is to obtain
a class-balanced model domain test vectors, so as to im-
prove the fault localization accuracy. PVaug does not need
to strenuously execute and seek out a real failing path, thus
the generated failing test vectors do not correspond to real
failing paths. In order to verify the effectiveness of PVaug
to existing fault localization techniques, we design and per-
form a large-scale experimental study. We choose 14 large
real-world programs and 11 state-of-the-art fault localization

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



LETTER
235

Fig. 1 The architecture of PVaug.

techniques to conduct a comparison. The experimental re-
sults verify the effectiveness of our proposed method PVaug.

2. Approach

2.1 Overview

The basic idea of PVaug is to build a fault propagation con-
text showing correlations between execution of statements
and test results, and then adopt VAE to build an augmented
matrix as the input samples, and use calculation algorithms
to quantify the suspicious values of statements being faulty.
The augmented matrix is a set of class-balanced model-
domain test vectors. Over the past several years, VAE has
emerged as one of the most popular approaches to unsu-
pervised learning of complicated distributions [6]. VAE
has strong distribution learning capability and has getting
promising results on many kinds of complicated tasks. In
this study, we propose a new method PVaug, which con-
structs a fault propagation context and exploits the genera-
tion ability of VAE to synthesize new vectors with failing
labels, so as to obtain a set of class-balanced model-domain
test vectors to promote the efficiency of fault localization. In
the generated failing vectors, the value of each element in
the fault propagation context is between 0 and 1, the value
of each element that is not in the context is 0. During the
calculation process of suspicious values, fault localization
techniques utilize all the model-domain test vectors includ-
ing the newly generated ones as input. At this time, the new
matrix is a set of class-balanced test vectors, which would
benefit fault localization.

Figure 1 shows the architecture of PVaug. There are
four main components in PVaug: input components, an en-
coder, a decoder and the output. Suppose there is a program
P that has N statements. The test suite is T that owns M
input-domain test cases. After executing program P under
T, we could obtain the statement coverage information and
check the output against the test oracle. With this infor-
mation, PVaug could define the model-domain test vectors,
which form a M×(N+1) matrix. The left corner in Fig. 1
illustrates the input components, which include a M×(N+1)
matrix, a vector pc1, pc2, . . . , pcN and the input data set
yi1, yi2, . . . , yiN . The M×(N+1) matrix represents coverage

information of N statements and test results of M input do-
main test cases. Dynamic slicing is a computation process
for reducing the amount of information that needs to be
absorbed [7]. Dynamic slice is the computation result of
dynamic slicing, it could reflect data and/or control depen-
dencies of program statements and is a subset of statements
whose execution affects the output. PVaug chooses a fail-
ing test case to conduct the slicing process and get the fault
propagation context. We use a vector pc1, pc2, . . . , pcN to
represent this context, in which pci = 1 means statement S i
is in the fault propagation context and 0 otherwise. We then
intersect this vector with the original failing test vectors (i.e.
xi1, xi2, . . . , xiN , i ∈ {1,2,. . . , M} and ei=1) to synthesize
the input data set(i.e. yi1, yi2, . . . , yiN , i ∈ {1,2,. . . , M} and
ei=1). On the right side of the input components are three
squares that are encoder, low-dimensional hidden variables
z and decoder. Encoder and decoder are composed of sev-
eral fully connected layers. The arrow from yi1, yi2, . . . , yiN
to encoder means the input data set is inputted into the en-
coder. The function of encoder is to map a high-dimensional
input to low-dimensional hidden variables z while decoder
is to map from low-dimensional hidden variables back to
high-dimensional inputs. Besides, PVaug has a unique noise
mechanism. The encoder will output two representations,
one is the original representation while the other is the repre-
sentation that aims to control the noise interference level. Fi-
nally, the original representation and the noise representation
will be added as the input of the decoder [6]. The final output
of the decoder are the generated samples (i.e., zi1, zi2, . . . , ziN)
which are new model-domain test vectors with failing labels.
After figuring out how to generate failing vectors, we should
identify the generation number to achieve better localization
efficiency. According to the previous study [8], a balanced
set of model domain test vectors is beneficial for improv-
ing the effectiveness of fault localization. This indicates
that class-balanced model-domain test vectors perform bet-
ter than unbalanced ones for fault localization, which also
means that we need to constantly generate failing vectors
until we obtain a class-balanced model-domain data set.

2.2 An Illustrative Example

As shown in Fig. 2, this section uses an example to illus-
trate the application of PVaug. Suppose there is a program
P with a faulty statement S 3. The test suite consists of 6
input-domain test cases shown in the second column on the
left, the corresponding model-domain test cases of which
are illustrated in the 3rd to 19th columns on the left. The 16
cells below each statement denote whether the corresponding
statement is executed by an input-domain test case. We uti-
lize 1 to represent a statement is executed while 0 means
a statement is not executed. The rightmost cell records
whether a test case is failed or not. We use 1 to denote
a failing test vector and 0 to represent a passing one. From
Fig. 2, we could observe that the number of failing vectors
is 2 while the number of passing ones is 4, which leads to
a class-imbalanced phenomenon. Since the fault propaga-



236
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.2 FEBRUARY 2024

Fig. 2 Example illustrating our approach.

tion context is the slice result {S 1, S 3, S 7, S 14}, the vector
of context is {1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0}. PVaug
intersects this context vector with original failing vectors as
input and iteratively generates model-domain failing vectors
until there are the same number of passing ones and failing
ones, t7 and t8 are two generated failing vectors. At this time,
an augmented model-domain test vectors are constructed.

With the augmented model-domain test vectors, we
choose MLP-FL [2] as our baseline to conduct the suspi-
ciousness calculation process. MLP-FL is a deep-learning-
based fault localization method [2]. The MLP model has
an input layer with 16 nodes, three hidden layers with the
number of each one’s nodes being 32 and one output layer.
PVaug uses the class-balanced dataset as input to train the
network iteratively. After training, we construct a virtual
test suite as the test dataset to get the suspicious values of
16 statements and rank them in descending order. The fi-
nal results are shown in the bottom two rows in Fig. 2. We
could find that the faulty statement S 3 is ranked 4th by us-
ing augmented model-domain test vectors while ranked 12th
by using the original model-domain test vectors. Therefore,
PVaug obtains a better result on fault localization technique
MLP-FL.

3. An Experimental Study

3.1 Experimental Setup

In our experimental study, we utilize 14 subject programs to
conduct a comparison between PVaug and baselines, which
are chart, math, lang, closure, mockito, time, python, gzip,
libtiff, space, nanoxml_v1, nanoxml_v2, nanoxml_v3 and
nanoxml_v5. The first six subject programs are collected
from Defects4J †, the next three ones are from ManyBugs ††,
and the last 5 ones are got from SIR †††. These programs
are widely used in the field of fault localization [2]. Pre-
vious studies have shown that Ochiai, ER5, GP02, GP03,
Dstar, GP19 and ER1’ are all state-of-the-art spectrum-
based fault localization (SBFL) techniques [9], and MLP-
†Defects4J, http://defects4j.org
††ManyBugs, http://repairbenchmarks.cs.umass.edu/ManyBugs/
†††SIR, http://sir.unl.edu/portal/index.php

Table 1 Subject programs in our experimental study.
Program Versions KLOC Test

JFreeChart (chart) 26 96 2205
Apache Commons Math (math) 106 85 3602
Apache commons-lang (lang) 65 22 2245
Closure Compiler (closure) 133 90 7927

Framework for unit tests (mockito) 38 6 1075
Joda-Time (time) 27 53 4130

General-purpose language (python) 8 407 355
Data compression (gzip) 5 491 12
Image processing (libtiff) 12 77 78

ADL interpreter space (space) 38 6.1 13585
XML parser v1 (nanoxml_v1) 7 5.4 206
XML parser v2 (nanoxml_v2) 7 5.7 206
XML parser v3 (nanoxml_v3) 10 8.4 206
XML parser v4 (nanoxml_v4) 7 8.8 206

FL, CNN-FL, BiLSTM-FL and DeepFL are representative
and effective deep-learning-based fault localization (DLFL)
approaches [2], [10]. Thus, we choose and implement these
11 baselines based on the source code from the previous
studies. Table 1 has provided the detailed information of
the 14 subject programs including programs, the number of
faulty versions, the number of thousand lines, and the num-
ber of input-domain test cases. We use a computer with
128G physical memory, a CPU of Intel I7-9700, and two
12G GPUs of NVIDIA TITAN X Pascal. The replication
package is released online ††††.

The metrics we used to verify the effectiveness of our
approach are Top-N, Mean Average Rank (MAR), Mean First
Rank (MFR) and Relative Improvement (RImp) [10], [11].
For a fault localization method, Top-N means the percentage
of faults located within the first N positions of a ranked list of
all statements in descending order of suspiciousness, Mean
Average Rank (MAR) is the mean of the average rank of all
versions’ faults, Mean First Rank (MFR) denotes the first
faulty statement’s rank of all faults when encountering mul-
tiple faults. Relative Improvement (RImp) is to compare the
total number of statements that need to be checked to locate
all faults with a baseline using PVaug versus the number that
need to be checked without using PVaug.

††††Code is available at https://github.com/toolstemp/VAE_Aug.



LETTER
237

Table 2 Top-N, MAR and MFR comparison of PVaug over the 12 fault
localization approaches.

Comparison top-1 top-5 top-10 MFR MAR
MLP-FL 0% 2.1% 3.1% 213 352

MLP-FL (PVaug) 0% 6.2% 12.7% 173 309
CNN-FL 1.6% 3.1% 8.2% 179 263

CNN-FL (PVaug) 1.6% 9.6% 14.9% 114 235
BiLSTM-FL 0% 1.6% 3.1% 235 412

BiLSTM-FL (PVaug) 0% 4.1% 9.7% 191 346
DeepFL 1.6% 4.1% 9.3% 188 271

DeepFL (PVaug) 1.9% 10.1% 16.9% 121 223
ER5 0% 6.2% 12.4% 247 421

ER5 (PVaug) 0% 8.5% 13.5% 214 371
GP02 1.6% 15.5% 20.6% 263 545

GP02 (PVaug) 1.6% 16.8% 23.1% 216 448
GP03 3.1% 11.3% 12.4% 217 363

GP03 (PVaug) 3.1% 16.2% 17.1% 194 309
Dstar 3.1% 20.1% 26.3% 241 357

Dstar (PVaug) 3.1% 22.5% 31.5% 225 316
ER1 ’ 3.1% 18.6% 26.3% 242 371

ER1 ’(PVaug) 3.6% 20.1% 29.4% 216 329
GP19 3.1% 9.3% 15.5% 253 391

GP19 (PVaug) 3.1% 11.9% 24.2% 221 334
Ochiai 1.6% 20.1% 24.2% 215 363

Ochiai (PVaug) 2.1% 23.6% 29.4% 164 276

Fig. 3 RImp of PVaug on approaches.

3.2 Data Analysis

Table 2 illustrates the comparison results between 11 fault lo-
calization techniques using PVaug and without using PVaug.
From Table 2, we could observe that after using PVaug,
baselines get higher Top-N values and lower MFR and MAR
values. This results indicate that PVaug could promote the
effectiveness of fault localization.

In order to verify the detailed improvement on each
subject program as well as on each baseline, we further utilize
RImp score. From Fig. 3, we could observe the comparison
results of RImp score. Concretely, Fig. 3 provides the RImp
score on 11 fault localization techniques. In Fig. 3, the RImp
score ranges from 56.84% to 91.61%, which indicates that
PVaug is effective on all the 11 fault localization techniques.
Taking CNN-FL as an example, the RImp score is 76.25%,
which means that after seeking out all the faulty statements,
the number of statements needs to be examined by CNN-FL
after using PVaug is 76.25% of the number of statements
needs to be checked by CNN-FL without using PVaug. It
also indicates that PVaug helps CNN-FL to save 23.75% of
statements that need to be examined to locate all faults of 14

Table 3 Comparison of PVaug over Aeneas, Bcl-fl and CGAN4FL.
Vs Aeneas Result Vs Bcl-fl Result Vs CGAN4FL Result
BETTER 7 BETTER 6 BETTER 3
SIMILAR 4 SIMILAR 5 SIMILAR 5
WORSE 0 WORSE 0 WORSE 3

subject programs. The maximum saving is 43.16% on GP03
while the minimum saving is 8.39% on Dstar.

In order to investigate the significance of the statisti-
cally difference between PVaug and existing data augmenta-
tion techniques such as Aeneas, Bcl-fl and CGAN4FL [12]–
[14], this experimental study adopts Wilcoxon-Signed Rank
Test [2]. From Table 3, we could observe that PVaug gets
16 BETTER results (16/33 = 48.48%). Compared with Ae-
neas and Bcl-fl, PVaug utilizes a fault propagation context,
which could show how a failure is caused and provide better
effectiveness. Compared with CGAN4FL, PVaug utilizes a
VAE model, which is easier to train. PVaug reduces average
training time by 26% compared to CGAN4FL. In total, we
could conclude that PVaug improves the efficiency of fault
localization.

4. Conclusion

In this paper, we propose a new perspective to augment
model-domain test vectors for fault localization with the uti-
lization of fault propagation context and VAE. The large-
scale experimental study has shown that PVaug effectively
promotes the efficiency of state-of-the-art fault localization
techniques.

Acknowledgments

This work is partially supported by China Postdoctoral
Science Foundation (Certificate Number: 2023M732594),
Characteristic Innovation Project of Ordinary Uni-
versity in Guangdong Province (Certificate Number:
2023KTSCX193).

References

[1] X. Xie, T.Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of the
risk evaluation formulas for spectrum-based fault localization,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol.22, no.4, p.31, 2013.

[2] Z. Zhang, Y. Lei, X. Mao, M. Yan, L. Xu, and X. Zhang, “A study
of effectiveness of deep learning in locating real faults,” Information
and Software Technology, vol.131, p.106486, 2021.

[3] W.E. Wong, R. Gao, Y. Li, A. Rui, and F. Wotawa, “A survey on
software fault localization,” IEEE Trans. Softw. Eng. (TSE), vol.42,
no.8, pp.707–740, 2016.

[4] M. Böhme, C. Geethal, and V.-T. Pham, “Human-in-the-loop auto-
matic program repair,” 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST), pp.274–285,
2020.

[5] G. An and S. Yoo, “Human-in-the-loop fault localisation us-
ing efficient test prioritisation of generated tests,” CoRR,
vol.abs/2104.06641, 2021.

[6] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

http://dx.doi.org/10.1145/2522920.2522924
http://dx.doi.org/10.1145/2522920.2522924
http://dx.doi.org/10.1145/2522920.2522924
http://dx.doi.org/10.1145/2522920.2522924
http://dx.doi.org/10.1016/j.infsof.2020.106486
http://dx.doi.org/10.1016/j.infsof.2020.106486
http://dx.doi.org/10.1016/j.infsof.2020.106486
http://dx.doi.org/10.1109/tse.2016.2521368
http://dx.doi.org/10.1109/tse.2016.2521368
http://dx.doi.org/10.1109/tse.2016.2521368
http://dx.doi.org/10.1109/icst46399.2020.00036
http://dx.doi.org/10.1109/icst46399.2020.00036
http://dx.doi.org/10.1109/icst46399.2020.00036
http://dx.doi.org/10.1109/icst46399.2020.00036


238
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.2 FEBRUARY 2024

[7] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A brief survey
of program slicing,” ACM SIGSOFT Software Engineering Notes,
vol.30, no.2, pp.1–36, 2005.

[8] L. Zhang, L. Yan, Z. Zhang, J. Zhang, W.K. Chan, and Z. Zheng,
“A theoretical analysis on cloning the failed test cases to improve
spectrum-based fault localization,” Journal of Systems and Software,
vol.129, pp.35–57, 2017.

[9] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M.D. Ernst,
D. Pang, and B. Keller, “Evaluating and Improving Fault Localiza-
tion,” 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), 2017.

[10] X. Li, W. Li, Y. Zhang, and L. Zhang, “DeepFL: Integrating multiple
fault diagnosis dimensions for deep fault localization,” Proceedings
of the 28th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2019), pp.169–180, 2019.

[11] C. Parnin and A. Orso, “Are automated debugging techniques actu-
ally helping programmers?,” International Symposium on Software
Testing and Analysis (ISSTA 2011), pp.199–209, 2011.

[12] H. Xie, Y. Lei, M. Yan, Y. Yu, X. Xia, and X. Mao, “A universal data
augmentation approach for fault localization,” Proceedings of the
44th International Conference on Software Engineering, pp.48–60,
2022.

[13] Y. Lei, C. Liu, H. Xie, S. Huang, M. Yan, and Z. Xu, “BCL-FL: A data
augmentation approach with between-class learning for fault local-
ization,” 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp.289–300, IEEE, 2022.

[14] Y. Lei, T. Wen, H. Xie, L. Fu, C. Liu, L. Xu, and H. Sun, “Mitigating
the effect of class imbalance in fault localization using context-aware
generative adversarial network,” 2023 IEEE/ACM 31st International
Conference on Program Comprehension (ICPC), 2023.

http://dx.doi.org/10.1145/1050849.1050865
http://dx.doi.org/10.1145/1050849.1050865
http://dx.doi.org/10.1145/1050849.1050865
http://dx.doi.org/10.1016/j.jss.2017.04.017
http://dx.doi.org/10.1016/j.jss.2017.04.017
http://dx.doi.org/10.1016/j.jss.2017.04.017
http://dx.doi.org/10.1016/j.jss.2017.04.017
http://dx.doi.org/10.1109/icse.2017.62
http://dx.doi.org/10.1109/icse.2017.62
http://dx.doi.org/10.1109/icse.2017.62
http://dx.doi.org/10.1109/icse.2017.62
http://dx.doi.org/10.1145/3293882.3330574
http://dx.doi.org/10.1145/3293882.3330574
http://dx.doi.org/10.1145/3293882.3330574
http://dx.doi.org/10.1145/3293882.3330574
http://dx.doi.org/10.1145/2001420.2001445
http://dx.doi.org/10.1145/2001420.2001445
http://dx.doi.org/10.1145/2001420.2001445
http://dx.doi.org/10.1145/3510003.3510136
http://dx.doi.org/10.1145/3510003.3510136
http://dx.doi.org/10.1145/3510003.3510136
http://dx.doi.org/10.1145/3510003.3510136
http://dx.doi.org/10.1109/saner53432.2022.00045
http://dx.doi.org/10.1109/saner53432.2022.00045
http://dx.doi.org/10.1109/saner53432.2022.00045
http://dx.doi.org/10.1109/saner53432.2022.00045
http://dx.doi.org/10.1109/icpc58990.2023.00045
http://dx.doi.org/10.1109/icpc58990.2023.00045
http://dx.doi.org/10.1109/icpc58990.2023.00045
http://dx.doi.org/10.1109/icpc58990.2023.00045

