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LETTER
Robust Visual Tracking Using Hierarchical Vision Transformer
with Shifted Windows Multi-Head Self-Attention∗

Peng GAO†a), Member, Xin-Yue ZHANG†, Xiao-Li YANG†, Jian-Cheng NI†, and Fei WANG††, Nonmembers

SUMMARY Despite Siamese trackers attracting much attention due to
their scalability and efficiency in recent years, researchers have ignored the
background appearance, which leads to their inapplicability in recognizing
arbitrary target objects with various variations, especially in complex sce-
narios with background clutter and distractors. In this paper, we present a
simple yet effective Siamese tracker, where the shifted windows multi-head
self-attention is produced to learn the characteristics of a specific given tar-
get object for visual tracking. To validate the effectiveness of our proposed
tracker, we use the Swin Transformer as the backbone network and intro-
duced an auxiliary feature enhancement network. Extensive experimental
results on two evaluation datasets demonstrate that the proposed tracker
outperforms other baselines.
key words: Siamese network, visual tracking, vision transformer, self-
attention

1. Introduction

Visual tracking is one of the hot research topic in the com-
puter vision community. It has wide range of practical appli-
cations in unmanned aerial vehicles, human-computer inter-
action, video surveillance, and so forth. Despite various ap-
proaches achieving impressive success, due to several factors
such as deformation, fast motion, and occlusion, robust track-
ing of target objects still remains significant challenges [1].

Over the last decade, Siamese trackers have achieved
excellent results in terms of accuracy and robustness, which
regards the visual tracking task as a one-shot matching prob-
lem [2]. These trackers first employ a convolution neural
network (CNN) as the backbone to extract the features of
a target template and a series of search candidates, where
the similarity between the extracted template and candidate
features then are matched in a cross-correlation fashion. The
current location of the target object is determined by finding
the search candidates that most similar to the target template.
DiMP [3] utilizes multiple template images for training, and
constantly updates the target template during tracking. To
improve the discriminative ability of the tracker, a classifier
is trained online using background information and initial-
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ized with the initial frame. DiMP also proposed a target
prediction module to learn a more discriminative filter that
performs convolution operations on the search region. How-
ever, the backbone networks employed by existing trackers
are commonly built upon traditional CNNs, which may not
be ideal for extracting representative features from the video
sequence for visual tracking tasks, especially the global con-
textual references, as they can only process short-term local
spatial information in the target template and search candi-
dates.

As a relatively new architecture, Transformer [4] has
demonstrated significant potential in fields such as natural
language processing and speech recognition, and also re-
ceived attention in the computer vision community. Trans-
former architectures utilize a self-attention mechanism to
establish contextual relationships between inputs. However,
it is not possible for the self-attention mechanism to focus
on a specific input without simultaneously affecting other
equally important inputs. To address this, multiple heads,
known as multi-head self-attention (MSA), are employed to
enhance the performance of the self-attention mechanism.
More recently, MSA based Transformer architecture [5] has
ignited the research passion in the visual tracking commu-
nity [6]. Inspired by the idea of MSA and DiMP, we propose
a novel Siamese tracker, termed SwinDiMP, that replaces
the long-used off-the-shelf CNNs with a MAS based Trans-
former architecture to learn what is essential to the visual
tracking task in a shifted windows manner. This tracker
can effectively fuse hierarchical feature representation and
generate more semantically meaningful contextual informa-
tion than existing Siamese trackers. Experimental results
on several large-scale visual tracking datasets show that the
proposed SwinDiMP can achieve robust visual tracking.

2. The Proposed Approach

In this section, we provide a detailed description of the pro-
posed SwinDiMP. The overview pipeline of SwinDiMP is
illustrated in Fig. 1.

2.1 Multi-Head Self-Attention Backbone Network

The backbone network employed in SwinDiMP is based
on the hierarchical vision Transformer (Swin Transformer)
block [5], which is constructed by replacing the standard
MSA module in a Transformer block with a windows multi-
head self-attention (WMSA) module, followed by a multi-
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Fig. 1 Overview of the proposed SwinDiMP. Our approach consists of three main components: a
multi-head self-attention backbone network, an auxiliary feature enhancement network, and a target
prediction module inherited from DiMP [3].

Fig. 2 The pipeline of a Swin Transformer block.

Fig. 3 An illustration of the shifted windows manner for computing
self-attention in Swin Transformer [5].

layer perceptron (MLP) with GELU non-linearity in be-
tween, while keeping the other layers the same, as depicted
in Fig. 2. Before each MSA and MLP, a LayerNorm (LN)
layer is placed, and a residual connection is utilized after
each module.

WMSA module proposes to compute self-attention
in non-overlapping local windows instead of global self-
attention. To achieve this, the image is divided evenly
and non-overlapping into windows. Because the number of
patches in each window is much smaller than that of the en-
tire image, and the number of windows remains the same, the
computational complexity of WMSA has a linear relation-
ship with the image size, which greatly reduces the overall
computational complexity of the model. While WMSA re-
duces the computational complexity from quadratic to linear,
it still lacks cross-window connection, which limits its mod-
eling and representation ability. To address this issue and
facilitate better interaction between windows, Swin Trans-
former introduces shifted windows multi-head self-attention
(SWMSA). In Fig. 3, layer L evenly shifts the local win-
dow, whereas layer L + 1 shifts the window shape across the
feature map, resulting in a new distribution. This new config-
uration allows for windows in subsequent layers to overlap,
promoting connectivity between them. Specifically, the first
module partitions the 8 × 8 feature map into uniformly di-
vided 2 × 2 windows of size 4 × 4 (at this point, the local

window size is M = 4). Then, the following module utilizes
shifted windows configuration by displacing the windows by
(⌊M2 ⌋, ⌊M2 ⌋) pixels from the regularly partitioned windows,
as shown in the red box. By adopting this shifted windows
partition method, the calculation of two consecutive Swin
Transformer blocks can be expressed as,

ẐL = WMSA(LN(ZL−1)) + ZL−1 (1)
ZL = MLP(LN(ẐL)) + ẐL (2)

ẐL+1 = SWMSA(LN(ZL)) + ZL (3)

ZL+1 = MLP(LN(ẐL+1)) + ẐL+1 (4)

where ẐL and ZL represent the output feature maps of
(S)WMSA and MLP modules of the Lth block, respectively.
The shifted windows partition approach groups patches that
do not belong to the same window into a single computa-
tional attention. This strengthens the connection between
the windows, leading to further improves modeling and rep-
resentation ability.

We select the basic Swin Transformer block with the
window size of 7 and the patch size of 4 as our backbone
network. To better fit visual tracking requirements, we make
the following modifications:

1. We adjust the total strides of the Swin Transformer to
16 and reduce the number of stages from four to three.
In each stage, the number of Swin Transformer blocks
is set to (2,2,18).

2. To compare qualitatively with ResNet-50, we add a
convolution layer after the backbone network for up-
sampling operation. Although this layer may result in
the loss of some important features, our experiments
indicate that the WMSA backbone network still outper-
forms ResNet-50 [7] in terms of representation capabil-
ity despite such loss during tracking.

2.2 Auxiliary Feature Enhancement Network

While the proposed WMSA backbone network can extract
powerful features, it does not perform dimensional separa-
tion, and thus may be limited in its visual representation
of the perceptual domain. To address this issue, we incor-
porated an auxiliary feature enhancement network to learn
global attention across dimensions. The auxiliary network
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Fig. 4 The overview of the proposed auxiliary feature enhancement network.

consists of a channel attention subnetwork and a spatial at-
tention subnetwork, as shown in Fig. 4.

The channel attention subnetwork preserves channel
information using a 3-D arrangement, and uses a two-layer
MLP to amplify the spatial dependence of channels across
dimensions. Equation (5) shows the computational process
of channel attention Mc ,

Fc = Mc(F) ⊗ F (5)

where ⊗ indicates the element-wise multiplication.
In the spatial attention subnetwork, two convolutional

layers are used to fuse the spatial information. It is worth
noting that in order to prevent a significant increase in pa-
rameters, we perform channel reduction with a coefficient
of r in the first convolutional layer and recover the channel
numbers in the second convolutional layer. Equation (6)
shows the calculation process of spatial attention Ms ,

Fs = Ms(Fc) ⊗ Fc (6)

2.3 Tracking with Enhanced Features

During online tracking, given the first annotated frame, we
use 15 different data enhancement schemes based on DiMP
to create a template frame containing 15 samples. The ini-
tial template features are extracted through our proposed
WMSA backbone network and then processed using the aux-
iliary network to obtain the final template feature maps. The
filter-based prediction model [3] is initialized and continu-
ously updated with the template feature maps. Similarly,
the search candidates obtain initial search features using the
same WMSA backbone network, and these features are then
enhanced by the auxiliary network to obtain the final search
features. The prediction model then provides the target lo-
cation, which is used to update the target templates. Addi-
tionally, the oldest templates are discarded once the number
reaches a certain threshold of 50.

During offline training, SwinDiMP is trained using dis-
criminative learning loss [3]. Multiple image pairs are used
for training, and a Hinge-like loss function is employed to
penalize background information to improve the tracking
robustness.

3. Experiments

SwinDiMP is implemented in Python using PyTorch with
2 Intel® Xeon® E5-2698 v4 CPU @ 2.2 GHz CPU with
240 GB RAM, and 4 NVIDIA® Tesla® V100 GPU with

Table 1 Comparison of different backbone networks.

Tracker GOT-10k
AO SR0.50 SR0.75

DiMP 0.611 0.717 0.492
DiMPBN 0.638 0.748 0.515
SwinDiMP 0.642 0.769 0.522

128 GB VRAM. We utilize a modified WMSA based Trans-
former as our backbone network that accounts for window-
to-window information interaction. Additionally, we per-
form auxiliary feature enhancement operations for template
features to reduce dispersion of important information and
amplify global interaction representation. The input size of
the target template and search candidate are set to 127× 127
and 255 × 255 pixels, respectively. The backbone network
is initialized using pre-trained weights. Other parameters
and experimental settings are as same as DiMP [3] and Swin
Transformer [5].

Our experiments involve training the tracker on four
datasets including GOT-10k [8], COCO [9] and Tracking-
Net [10], and evaluating it against other state-of-the-art track-
ers on GOT-10k and TrackingNet.

3.1 Ablation Studies

We conduct extensive performance studies of various track-
ers, including the baseline DiMP [3], DiMP with the pro-
posed MSA backbone network (DiMPBN), DiMP with the
introduced feature enhancement network (DiMPFE), and the
proposed SwinDiMP, on the GOT-10k dataset. The aver-
age overlap (AO), SR0.50 and SR0.75 scores provided by the
official toolkit were used as evaluation indices.

Backbone network: We first evaluate the effectiveness
of the proposed WMSA based Transformer backbone net-
work. We tested DiMP, DiMPBN, and SwinDiMP. Table 1
presents the tracking results. The AO score of DiMPBN im-
proved by 2.7% compared to the baseline, indicating that
Transformer outperforms ResNet50 in extracting features.
Meanwhile, our proposed tracker, SwinDiMP, achieved an
AO score of 64.2%, improved by 3.1% compared to DiMPBN,
and demonstrated superior tracking performance.

Feature Enhancement: We also test the effect of the
proposed auxiliary feature enhancement netowkr. We com-
pared two trackers on GOT-10k, one using the auxiliary
feature enhancement network on both template and search
features, and the other only on the template feature. As
shown in Table 2, using feature enhancement on both tem-
plate and candidate yield a 1.2% improvement in AO score
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Table 2 Comparison of different feature enhancement strategies.

Tracker Feature Enhancement GOT-10k
Template Candidate AO SR0.50 SR0.75

DiMP - - 0.611 0.717 0.492
DiMPFE ✓ - 0.612 0.718 0.492
DiMPFE ✓ ✓ 0.623 0.723 0.512
SwinDiMP ✓ ✓ 0.642 0.769 0.522

Table 3 Comparison of different convolutional connections.

Tracker Convolutional Connection GOT-10k
Conv 1 × 1 Conv 3 × 3 AO SR0.50 SR0.75

DiMPBN ✓ - 0.628 0.738 0.504
DiMPBN - ✓ 0.638 0.748 0.515
SwinDiMP - ✓ 0.642 0.769 0.522

Table 4 Comparisons with state-of-the-art trackers on GOT-10k.

Tracker KYS Ocean SiamRPN++ D3S SiamTPN SiamCAR DiMP SwinDiMP

AO 0.636 0.611 0.518 0.597 0.576 0.569 0.611 0.642
SR0.50 0.751 0.721 0.618 0.676 0.686 0.670 0.717 0.769
SR0.75 0.515 0.473 0.329 0.462 0.441 0.415 0.492 0.522

compared to using it on only one branch. Therefore, we
chose to use the auxiliary feature enhancement network on
both template and candidate in SwinDiMP, which achieved
the best tracking results.

Convolutional Connection: We further investigate the
effectiveness of the backbone network with a convolution
connection for feature enhancement. We tested two different
convolutional kernel sizes, 1 × 1 and 3 × 3, and found that
the 3 × 3 kernel size yield a 1% higher AO score and higher
tracking accuracy, as shown in Table 3. Therefore, we used
a convolutional kernel size of 3 × 3 in our experiments.

In summary, our SwinDiMP tracker outperforms other
variants of DiMP on the GOT-10k dataset, demonstrating the
effectiveness of the proposed backbone network and feature
enhancement network.

3.2 Comparison with the State-of-the-Art

We compare our proposed SwinDiMP tracker with the
state-of-the-art tracking approaches, including KYS [11],
Ocean [12], SiamRPN++ [13], D3S [14], SiamTPN [15]
SiamCAR [16], and DiMP [3], on two public large-scale
challenging benchmarks.

GOT-10k [8]: GOT-10k is a comprehensive tracking
dataset that covers 560 common outdoor sports objects. The
comparison relust of the participants are shown in Table 4.
Our SwinDiMP outperforms all other trackers with the high-
est AO score of 64.2%. Moreover, compared to the base-
line DiMP, SwinDiMP improves the AO, SR0.50, and SR0.75
scores by 0.6%, 1.8%, and 0.7%, respectively.

TrackingNet [10]: TrackingNet dataset contains var-
ious natural scenes, with diverse frame rates, resolutions,
background surrounding, and object classes. As shown in
Table 5, our tracker achieves a 74.6% success rate (SR),
which is 0.6% higher than the baseline DiMP. Moreover,
SwinDiMP outperforms the other state-of-the-art trackers in
the evaluation.

Table 5 Comparisons with state-of-the-art trackers on TrackingNet.

Tracker KYS Ocean SiamRPN++ D3S SiamTPN SiamCAR DiMP SwinDiMP

SR 0.740 0.692 0.733 0.728 0.708 0.740 0.740 0.746
Precision 0.688 0.687 0.694 0.664 0.651 0.684 0.687 0.692
PreNorm 0.800 0.794 0.800 0.768 0.771 0.804 0.801 0.810

4. Conclusion

This work presents SwinDiMP, a simple yet effective frame-
work for robust visual tracking. While it eliminates most of
the specialization in current Siamese trackers on two track-
ing datasets, architecture and training techniques can be op-
timized for further performance improvements.
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