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Sense-Aware Decoder for Character Based Japanese-Chinese NMT

Zezhong LI†a), Nonmember and Fuji REN††, Fellow

SUMMARY Compared to subword based Neural Machine Translation
(NMT), character based NMT eschews linguistic-motivated segmentation
which performs directly on the raw character sequence, following a more
absolute end-to-end manner. This property is more fascinating for machine
translation (MT) between Japanese and Chinese, both of which use consec-
utive logographic characters without explicit word boundaries. However,
there is still one disadvantage which should be addressed, that is, character
is a less meaning-bearing unit than the subword, which requires the char-
acter models to be capable of sense discrimination. Specifically, there are
two types of sense ambiguities existing in the source and target language,
separately. With the former, it has been partially solved by the deep encoder
and several existing works. But with the later, interestingly, the ambiguity in
the target side is rarely discussed. To address this problem, we propose two
simple yet effective methods, including a non-parametric pre-clustering for
sense induction and a joint model to perform sense discrimination and NMT
training simultaneously. Extensive experiments on Japanese↔Chinese MT
show that our proposed methods consistently outperform the strong base-
lines, and verify the effectiveness of using sense-discriminated representa-
tion for character based NMT.
key words: NMT, sense-discriminated, Japanese-Chinese

1. Introduction

In recent years, Neural Machine Translation (NMT) has
achieved enormous success on various translation tasks [1].
A typical NMT system adopts a sequence-to-sequence ar-
chitecture operating on subword-level. It relies on the
language-dependent segmentation algorithm, and may pro-
duce suboptimal segmentation, which can hurt the trans-
lation performance and also violate the spirit of NMT for
learning everything in an end-to-end manner [2]. This defi-
ciency becomes more serious for MT between Japanese and
Chinese, both of which use consecutive logographic charac-
ters to construct words and sentences without explicit word
boundaries. A promising way is to use character granularity
for NMT, which could circumvent the segmentation problem
completely. There has been a bundle of works comparing the
pros and cons between the subword and character based mod-
els [2]–[4]. Yet most of these works focus on the alphabetic
language rather than the logographic language, suggesting
that the comparison results may be inconsistent. For ex-
ample, a criticism for character models is that the character
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sequence is much longer than the subword sequence, which
leads to the training inefficiency; in contrast, Japanese and
Chinese suffer less from this problem due to the existence
of Chinese characters. However, there is still one drawback
to be addressed, that is, character is a less meaning-bearing
unit than the subword, and a character tends to have more
distinct senses than a subword containing it. This indicates
that the character models should pay more attention to the
sense discrimination.

Diving into the sense ambiguity issue in the character
NMT, we can find that there are two types of sense ambigu-
ities existing in the source and target language, separately.
With the former, we can hypothesize that it has been greatly
alleviated in an end-to-end fashion implicitly attributing to
the powerful contextualization capability in the deep encoder
like Transformer, through which an identical character with
multi-sense can have different representations following the
changed contexts. There are also efforts on plugging ex-
plicit disambiguation module to differentiate the multi-sense
before feeding it into the encoder [5]–[7]. Although they
are originally used for word sense disambiguation, they can
transfer to the character models seamlessly, but with the later,
i.e. the ambiguity in the target side, it is rarely addressed.
The ambiguity arises when the decoder generates the next
character through a softmax operation on the inner prod-
uct between decoding hidden states and output embeddings.
Compared to the deep multi-layers for encoding, the output
embedding is a shallow single layer without the ability of
sense discrimination. Apparently, the single prototype rep-
resentation without considerations of multiple senses hurts
the performance of character based NMT potentially.

In this paper, we focus on the multi-sense represen-
tation in the target language for character-based Japanese-
Chinese NMT. Specifically, we propose two simple yet effec-
tive methods for multi-sense representation: the first method
induces the multiple senses in advance via performing non-
parametric clustering on the outputs of BERT [8], and then
the target character sequence is transformed into a sense se-
quence for training and inference; in the second method, we
propose a joint model to perform sense discrimination and
NMT training simultaneously, i.e. using multi-sense embed-
ding in the output embedding layer rather than single proto-
type character embedding.

Extensive experiments on Japanese↔Chinese MT
show that our proposed methods substantially outperform
the strong baselines in terms of BLEU scores, and verify the
effectiveness of using sense-discriminated representation for
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character based NMT.

2. Models

In this section, we first introduce the basic concepts, then
propose two methods for multiple sense discrimination in
character level NMT.

2.1 Neural Machine Translation

A typical NMT model adopts an encoder-decoder architec-
ture. Functionally, the encoder maps the source sentence
into continuous representations, based on which the decoder
generates the target sentence token by token. Let x be the
source sentence, y<t be a prefix of the target sentence y
that has been generated before the step t, the probability of
generating next token yt is computed as:

p(yt |x, y<t ) = softmax(hT
t Wyt )

=
exp (hT

t Wyt )∑
y′t ∈V exp (hT

t Wy′t )
(1)

where ht ∈ Rd is the the decoder’s output state at current
step, V is the target vocabulary, and W ∈ Rd×|V | is the output
embedding matrix.

During training, the loss function on individual token
is the negative log of Eq. (1), that is

L = − log p(yt |x, y<t ) (2)

The overall loss is the sum of all the token losses in the full
training data.

2.2 Sense Pre-Clustering

The most intuitive way for sense discrimination in NMT is
to modify the training data with predicted senses, so the
cross entropy loss for training becomes sense-aware, which
is optimized by predicting the sense-specified characters in-
stead of only characters. For example, the Chinese character
“属” has distinct meanings in the Chinese word “属于 (be-
long)” and “金属 (metal)”, which are converted into “属#1
于” and “金属#2” respectively, where suffix “#1” and “#2”
is for distinguishing multiple senses. In this way, each target
sentence in the training data is re-formatted as a sequence
of sense-specified characters. During inference, the out-
put is also sense-specified characters, we remove the suffix
with “#” as a post-processing step for evaluation. The crit-
ical question is how to induce the multiple senses for each
character type. Therefore, we propose a simple clustering
algorithm for sense discrimination, in which we combine
NP-MSSG [9] with the contextualized representation from
BERT. Compared with the original NP-MSSG which is built
upon a shallow skip-gram model, our method can also in-
duce an unfixed number of senses for per character type, and
benefits from the representation capability of BERT.

We describe the clustering procedure for each charac-
ter c as follows. First, we randomly sample ψ sentences

containing c from the training data. Second, we obtain ψ
contextualized representations by inputting the ψ sentences
into a pretrained BERT, and use the last layer’s output of
BERT. Let the representation for the ith occurrence be gi .
Third, we create the first cluster with its first occurrence,
i.e. using the contextualized representation g0; for the next
occurrence, we merge it into the nearest cluster if the simi-
larity is above σ; otherwise, the occurrence is allocated to a
new cluster. Formally, the ith occurrence is allocated to the
cluster si by:

si =
{

kmax, sim(µ(c, kmax), gi) > σ
N(c) + 1, otherwise (3)

where kmax denotes the index of the cluster with the nearest
distance to gi , µ(c, k) is the centroid of the k th cluster Cc,k for
character c, which equals to the mean of the contextualized
representations in the cluster, sim denotes cosine similarity
function, and N(c) is the number of clusters already allocated
for character c.

Last, we remove the clusters without sufficient occur-
rences (less than 3). Each cluster left corresponds to a dis-
tinct sense for the character, and the centroid is used as the
sense embedding. Using these sense embeddings, we can
infer the specific sense for per character in the target sen-
tence in terms of the similarity between its contextualized
representation and sense embeddings.

2.3 Joint Model

Instead of conducting pre-clustering in the first method, in-
spired by [10], we propose a joint model which can per-
form sense discrimination in real time during NMT training.
Specifically, we convert the sense-agnostic loss in Eq. (2)
into a sense-aware loss by predicting the next character and
its sense jointly:

L = − log p(yt, st |x, y<t ) (4)
p(yt, st |x, y<t ) = softmax(hT

t Syt ,st )

=
exp (hT

t Syt ,st )∑
y′t ∈V

∑K
s′t=1 exp (hT

t Sy′t ,s
′
t
)

(5)

where st it the selected sense for yt . It’s worth noting
that the output embedding layer is modified by replacing W
with multiple sense embeddings S ∈ Rd×|V |×K , in which
each character c has K separate sense embeddings, i.e.
(Sc,1,Sc,2, . . . ,Sc,K ). To optimize Eq. (4), we need a sense
prediction module to obtain the most likely sense st , which
is unobserved in the training data. The most intuitive solu-
tion is to set st as argmaxkhT

t Syt ,k . However, this argmax
operation would cause the differential problem in training,
so we turn to a weighted loss using a soft sense distribution:

L = − log
K∑
k=1

α(st = k) p(yt, st = k |x, y<t ) (6)
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where α(st = k) is the probability of selecting the k th sense,
which is obtained from a sense prediction network. Formally,
it is computed by

α(st = k) =
exp ( f (ht,Syt ,k))∑K
k′=1 exp (hT

t Sy′t ,k
′)

(7)

f (ht,Syt ,k) = vT tanh(U1ht +U2Syt ,k) (8)

whereU1, U2, and v are the parameters in the sense prediction
network f .

During inference, the next character and its sense are
predicted jointly, that is y∗t , s∗t = argmaxyt ,st

p(yt, st |x, y<t ).
Note here, our focus is to strengthen the sense discrimination
ability in the thin output embedding layer of the decoder, so
we only use senses as an auxiliary prediction task, and not
use them as the input condition, which is also consistent with
the training procedure.

3. Experiments

3.1 Dateset

We conduct Japanese-to-Chinese (J→C) and Chinese-to-
Japanese (C→J) translation experiments on JPO Patent Cor-
pus, which consists of approximately 1 million parallel
Japanese-Chinese sentences in the patent domain. The size
of training set is 1 million, and validation set is 2,000. There
are four test sets including 2K, 3K, 204 and 5K sentences
respectively (noted as test-n1, test-n2, test-n3, and test-n4).
To fasten training, we filter out too long examples in the
training data, resulting in 970K examples left.

3.2 Setup

For pre-clustering, we set ψ = 100, σ = 0.75; for the sake
of clustering accuracy and efficiency, we only cluster the
Chinese characters with a frequency greater than 200 in the
training data both for Chinese and Japanese (we exclude
Kana characters in Japanese). For the joint model, we set
K = 3.

For translation task, we implement all the methods on
the top of Transformer in the toolkit of fairseq [11]. We uti-
lize a model architecture consisting of 6 encoder and decoder
layers, with each layer incorporating a multi-head attention
comprising 8 heads. The word embedding and high-level
representation dimensions are set at 512, while the FFN
layer is set at 2048. We employ Adam optimizer, with a
warm-up step of 8000 and a dropout probability of 0.1, and
incorporated uniform label smoothing with 0.1 uncertainty.
During inference, we select the averaged model of the last 5
epoch checkpoints to perform beam search decoding with a
beam width of 5.

3.3 Main Results

Table 1 reports the Japanese-Chinese translation results mea-
sured by BLEU scores on the test sets (test-n3 is not used

Table 1 BLEU scores evaluated on test set (J→C)†

Table 2 BLEU scores evaluated on test set (C→J)

individually due to its small size). The baseline is a char-
acter based NMT using vanilla Transformer. BPE denotes
a subword based NMT with a joint vocabulary of 32K BPE
tokens††. Different to NMT for alphabetic languages, we can
observe that the BPE approach in Japanese-Chinese NMT is
inferior to the baseline using characters, which is consistent
with the conclusions in [12], [13]. One reason is that the
words in logographic languages are far shorter than words
in alphabetic languages, which causes BPE failing to solve
the low frequency words’ problem. Another reason is that
the Chinese character is a much more meaning-bearing unit
than the alphabet, which makes it suitable as the encoding
and decoding unit. In contrast, our pre-clustering based
method brings consistent improvements over the baseline on
all the test sets, and obtains a large improvement of 0.74
BLEU points (62.06 vs. 62.80) on the overall, which is the
best result among all the tested systems. The joint model
also achieves preferable performance, with an improvement
of 0.63 BLEU points (62.06 vs. 62.69).

Similar trends can be found for the Chinese-to-Japanese
direction, as shown in Table 2. Our pre-clustering based
method obtains an improvement of 0.6 BLEU points (63.19
vs. 63.79), and the joint model achieves an improvement of
0.58 BLEU points (63.19 vs. 63.77).

3.4 Cluster Example

Figure 1 shows a pre-clustering example for the Chinese char-
acter “属”. Its contextualized embeddings are grouped into
3 clusters, which roughly correspond to three distinct senses,
i.e. “belong” (occurs in the context of “所属” and “属于”),
“metal” (occurs in the context of “金属”) and “property”
(occurs in the context of “属性”), respectively.

3.5 Quantitative Analysis

To examine whether our methods can help to generate char-
acters with multiple senses in the decoder, besides the

†Note: the figures in bold denote statistically that the corre-
sponding result is better than that of the baseline (p < 0.05).

††Before conducting BPE tokenization, the Chinese and
Japanese sentences are segmented with toolkits of Jieba and Mecab
respectively
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Fig. 1 2D t-SNE projection of contextualized embeddings.

Fig. 2 Comparison of target character recall on J-C task.

Fig. 3 Comparison of target character recall on C-J task.

sentence-level BLEU, we conduct a finer-grained analy-
sis using target character recall (TCR). First, we quantita-
tively define the degree of sense ambiguity for the charac-
ters, which equals to the entropy of sense distribution de-
rived in pre-clustering, i.e. −∑

k p(Cc,k) log p(Cc,k), where
p(Cc,k) = |Cc,k |/

∑
k |Cc,k |. Then, we create a set Λ, which

is comprised of 200 most sense ambiguous characters in the
target language with the highest entropy values. Last, we
run the word aligner AwesomeAlign [14] on the test set (i.e.
between source and reference) and system output (i.e. be-
tween source and prediction) respectively, and output two
character-level alignments A and B. The TCR is computed
as |A ∩ B|/|A|. As shown in Figs. 2 and 3, we compare
the TCR on the overall characters and ambiguous charac-
ters (i.e. within Λ) respectively. It can be observed that in
both directions, our methods have higher TCR compared to
the baseline, and the improvements are more obvious for the
ambiguous characters, which verifies the effectiveness of our
proposed methods.

4. Conclusions

The present paper presents two simple yet effective methods

for modeling sense-discriminated representation for charac-
ters based NMT, i.e., a pre-clustering for sense induction
and a joint model to perform sense discrimination and NMT
training simultaneously. To the best of our knowledge, this
is the first work to explicitly model the sense discrimination
in NMT decoding. Improvements on Japanese↔Chinese
translation tasks verify the effectiveness. As our current
study is centered on Japanese-Chinese NMT, we plan to
validate these methods on NMT for other languages in the
future.
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