
564
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

LETTER
App-Level Multi-Surface Framework for Supporting
Cross-Platform User Interface Distribution

Yeongwoo HA†, Seongbeom PARK††, Jieun LEE†, and Sangeun OH†a), Nonmembers

SUMMARY With the recent advances in IoT, there is a growing interest
in multi-surface computing, where a mobile app can cooperatively utilize
multiple devices’ surfaces. We propose a novel framework that seamlessly
augments mobile apps with multi-surface computing capabilities. It enables
various apps to employ multiple surfaces with acceptable performance.
key words: multi-surface computing, user interface distribution, mobile
frameworks, code instrumentation

1. Introduction

With the recent rapid development of IoT, smart devices
with various shapes and sizes of surfaces have been released
one after another. This trend can potentially change the
way users interact with mobile apps. To be more specific,
users can now collaboratively utilize the surfaces of multiple
devices to interact with mobile apps, instead of being limited
to one device at a time. Such a new paradigm is called
multi-surface computing, and it can provide users with new
user experiences (UXs) for multi-device use. For example,
YouTube’s app screen consists of a video user interface (UI)
that shows a video stream and a list UI that shows a list of
related videos. If these two UI elements can be displayed
on different devices, a user can watch a video on full screen
while easily browsing the list of related videos at the same
time.

There have been several solutions to enable multi-
surface computing, falling into app-level and system-level
approaches. The app-level approach is to use customized
apps developed for multi-surface computing, such as cross-
device seamless video streaming (e.g., Netflix) and multi-
user collaborative document editing (e.g., Google Docs).
Yet, this approach requires a lot of engineering effort to
develop such customized apps, so only a small number of
multi-surface apps are commercially available currently. On
the other hand, the system-level approach is to redesign ex-
isting mobile platforms specifically for multi-device envi-
ronments. For example, both FLUID [1] and PRUID [2] are
Android-based mobile platforms that support multi-surface
computing by distributing UI elements of a single app across

Manuscript received September 7, 2023.
Manuscript revised November 27, 2023.
Manuscript publicized December 19, 2023.

†The authors are with the Department of Software & Computer
Engineering, Ajou University, Suwon 16499, South Korea.

††The author is with the Department of Digital Media, Ajou
University, Suwon 16499, South Korea.

a) E-mail: sangeunoh@ajou.ac.kr (Corresponding author)
DOI: 10.1587/transinf.2023EDL8060

multiple devices. As another example, FLUID-XP [3] fur-
ther extends FLUID to distribute UI elements even across
heterogeneous platforms (e.g., between Android and iOS).
However, these approaches fundamentally require significant
modifications to the core parts of mobile platform internals
such as UI management and rendering, making it difficult to
deploy new mobile platforms on users’ devices practically.
This is because mobile industry companies leading the cur-
rent mobile platform market, such as Google and Apple, tend
to be reluctant to make significant modifications to the core
parts of their mobile platforms to maintain product stability.

To go beyond their drawbacks, this paper proposes UI-
Scissor, a novel app-level framework that automatically trans-
forms existing legacy apps built for a single device into multi-
surface apps. UI-Scissor can extend app functionality to allow
individual mobile apps to distribute their UI elements across
devices, enabling flexible multi-surface utilization for users.
Such extension is accomplished by instrumenting the nec-
essary code logic for UI distribution to individual mobile
apps, thus our approach requires no modification to existing
mobile platforms and no significant engineering effort for
app developers to develop multi-surface apps. Furthermore,
UI-Scissor aims to achieve the following design requirements.
i) App transparency: The app transformation should be per-
formed transparently to a mobile app’s behavior. That is, the
transformation should not interfere with or distort the app be-
havior unintentionally. To do this, UI-Scissor is designed to
minimize the impact of the app transformation by providing
most core functionalities as a separate background service
and inserting only a minimal communication interface into a
mobile app. ii) Cross-platform compatibility: The converted
mobile app should be able to distribute UI elements across
multiple heterogeneous devices in a platform-agnostic man-
ner. To this end, UI-Scissor transforms a mobile app’s UIs
(i.e., native UIs) into appropriate web UIs that can run on
different mobile platforms upon performing UI distribution.

2. Background

To concretely explore the app transformation for UI distribu-
tion, we target Android apps with graphical user interfaces
(GUIs). The screen of an individual app consists of a col-
lection of UI elements (e.g., buttons, text). From a user
perspective, a UI element is the smallest unit with which a
user can interact within an app. To represent these UI ele-
ments, Android’s UI subsystem has two types of UI objects:
widgets and layouts, which are managed in a tree structure

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



LETTER
565

known as the UI tree. A widget serves as a leaf node in the
UI tree, representing a graphical component mapped to each
UI element on the app screen. On the other hand, a layout
acts as an intermediate node in the UI tree, functioning as a
container that determines the positioning of its child nodes
on the screen. In Android’s UI rendering process, layouts
first determine the position of each widget. Then, the wid-
gets are drawn to their designated positions by utilizing their
respective graphical states (e.g., text, color, image, etc.). Af-
ter that, UI elements displayed on the app screen can be often
updated by external events such as user inputs or incoming
network data. For example, when a user presses a button
UI in a mobile app, the user input is passed to the app logic
part (i.e., event listeners). When processing the user input,
the app logic part can modify the graphical states of spe-
cific widgets by invoking their local functions, resulting in
the update of the corresponding UI elements. To enable UI
distribution to multiple devices, UI-Scissor needs to ensure
that the UI rendering and update handling process can be
supported seamlessly in multi-device environments.

3. System Design

We present UI-Scissor, a novel multi-device framework that
extends app functionality to enable mobile apps to distribute
their UI elements to remote devices. Such extension is
achieved by automatically adding a new layer to a mobile
app through code instrumentation, which can minimize the
engineering burden on app developers.

3.1 Workflow

As shown in Fig. 1, UI-Scissor supports multi-surface com-
puting for mobile apps through offline and online phases.

Offline phase. An app developer transforms his/her
legacy mobile app, which was initially developed for single-
device environments, into a new multi-surface app by using
App transformer. App transformer is a authoring tool provided
by UI-Scissor and inserts additional code (called UI distribution
layer) into the existing app. As an output, the developer can
acquire the multi-surface app’s package file (i.e., APK) and
release it to app markets like Google Play. Then, End-users
can easily download and install the multi-surface app to run
the multi-surface app on their host device.

Online phase. On the host device, a multi-surface app
(called a host app) is capable of distributing its UI elements
to remote devices (guest devices) through three sub-steps.
i) Pairing: Before running the host app, the end-user first

Fig. 1 UI-Scissor design overview

needs to register trusted guest devices with Remote UI man-
ager. Remote UI manager is a background service provided
by UI-Scissor and automatically establishes network connec-
tions with the registered devices when it detects that they
are nearby. After that, the host app can seamlessly interact
with the registered devices through Remote UI manager. ii) UI
distribution: UI distribution layer injected into the host app pro-
vides an intuitive interface for selective UI distribution. The
user can activate this interface with multi-finger tapping and
select desired UI elements. Upon user request, UI distribution
layer extracts the selected UIs from the host app’s UI tree
and delivers them to a guest device. On the guest side, UI
container, which operates as a background service, displays
the distributed UIs via local rendering (which we call guest
UIs). iii) UI interaction: After UI distribution, UI-Scissor
enables the user to interact with the host app through the
host and guest UIs in the same way as if all UIs were on the
same device. For example, if the user touches a button dis-
tributed to the guest device, the input event is forwarded to
the host side and handled by the host app logic accordingly.
If necessary, the host app can update some guest UIs’ states.

3.2 Key Feature Design

UI-Scissor provides several key features as follows.
App transformation. App transformer extends app func-

tionality by inserting additional code for UI distribution into
a mobile app’s APK file. A crucial design consideration is
determining the appropriate code logic to inject. Rather than
injecting all functions for multi-surface computing directly
into the mobile app, which could lead to complexity and
unexpected side effects, UI-Scissor minimizes injected code
volume. It supports core functions by providing a separate
background service (Remote UI manager) and injects only a
minimal interface (UI distribution layer) into the mobile app
to interact with the service. This design mitigates potential
side effects. App transformer is implemented using Soot [4],
an open-source static analysis library.

Cross-platform UI distribution. In UI-Scissor, UI dis-
tribution is initiated when the user completes selecting the
desired UI elements. First, UI distribution layer extracts the
graphical states of the selected UIs from the host app’s UI tree
and transmits them to the guest side via Remote UI manager.
These graphical states indicate essential data for UI render-
ing, encompassing not only general properties (e.g., UI type,
width, height, identifier) but also properties specific to the
UI type (e.g., contents, font size for text UI). On the guest
device, UI container decodes the received graphical states and
reconstructs the distributed UIs. Here, one important issue
is the challenge of device heterogeneity. In common multi-
device environments, many devices may operate on various
mobile platforms such as Android, iOS, and so on. Regard-
ing this trend, the recreation of the host app’s UIs (referred to
as native UIs) may be infeasible if the host & guest devices
are based on different platforms. This is because the different
platforms internally are based on different instruction sets,
API functions, and rendering mechanisms. To tackle this



566
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

problem, we design UI container to generate web UIs from
the graphical states of native UIs. Fundamentally, web UIs
are built with web programming languages like HTML and
Javascript, so they have a high portability that allows the
same web UIs to work on various devices. To leverage the
advantage of web UIs, UI container internally maintains the
mapping table between native UIs and web UIs, which helps
generate the necessary web UIs with the graphical states of
the distributed native UIs. When the graphical states are de-
livered from the host side, UI container first identifies the type
of each native UI. Then, it successfully creates appropriate
web UIs with the received graphical states by referring to the
mapping table according to the UI type. We implemented UI
container using a Javascript-based React Native [5], which is
a cross-platform mobile development tool.

UI state synchronization. Fundamentally, a mobile
app updates UI elements by calling local functions, imply-
ing that distributed UIs also need updates when their local
functions are invoked for multi-surface computing. App trans-
former injects UI synchronization code into locations where
local functions of UI elements are called, ensuring correct
multi-surface computing. The injected code requests UI dis-
tribution layer to modify the graphical states of a guest UI as
if the local function is invoked on the guest side. Upon exe-
cution, UI distribution layer checks if the UI element involved
in the function call is distributed and if so, passes mod-
ified graphical states to the guest device for UI container
updates. One challenge is determining the graphical states
modified by invoked functions. While UI functions in the
Android API are well-documented for their impact on graph-
ical states, custom UI functions defined by app developers
are unknown and app-specific. App transformer addresses this
by using class hierarchy analysis (CHA) to identify which
graphical states are modified by each custom UI function
before code instrumentation. CHA generates a call graph,
linking call sites to possible class functions. This allows App
transformer to identify functions invoked by custom UI func-
tions, analyze their impact on graphical states, and guide UI
distribution layer in updating the relevant states on the guest.

Discussion on the deployment of UI-Scissor. To scale
the deployment of UI-Scissor, we propose a model where a
server (e.g., an app market server or a dedicated UI-Scissor
server) handles app transformation for multi-surface com-
puting. App developers can submit their APK files to the
server to add multi-surface features. The server transforms
the APK files and provides the developers with the modified
versions for release on app markets. Users can then down-
load these multi-surface apps from app markets as they do
with usual legacy apps. Note that this app transformation
process hardly impacts server performance, typically taking
only a few minutes, as demonstrated in Sect. 4.

4. Evaluation

We developed UI-Scissor to demonstrate seamless selective
UI distribution across devices. Our evaluation utilized the
ours implementation based on Android 11 and React Native

0.69. We employed two real commercial devices (Google
Pixel 5 and 4a) and one virtual iOS device (iPhone 14)
emulated on a MacBook Air. All devices were connected to
the same Wi-Fi access point with a throughput of 433 Mbps
and a round-trip time (RTT) averaging 3.43 ms.

Coverage test. To explore how well UI-Scissor sup-
ports potential multi-surface use cases, we extended ten
legacy apps downloaded from Google Play. Subsequently,
we launched each app on Google Pixel 5 (host device) and
distributed several UI elements to two types of guest de-
vices: one being an Android device identical to the host
side but different model (i.e., Google Pixel 4a), and the
other being an iPhone 14 emulator. Note that the emula-
tor is enough to demonstrate that UI-Scissor can support UI
distribution for iOS-based devices because it has the same
software stacks as real iPhone devices. Table 1 displays the
list of use cases employing legacy apps. We confirmed that
UI-Scissor enables seven apps to successfully operate over
multiple devices. Particularly, even in heterogeneous envi-
ronments with iPhone 14 as a guest device, the legacy apps
performed multi-surface computing seamlessly. This is be-
cause UI-Scissor can reconstruct proper web UI elements on
the guest side, utilizing the graphical states of the legacy
apps’ native UI elements.

On the other hand, UI-Scissor cannot support three
apps—Yanolja, Messenger, and Free Fire—for different rea-
sons. First, even if our framework accomplished app trans-
formation for Yanolja, this app failed to pass the signature
verification process, resulting in its crashing. This is because
we used an invalid signing key when repackaging this app
during our experiment. This implies such issues will not
occur when app developers with correct signing keys utilize
UI-Scissor. Meanwhile, UI-Scissor could not conduct even app
transformation for Messenger and Free Fire. This is because
they leverage third-party UI frameworks (e.g., React Native
or Unity) that manage all UI objects through internal data
structures while not allowing UI-Scissor to access UIs. How-
ever, this is not severe limitation enough to hinder UI-Scissor’s
applicability, considering the prevalence of such third-party
UI frameworks. We analyzed 50 legacy apps with the high-
est cumulative downloads from Google Play and observed
that 13 of these apps utilize third-party frameworks. This
indicates that UI-Scissor can still support the majority of apps,
encompassing 74% of the apps we examined.

App transformation overhead. Table 1 shows the app
transformation overhead, including ‘Transformation time’
and ‘APK size’. UI-Scissor can augment UI distribution ca-
pabilities in less than five minutes, with the APK size in-
creasing by under 10% after transformation. The minimal
time/space overhead results from UI-Scissor’s design, mini-
mizing injected code in legacy apps. Notably, the camera
app’s APK size decreased by 16% due to Soot’s removal of
unnecessary code logic during app transformation.

UI distribution time. To assess UI-Scissor’s perfor-
mance in distributing UIs to the guest device, we measured
UI distribution time for each use case scenario. This time
is defined as the difference between when a user triggers



LETTER
567

Table 1 The result for coverage test. ‘Transformation time’ indicates how long it takes to transform
a legacy app into a new multi-surface app, and ‘APK size’ indicates the APK size of the generated
multi-surface apps. Yanolja is a hotel reservation app and Free Fire is a mobile shooting game.

Fig. 2 UI distribution time according to seven legacy apps.

Fig. 3 UI distribution time according to five UI types.

UI distribution and when the guest device’s screen is last
updated. Figure 2 breaks down the UI distribution time for
the seven legacy apps. Calculator and Notes have UI dis-
tribution times of less than 250 ms, suitable for interactive
use. However, other apps exhibit longer times, ranging from
507 ms to 633 ms, primarily due to their long rendering time.
This is because these apps’ UIs contain Base64-encoded im-
ages. These data are known to cause high rendering overhead
within React Native used by UI container [6]. To detail this, we
measured UI distribution times for five different UI types, as
shown in Fig. 3. It reveals that only image UI incurs high ren-
dering times, while the rest are quickly distributed with short
rendering. However, UI distribution is a one-shot overhead
for supporting a multi-surface scenario, and the overhead
for image rendering can be reduced by using optimizations
provided by React Native, such as the native module feature.
Applying these optimizations is left for future work.

UI response time. We measured UI response time for
updating the five types of guest UIs. UI response time is
defined as the time difference from when a user gives touch

Fig. 4 UI response time according to five UI types.

input on the guest screen to when the guest screen shows the
result of the touch input through each guest UI. As shown
in Fig. 4, UI container takes about 153ms to process the user
input, an inherent overhead caused by Native React. UI-
Scissor efficiently handles UI update operations, resulting in
response times ranging from 267ms to 321ms—moderate for
interactive use. Note that the rendering time for UI updates is
smaller than for UI distribution because React Native creates
a new data structure (i.e., virtual DOM tree) for rendering
upon UI distribution, but during UI update, it only modi-
fies some graphical states of the previously generated data
structure and re-uses it for rendering.

5. Conclusion

This paper presents UI-Scissor, a novel framework that au-
tomatically transforms single-device apps into multi-surface
apps. Our framework provides i) an authoring tool that aug-
ments existing legacy apps with UI distribution features and
ii) services that help multi-surface computing. We expect
UI-Scissor can accelerate the development of multi-surface
apps, providing novel user experiences.

Acknowledgments

This work was supported by the NRF grant (NRF-
2021R1F1A1063785).

References

[1] S. Oh, A. Kim, S. Lee, K. Lee, D.R. Jeong, I. Shin, and S.Y. Ko,

http://dx.doi.org/10.1145/3400713.3400719


568
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

“FLUID: Flexible User Interface Distribution for Ubiquitous Multi-
Device Interaction,” MobiCom, vol.23, no.4, pp.25–29, 2019.

[2] M. Cui, M. Lv, Q. He, C. Zhang, C. Gu, T. Yang, and N. Guan,
“Pruid: Practical user interface distribution for multi-surface comput-
ing,” DAC, pp.679–684, 2021.

[3] S. Lee, H. Lee, H. Kim, S. Lee, J.W. Choi, Y. Lee, S. Lee, A. Kim, J.Y.
Song, S. Oh, S.Y. Ko, and I. Shin, “FLUID-XP: Flexible User Interface
Distribution for Cross-Platform Experience,” MobiCom, pp.762–774,
2021.

[4] Sable Research Group, “Soot - a java optimization framework.”
https://github.com/Sable/soot.

[5] Meta platforms, Inc., “React native - learn once, write anywhere.”
https://reactnative.dev.

[6] Stack Overflow, “React native image loading is too slow.”
https://stackoverflow.com/questions/65727698/react-native-image-
loading-is-too-slow.

http://dx.doi.org/10.1145/3400713.3400719
http://dx.doi.org/10.1145/3400713.3400719
http://dx.doi.org/10.1145/3400713.3400719
http://dx.doi.org/10.1109/dac18074.2021.9586162
http://dx.doi.org/10.1109/dac18074.2021.9586162
http://dx.doi.org/10.1109/dac18074.2021.9586162
http://dx.doi.org/10.1145/3447993.3483245
http://dx.doi.org/10.1145/3447993.3483245
http://dx.doi.org/10.1145/3447993.3483245
http://dx.doi.org/10.1145/3447993.3483245

