
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024
559

LETTER
Finding a Reconfiguration Sequence between Longest Increasing
Subsequences

Yuuki AOIKE†, Masashi KIYOMI††a), Yasuaki KOBAYASHI†††b), Nonmembers,
and Yota OTACHI††††c), Member

SUMMARY In this note, we consider the problem of finding a step-
by-step transformation between two longest increasing subsequences in a
sequence, namely Longest Increasing Subsequence Reconfiguration.
We give a polynomial-time algorithm for deciding whether there is a re-
configuration sequence between two longest increasing subsequences in a
sequence. This implies that Independent Set Reconfiguration and To-
ken Sliding are polynomial-time solvable on permutation graphs, provided
that the input two independent sets are largest among all independent sets
in the input graph. We also consider a special case, where the underlying
permutation graph of an input sequence is bipartite. In this case, we give a
polynomial-time algorithm for finding a shortest reconfiguration sequence
(if it exists).
key words: combinatorial reconfiguration, longest increasing subsequence,
permutation graph

1. Introduction

For a nonnegative integer n, we define [n] = {1,2, . . . ,n}.
Let A = (ai)i=1,2,...,n be a sequence of distinct integers be-
tween 1 and n. We say that I ⊆ [n] is feasible (for A) if
ai < aj for i, j ∈ I with i < j. In other words, I is the set
of indices of an increasing subsequence of A. A maximum
feasible set (for A) is a feasible set I for A such that there
is no feasible set (for A) with cardinality strictly larger than
I. The problem of computing a maximum feasible set of
a given sequence A, also known as Longest Increasing
Subsequence, is a typical example that can be solved in
polynomial time with dynamic programming [1].

In this note, we consider the reconfiguration-variant
of Longest Increasing Subsequence, defined as follows.
Given a sequence of n distinct integers A and (not necessar-
ily maximum) two feasible sets I and J with |I | = |J |, the
goal is to determine whether there is a sequence of feasible
sets I0, I1, . . . , Iℓ such that I0 = I, Iℓ = J, and for 1 ≤ i ≤ ℓ,

Manuscript received October 11, 2023.
Manuscript revised November 27, 2023.
Manuscript publicized December 11, 2023.

†The author is with Yokohama City University, Yokohama-shi,
236–0027 Japan.

††The author is with Seikei University, Musashino-shi, 180–
8633 Japan.
†††The author is with Hokkaido University, Sapporo-shi, 060–

0814 Japan.
††††The author is with Nagoya University, Nagoya-shi, 464–8601

Japan.
a) E-mail: kiyomi@st.seikei.ac.jp
b) E-mail: koba@ist.hokudai.ac.jp
c) E-mail: otachi@nagoya-u.jp

DOI: 10.1587/transinf.2023EDL8067

Ii is obtained from Ii−1 by simultaneously adding element
j < Ii−1 and removing k ∈ Ii−1 (i.e., Ii = (Ii−1 ∪ { j}) \ {k}).
We call this problem Increasing Subsequence Reconfig-
uration and such a sequence a reconfiguration sequence
between I and J. If two input sets are maximum feasible sets
for A, we particularly call the problem Longest Increasing
Subsequence Reconfiguration. In this paper, we give a
polynomial-time algorithm for Longest Increasing Subse-
quence Reconfiguration.

Theorem 1. Longest Increasing Subsequence Recon-
figuration can be solved in polynomial time.

Increasing Subsequence Reconfiguration can be
seen as a special case of a well-studied reconfiguration prob-
lem, called Independent Set Reconfiguration. Given a
graph G = (V,E) and two independent sets I, J of G with
|I | = |J |, Independent Set Reconfiguration asks whether
there is a sequence of independent sets I0, I1, . . . , Iℓ such that
I0 = I, Iℓ = J, and for 1 ≤ i ≤ ℓ, Ii \ Ii−1 = {v} and
Ii−1 \ Ii = {u} for some u, v ∈ V . Increasing Subsequence
Reconfiguration corresponds to Independent Set Recon-
figuration on permutations graphs: An undirected graph
G = (V,E)withV = [n] is called a permutation graph if there
is a permutation π : [n] → [n] such that for 1 ≤ i < j ≤ n,
π(i) > π(j) if and only if {i, j} ∈ E . Observe that for I ⊆ V ,
I is an independent set of the permutation graph G if and
only if I is a feasible set for A = (π(i))i=1,2,...,n. Thus, our
problem, Increasing Subsequence Reconfiguration, is
equivalent to Independent Set Reconfiguration on per-
mutation graphs. Token Sliding is a variant of Indepen-
dent Set Reconfiguration, where two vertices u, v in the
above definition are required to be adjacent in G. It is easy
to see that if I and J are maximum independent sets of G,
these two problems are equivalent.

Corollary 1. Independent Set Reconfiguration and To-
ken Sliding can be solved in polynomial time, provided that
the input graph G is a permutation graph and two sets I and
J are maximum independent sets of G.

This resolves a special case of an open question posed
by Briański et al. [2], where they ask for a polynomial-time
algorithm for Token Sliding on permutation graphs.

The graph-theoretic perspective of Longest Increas-
ing Subsequence Reconfiguration gives another inter-
esting consequence of finding a shortest reconfiguration

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

560
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

sequence between maximum independent sets on bipar-
tite permutation graphs. For any reconfiguration sequence
(I0, I1, . . . , Iℓ), we have ℓ ≥ |I0 \ Iℓ |, as we can remove at
most one element from I0 \ Iℓ in a single step. For bipartite
permutation graphs, we can always find a reconfiguration
sequence between maximum independent sets I and J with
length ℓ = |I \ J | if there is a reconfiguration sequence be-
tween them.

Theorem 2. Let G be a bipartite permutation graph and let
I and J be maximum independent sets of G. Suppose that
there is a reconfiguration sequence between I and J. Then,
there is a reconfiguration sequence of length |I \ J | between
I and J.

The proof of Theorem 2 implies a polynomial-time al-
gorithm for the “shortest-sequence variant” of Longest In-
creasing Subsequence Reconfiguration when the under-
lying permutation graph of an input sequence A is restricted
to be bipartite.

Related work

Independent Set Reconfiguration and Token Sliding
are both known to be PSPACE-complete [3]–[6] and stud-
ied on many graph classes. Independent Set Reconfig-
uration is solvable in polynomial time on even-hole free
graphs [6] and cographs [7], [8], while it is NP-complete on
bipartite graphs [9]. Token Sliding is solvable in polyno-
mial time on cographs [6], bipartite permutation graphs [10],
and interval graphs [2], [11], while it is PSPACE-complete
on split graphs [3] and bipartite graphs [9]. The result of [10]
does not yield Theorem 2 since their polynomial-time algo-
rithm may provide a non-shortest reconfiguration sequence
on bipartite permutation graphs. We particularly empha-
size that both reconfiguration problems remain PSPACE-
complete even if two input independent sets are maximum
independent sets of the input graph [4].

As mentioned above, Independent Set Reconfigu-
ration can be solved in polynomial time on the class of
even-hole free graphs. In fact, for even-hole free graphs,
Kamiński et al. [6] showed that every instance of Indepen-
dent Set Reconfiguration is a yes-instance (assuming
that two input independent sets have the same cardinality).
This phenomenon does not hold on the class of permutation
graphs: The instance consisting of G B K2,2 with two color
classes I and J is a no-instance, and G is indeed a permuta-
tion graph, corresponding to sequence A = (7,8,5,6)†. Also
both I = {1,2} and J = {3,4} are maximum independent
sets of G. Thus, it is non-trivial to design a polynomial-
time algorithm for Longest Increasing Subsequence Re-
configuration. Our polynomial-time algorithm exploits
a structural property of the set of feasible sets for a given
sequence A.

†For elements in A, we rather use integers more than n to
distinguish from their indices in some concrete examples.

2. Algorithm

Let A = (ai)i=1,2,...,n be a sequence of n distinct integers
between 1 and n. Let V = [n] and let P = (V,⪯A) be a
partial order on V such that for i, j ∈ V ,

i ⪯A j ⇐⇒ (i = j) ∨ (i < j ∧ ai < aj).

Then, a subset of [n] is feasible for A if and only if it is a chain
of this partial order. Moreover, by Mirsky’s theorem [12],
the largest size of a chain of P is equal to the minimum
size of an antichain partition of V , and such a partition can
be computed in O(n log n) time by a standard dynamic pro-
gramming algorithm for the longest increasing subsequence
problem (see [13] for example).

To understand the structure of a minimum antichain par-
tition, we use a specific construction, called patience sort-
ing [14], which is briefly described as follows. For simplic-
ity, we add 0 to A as a0 = 0. We use n+1 piles P0,P1, . . . ,Pn

that are initially all empty and iteratively put an integer ai in
A on the top of one of the piles for 0 ≤ i ≤ n in this order.
For each 0 ≤ i ≤ n, we put ai on the top of the “leftmost”
pile Pj such that Pj is empty or the top of Pj is greater than
ai . Let us note that the top elements of all nonempty piles
are always sorted in increasing order. Now, let P0,P1, . . . ,Pn

be the piles obtained by executing the above algorithm for A.
Clearly, P0 only contains a0. For each pile Pi , observe that
Pi is an antichain (with respect to ⪯A): If ai is placed below
aj in the pile, then i < j and ai > aj . For each 1 ≤ i ≤ n,
when ai is placed on the top of Pk for some 1 ≤ k ≤ n, the
top element aj of Pk−1 is smaller than ai (i.e., aj < ai). In
this case, we say that aj blocks ai and ai is blocked by aj .
Let k be the largest index of a nonempty pile. By definition,
for 1 ≤ i ≤ n, each ai has a unique element aj that blocks
ai . Moreover, if ai is blocked by aj , we have aj ⪯A ai . This
implies that there is a chain (with respect to ⪯A) of size k+1,
which corresponds to a feasible set I for A. As each Pi is an
antichain, this chain contains exactly one element of Pi for
each 0 ≤ i ≤ k. Thus, I is a maximum feasible set for A.
The above construction of piles further implies the following
observations.

Observation 1. Let I be an arbitrary maximum feasible set
for A.

1. If av is placed below au in a pile Pi , then we have u > v
and au < av .

2. Each pile Pi contains exactly one element au with u ∈ I.
3. Let u, v ∈ I such that au ∈ Pi and av ∈ Pj for 0 ≤ i <

j ≤ k. Then, we have u ⪯A v.

Proof. The first statement follows from the construction of
Pi . The second statement follows from the fact that Pi is
an antichain with respect to ⪯A. For the third statement, it
suffices to show that u < v (as the feasibility of I implies that
au < av). Suppose for contradiction that u > v. When au is
placed on the top of Pi , the top element on a pile Pj is strictly
larger than au . This and the first statement together imply

LETTER
561

that au < av , contradicting the fact that I is feasible. □

Now, we turn to Longest Increasing Subsequence
Reconfiguration. Let

I = {I ⊆ {0} ∪ [n] : I is a maximum feasible set of A}

and let P0,P1, . . . ,Pk be the nonempty piles that are obtained
by applying the above algorithm to A = (ai)i=0,1,...,n with
a0 = 0. The following observation follows from (2) in
Observation 1.

Observation 2. Let I, J ∈ I such that I \ J = {u} and
J \ I = {v}. Then, au,av ∈ Pj for some 0 ≤ j ≤ k.

Our algorithm for Longest Increasing Subsequence
Reconfiguration is based on a certain equivalence relation
on I. For I, J ∈ I, we denote by I ◁ J if I \ J = {u}
and J \ I = {v} such that au is placed (strictly) below av on
pile Pi for some 1 ≤ i ≤ k. We note that this ◁ relation is
not transitive: I ◁ I ′ and I ′ ◁ I ′′ may not imply I ◁ I ′′.
For I ∈ I, a family of feasible sets M(I) ⊆ I is defined
inductively as follows: (1) M(I) contains I and (2) for every
J ∈ M(I), J ′ ◁ J implies J ′ ∈ M(I). In other words, M(I)
is the lower set of I in the transitive closure of ◁ in I. By
definition, for I ∈ I, M(J) ⊊M(I) if J ∈ M(I) with J , I.
We say that I ∈ I is ◁-minimal if there is no J ∈ I with
J ◁ I.

Lemma 1. Let I, J, J ′ ∈ I such that J ◁ I, J ′ ◁ I, and
J , J ′. Then, at least one of the following conditions is
satisfied: J ′ ◁ J, J ◁ J ′, or there is J ′′ ∈ I such that
J ′′ ◁ J and J ′′ ◁ J ′.

Proof. Let I \ J = {u}, J \ I = {v}, I \ J ′ = {u′}, and
J ′ \ I = {v ′}. If u and u′ belong to the same pile Pi , by
Observation 2, v and v ′ belong to the same pile Pi . This
implies either J ′ ◁ J or J ◁ J ′. Suppose otherwise. By
Observation 2, v and v ′ belong to distinct piles and hence
v , v ′. We claim that (J \{u′})∪{v ′} is a maximum feasible
set, which symmetrically implies that (J ′ \ {u}) ∪ {v} is a
maximum feasible set as well. Suppose for contradiction
that (J \ {u′}) ∪ {v ′} is not a feasible set. Since J \ {u′} and
J ′ = (I \ {u′}) ∪ {v ′} are feasible, v and v ′ are the unique
incomparable pair with respect to ⪯A in (J \ {u′}) ∪ {v ′}.
We assume that av and av′ are contained in piles Pi and Pj

with i < j, respectively. As v,u′ ∈ J, by Observation 1, we
have av < au′ . Moreover, as av′ is placed below au′ in Pj ,
we have au′ < av′ (by (1) in Observation 1). These together
imply that av < av′ . As av is placed below au in Pi , we
have v < u (by (1) in Observation 1). Moreover, by (3) in
Observation 1, u ⪯A v

′ as u, v ′ ∈ J ′. Thus, we have v < v ′,
contradicting the assumption that v and v ′ are incomparable
with respect to ⪯A. □

Lemma 2. For I ∈ I, there is exactly one ◁-minimal set in
M(I).

Proof. We prove the lemma by induction on |M(I)|. If
|M(I)| = 1, then I itself is the unique ◁-minimal set in

M(I). Suppose that M(I) contains at least two sets. If
there is exactly one J ∈ M(I) with J ◁ I, by the induc-
tion hypothesis, M(J) ⊊M(I) has a unique ◁-minimal set,
which is also the unique ◁-minimal set in M(I). Otherwise,
there are two J, J ′ ∈ M(I) such that J ◁ I and J ′ ◁ I. By
Lemma 1, at least one of the following conditions are satis-
fied: J ′ ◁ J, J ◁ J ′, or there is J ′′ ∈ I such that J ′′ ◁ J
and J ′′ ◁ J ′. If J ′ ◁ J, then M(J ′) ⊆ M(J) ⊊ M(I). By
induction, both M(J) and M(J ′) have unique ◁-minimal
sets, and as M(J ′) ⊆ M(J), these two sets are identical.
The case where J ◁ J ′ is symmetric. Hence, suppose that
there is J ′′ ∈ I such that J ′′ ◁ J and J ′′ ◁ J ′. By in-
duction, M(J), M(J ′), and M(J ′′) have unique ◁-minimal
sets. Similarly, as M(J ′′) ⊆ M(J) and M(J ′′) ⊆ M(J ′),
these three ◁-minimal sets are identical, which completes
the proof. □

The proof of Lemma 2 immediately implies the follow-
ing corollary.

Corollary 2. For I, J ∈ I with I ◁ J, the ◁-minimal sets of
M(I) and M(J) are identical.

We define an equivalence relation on I based on the
◁-minimality. By Lemma 2, the ◁-minimal set in M(I) is
uniquely determined for I ∈ I. We say that two maximum
feasible sets I and J are ◁-equivalent if the ◁-minimal set in
M(I) is equal to that in M(J). The key to our algorithm is
the following lemma.

Lemma 3. Let I, J ∈ I. Then, there is a reconfiguration
sequence between I and J if and only if I and J are ◁-
equivalent.

Proof. Suppose that there is a reconfiguration sequence
(I0, I1, . . . , Iℓ) between I0 = I and Iℓ = J. We prove that all
maximum feasible sets Ii belong to the same ◁-equivalence
class. By definition, either Ii ◁ Ii+1 or Ii+1 ◁ Ii , implying
respectively that M(Ii) ⊆ M(Ii+1) or M(Ii+1) ⊆ M(Ii). By
Corollary 2, their ◁-minimal sets are identical, which proves
the forward direction.

Suppose that I and J are ◁-equivalent. Then, there is
I ′ ∈ M(I) ∩ M(J). This implies that there are reconfig-
uration sequences between I and I ′ and between J and I ′.
By concatenating these sequences, we have a reconfiguration
sequence between I and J. □

Our algorithm is fairly straightforward. Given two max-
imum feasible sets I and J, we compute their ◁-minimal sets
I ′ and J ′, respectively. By Lemma 3, there is a reconfig-
uration sequence between I and J if and only if I ′ = J ′.
From a maximum feasible set I, we can compute a unique
◁-minimal set in M(I) in polynomial time by a greedy al-
gorithm. Hence, Theorem 1 follows.

3. Bipartite Case

Before proving Theorem 2, we would like to mention that

562
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

bipartiteness in Theorem 2 is crucial, that is, Longest In-
creasing Subsequence Reconfiguration does not ad-
mit a reconfiguration sequence of length |I \ J | in gen-
eral. Let us consider an instance consisting of A =

(15,11,16,13,17,12,14)†, I = {1,3,5}, and J = {2,6,7}.
This instance requires four steps to transform I into J:
I0 = {1,3,5} = I, I1 = {2,3,5}, I2 = {2,4,5}, I3 = {2,4,7},
I4 = {2,6,7} = J, while |I \ J | = 3.

Let (A = (ai)i=1,2,...,n, I, J) be an instance of Longest
Increasing Subsequence Reconfiguration such that the
underlying permutation graph GA of A is bipartite. In the
following, we may not distinguish the elements of A from
their indices and then also refer to the elements of A as the
vertices of GA. Let P1,P2, . . . ,Pk be the piles for A defined
in the previous section. By (1) in Observation 2, every pair
of indices of elements in a pile is incomparable with respect
to ⪯A. This implies that they are adjacent in the permutation
graph GA. Thus, each pile contains at most two elements as
otherwise GA contains a triangle. A pile Pt is called a mixed
pile if it contains exactly two elements ai and aj with i ∈ I
and j ∈ J. Note that, for such a mixed pile Pt , both j < I and
i < J hold. A pair of two mixed piles is called a forbidden
pair if the four vertices corresponding to two mixed piles
induce a cycle of length 4 in GA. It is easy to observe that
(A, I, J) is a no-instance if it has a forbidden pair.

A mixed pile Pi is called the leftmost mixed pile if no
pile Pj with j < i is mixed. The following lemma is a key to
proving Theorem 2.

Lemma 4. Suppose that (A, I, J) has no forbidden pairs. Let
ai,aj be the elements in the leftmost mixed pile Pt with i ∈ I
and j ∈ J. Then, at least one of (I\{i})∪{ j} or (J\{ j})∪{i}
is feasible.

Proof. Suppose that both I ′ = (I \ {i}) ∪ { j} and J ′ =
(J \ { j}) ∪ {i} are not feasible. As I ′ is not feasible, there
is i′ ∈ I \ {i} that is adjacent to j in GA. Let Pt′ be the pile
containing ai′ . Since j ∈ J, pile Pt′ has an element aj′ with
j ′ ∈ J, which implies that Pt′ is a mixed pile with t < t ′.
Symmetrically, as J ′ is not feasible, there is a mixed pile
Pt′′ with t < t ′′ that has an element aj′′ with j ′′ ∈ J \ { j}
adjacent to i in GA. If t ′ = t ′′, the pair Pt and P′

t forms
a forbidden pair, contradicting the assumption. Assume,
without loss of generality, that t < t ′ < t ′′. Since there
are edges between j and i′ and between i and j ′′, we have
aj > ai′ and ai > aj′′ . As j, j ′′ ∈ J, we have aj < aj′′ .
Thus, we have ai′ < aj < aj′′ < ai , contradicting to the fact
ai < ai′ as i, i′ ∈ I. □

It would be worth mentioning that Lemma 4 is similar
to Lemma 6 in [6], where they showed that if G is even-hole-
free, the subgraph of G induced by I △ J = (I \ J) ∪ (J \ I)
has no cycles and then there always exists a reconfiguration
sequence between two independent sets I and J with the
same cardinality. However, the subgraph of GA induced by

†Again, we use integers more than n for the elements in A to
avoid confusion.

Fig. 1 The figure depicts the bipartite permutation graph GA corre-
sponding to sequence A = (10, 7, 11, 8, 12, 9) with I = {1, 3, 5} and
J = {2, 4, 6}.

I △ J may contain a cycle, even when it excludes forbidden
pairs. See Fig. 1, for an illustration.

By Lemma 4, at least one of (I \ {i})∪ { j} or (J \ { j})∪
{i}, say I ′ = (I \ {i}) ∪ { j}, is feasible. This decreases the
difference |I ′ \ J | by 1 and does not create a new forbidden
pair. Applying repeatedly this, Theorem 2 follows.

Acknowledgements

We appreciate anonymous reviewers for their careful read-
ing of our manuscript and valuable comments. This work
was partially supported by JSPS Kakenhi Grant Numbers
JP20H00595, JP21K11752, JP22H00513, and JP23H03344.

References

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, 4th ed., The MIT Press, 2022.

[2] M. Briański, S. Felsner, J. Hodor, and P. Micek, “Reconfiguring
Independent Sets on Interval Graphs,” 46th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2021),
ed. F. Bonchi and S.J. Puglisi, Leibniz International Proceedings in
Informatics (LIPIcs), vol.202, Dagstuhl, Germany, pp.23:1–23:14,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

[3] R. Belmonte, E.J. Kim, M. Lampis, V. Mitsou, Y. Otachi, and
F. Sikora, “Token sliding on split graphs,” Theory Comput. Syst.,
vol.65, no.4, pp.662–686, 2021.

[4] P. Bonsma and L. Cereceda, “Finding paths between graph
colourings: PSPACE-completeness and superpolynomial distances,”
Theor. Comput. Sci., vol.410, no.50, pp.5215–5226, 2009.

[5] R.A. Hearn and E.D. Demaine, “PSPACE-completeness of sliding-
block puzzles and other problems through the nondeterministic con-
straint logic model of computation,” Theor. Comput. Sci., vol.343,
no.1-2, pp.72–96, 2005.

[6] M. Kamiński, P. Medvedev, and M. Milanič, “Complexity of in-
dependent set reconfigurability problems,” Theor. Comput. Sci.,
vol.439, pp.9–15, 2012.

[7] M. Bonamy and N. Bousquet, “Reconfiguring independent sets in
cographs,” CoRR, vol.abs/1406.1433, 2014.

[8] P. Bonsma, “Independent set reconfiguration in cographs and their
generalizations,” J. Graph Theory, vol.83, no.2, pp.164–195, 2016.

[9] D. Lokshtanov and A.E. Mouawad, “The complexity of independent
set reconfiguration on bipartite graphs,” ACM Trans. Algorithms,
vol.15, no.1, pp.1–19, 2019.

[10] E. Fox-Epstein, D.A. Hoang, Y. Otachi, and R. Uehara, “Sliding to-
ken on bipartite permutation graphs,” Algorithms and Computation
- 26th International Symposium, ISAAC 2015, Nagoya, Japan, Dec.
9-11, 2015, Proceedings, ed. K.M. Elbassioni and K. Makino, Lec-
ture Notes in Computer Science, vol.9472, pp.237–247, Springer,
2015.

[11] M. Bonamy and N. Bousquet, “Token sliding on chordal graphs,”
Graph-Theoretic Concepts in Computer Science - 43rd International
Workshop, WG 2017, Eindhoven, The Netherlands, June 21-23,

http://dx.doi.org/10.1007/s00224-020-09967-8
http://dx.doi.org/10.1007/s00224-020-09967-8
http://dx.doi.org/10.1007/s00224-020-09967-8
http://dx.doi.org/10.1016/j.tcs.2009.08.023
http://dx.doi.org/10.1016/j.tcs.2009.08.023
http://dx.doi.org/10.1016/j.tcs.2009.08.023
http://dx.doi.org/10.1016/j.tcs.2005.05.008
http://dx.doi.org/10.1016/j.tcs.2005.05.008
http://dx.doi.org/10.1016/j.tcs.2005.05.008
http://dx.doi.org/10.1016/j.tcs.2005.05.008
http://dx.doi.org/10.1016/j.tcs.2012.03.004
http://dx.doi.org/10.1016/j.tcs.2012.03.004
http://dx.doi.org/10.1016/j.tcs.2012.03.004
http://dx.doi.org/10.1002/jgt.21992
http://dx.doi.org/10.1002/jgt.21992
http://dx.doi.org/10.1145/3280825
http://dx.doi.org/10.1145/3280825
http://dx.doi.org/10.1145/3280825
http://dx.doi.org/10.1007/978-3-662-48971-0_21
http://dx.doi.org/10.1007/978-3-662-48971-0_21
http://dx.doi.org/10.1007/978-3-662-48971-0_21
http://dx.doi.org/10.1007/978-3-662-48971-0_21
http://dx.doi.org/10.1007/978-3-662-48971-0_21
http://dx.doi.org/10.1007/978-3-662-48971-0_21

LETTER
563

2017, Revised Selected Papers, ed. H.L. Bodlaender and G.J. Woeg-
inger, Lecture Notes in Computer Science, vol.10520, pp.127–139,
Springer, 2017.

[12] L. Mirsky, “A dual of Dilworth’s decomposition theorem,” The
American Mathematical Monthly, vol.78, no.8, pp.876–877, 1971.

[13] M.L. Fredman, “On computing the length of longest increasing sub-
sequences,” Discret. Math., vol.11, no.1, pp.29–35, 1975.

[14] D. Aldous and P. Diaconis, “Longest increasing subsequences: from
patience sorting to the Baik-Deift-Johansson theorem,” Bulletin of
the American Mathematical Society, vol.36, pp.413–432, 1999.

http://dx.doi.org/10.1080/00029890.1971.11992886
http://dx.doi.org/10.1080/00029890.1971.11992886
http://dx.doi.org/10.1016/0012-365x(75)90103-x
http://dx.doi.org/10.1016/0012-365x(75)90103-x
http://dx.doi.org/10.1090/s0273-0979-99-00796-x
http://dx.doi.org/10.1090/s0273-0979-99-00796-x
http://dx.doi.org/10.1090/s0273-0979-99-00796-x

