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Finding a Reconfiguration Sequence between Longest Increasing
Subsequences

Yuuki AOIKE†, Masashi KIYOMI††a), Yasuaki KOBAYASHI†††b), Nonmembers,
and Yota OTACHI††††c), Member

SUMMARY In this note, we consider the problem of finding a step-
by-step transformation between two longest increasing subsequences in a
sequence, namely Longest Increasing Subsequence Reconfiguration.
We give a polynomial-time algorithm for deciding whether there is a re-
configuration sequence between two longest increasing subsequences in a
sequence. This implies that Independent Set Reconfiguration and To-
ken Sliding are polynomial-time solvable on permutation graphs, provided
that the input two independent sets are largest among all independent sets
in the input graph. We also consider a special case, where the underlying
permutation graph of an input sequence is bipartite. In this case, we give a
polynomial-time algorithm for finding a shortest reconfiguration sequence
(if it exists).
key words: combinatorial reconfiguration, longest increasing subsequence,
permutation graph

1. Introduction

For a nonnegative integer n, we define [n] = {1,2, . . . ,n}.
Let A = (ai)i=1,2,...,n be a sequence of distinct integers be-
tween 1 and n. We say that I ⊆ [n] is feasible (for A) if
ai < aj for i, j ∈ I with i < j. In other words, I is the set
of indices of an increasing subsequence of A. A maximum
feasible set (for A) is a feasible set I for A such that there
is no feasible set (for A) with cardinality strictly larger than
I. The problem of computing a maximum feasible set of
a given sequence A, also known as Longest Increasing
Subsequence, is a typical example that can be solved in
polynomial time with dynamic programming [1].

In this note, we consider the reconfiguration-variant
of Longest Increasing Subsequence, defined as follows.
Given a sequence of n distinct integers A and (not necessar-
ily maximum) two feasible sets I and J with |I | = |J |, the
goal is to determine whether there is a sequence of feasible
sets I0, I1, . . . , Iℓ such that I0 = I, Iℓ = J, and for 1 ≤ i ≤ ℓ,
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Ii is obtained from Ii−1 by simultaneously adding element
j < Ii−1 and removing k ∈ Ii−1 (i.e., Ii = (Ii−1 ∪ { j}) \ {k}).
We call this problem Increasing Subsequence Reconfig-
uration and such a sequence a reconfiguration sequence
between I and J. If two input sets are maximum feasible sets
for A, we particularly call the problem Longest Increasing
Subsequence Reconfiguration. In this paper, we give a
polynomial-time algorithm for Longest Increasing Subse-
quence Reconfiguration.

Theorem 1. Longest Increasing Subsequence Recon-
figuration can be solved in polynomial time.

Increasing Subsequence Reconfiguration can be
seen as a special case of a well-studied reconfiguration prob-
lem, called Independent Set Reconfiguration. Given a
graph G = (V,E) and two independent sets I, J of G with
|I | = |J |, Independent Set Reconfiguration asks whether
there is a sequence of independent sets I0, I1, . . . , Iℓ such that
I0 = I, Iℓ = J, and for 1 ≤ i ≤ ℓ, Ii \ Ii−1 = {v} and
Ii−1 \ Ii = {u} for some u, v ∈ V . Increasing Subsequence
Reconfiguration corresponds to Independent Set Recon-
figuration on permutations graphs: An undirected graph
G = (V,E)withV = [n] is called a permutation graph if there
is a permutation π : [n] → [n] such that for 1 ≤ i < j ≤ n,
π(i) > π( j) if and only if {i, j} ∈ E . Observe that for I ⊆ V ,
I is an independent set of the permutation graph G if and
only if I is a feasible set for A = (π(i))i=1,2,...,n. Thus, our
problem, Increasing Subsequence Reconfiguration, is
equivalent to Independent Set Reconfiguration on per-
mutation graphs. Token Sliding is a variant of Indepen-
dent Set Reconfiguration, where two vertices u, v in the
above definition are required to be adjacent in G. It is easy
to see that if I and J are maximum independent sets of G,
these two problems are equivalent.

Corollary 1. Independent Set Reconfiguration and To-
ken Sliding can be solved in polynomial time, provided that
the input graph G is a permutation graph and two sets I and
J are maximum independent sets of G.

This resolves a special case of an open question posed
by Briański et al. [2], where they ask for a polynomial-time
algorithm for Token Sliding on permutation graphs.

The graph-theoretic perspective of Longest Increas-
ing Subsequence Reconfiguration gives another inter-
esting consequence of finding a shortest reconfiguration
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sequence between maximum independent sets on bipar-
tite permutation graphs. For any reconfiguration sequence
(I0, I1, . . . , Iℓ), we have ℓ ≥ |I0 \ Iℓ |, as we can remove at
most one element from I0 \ Iℓ in a single step. For bipartite
permutation graphs, we can always find a reconfiguration
sequence between maximum independent sets I and J with
length ℓ = |I \ J | if there is a reconfiguration sequence be-
tween them.

Theorem 2. Let G be a bipartite permutation graph and let
I and J be maximum independent sets of G. Suppose that
there is a reconfiguration sequence between I and J. Then,
there is a reconfiguration sequence of length |I \ J | between
I and J.

The proof of Theorem 2 implies a polynomial-time al-
gorithm for the “shortest-sequence variant” of Longest In-
creasing Subsequence Reconfiguration when the under-
lying permutation graph of an input sequence A is restricted
to be bipartite.

Related work

Independent Set Reconfiguration and Token Sliding
are both known to be PSPACE-complete [3]–[6] and stud-
ied on many graph classes. Independent Set Reconfig-
uration is solvable in polynomial time on even-hole free
graphs [6] and cographs [7], [8], while it is NP-complete on
bipartite graphs [9]. Token Sliding is solvable in polyno-
mial time on cographs [6], bipartite permutation graphs [10],
and interval graphs [2], [11], while it is PSPACE-complete
on split graphs [3] and bipartite graphs [9]. The result of [10]
does not yield Theorem 2 since their polynomial-time algo-
rithm may provide a non-shortest reconfiguration sequence
on bipartite permutation graphs. We particularly empha-
size that both reconfiguration problems remain PSPACE-
complete even if two input independent sets are maximum
independent sets of the input graph [4].

As mentioned above, Independent Set Reconfigu-
ration can be solved in polynomial time on the class of
even-hole free graphs. In fact, for even-hole free graphs,
Kamiński et al. [6] showed that every instance of Indepen-
dent Set Reconfiguration is a yes-instance (assuming
that two input independent sets have the same cardinality).
This phenomenon does not hold on the class of permutation
graphs: The instance consisting of G B K2,2 with two color
classes I and J is a no-instance, and G is indeed a permuta-
tion graph, corresponding to sequence A = (7,8,5,6)†. Also
both I = {1,2} and J = {3,4} are maximum independent
sets of G. Thus, it is non-trivial to design a polynomial-
time algorithm for Longest Increasing Subsequence Re-
configuration. Our polynomial-time algorithm exploits
a structural property of the set of feasible sets for a given
sequence A.

†For elements in A, we rather use integers more than n to
distinguish from their indices in some concrete examples.

2. Algorithm

Let A = (ai)i=1,2,...,n be a sequence of n distinct integers
between 1 and n. Let V = [n] and let P = (V,⪯A) be a
partial order on V such that for i, j ∈ V ,

i ⪯A j ⇐⇒ (i = j) ∨ (i < j ∧ ai < aj).

Then, a subset of [n] is feasible for A if and only if it is a chain
of this partial order. Moreover, by Mirsky’s theorem [12],
the largest size of a chain of P is equal to the minimum
size of an antichain partition of V , and such a partition can
be computed in O(n log n) time by a standard dynamic pro-
gramming algorithm for the longest increasing subsequence
problem (see [13] for example).

To understand the structure of a minimum antichain par-
tition, we use a specific construction, called patience sort-
ing [14], which is briefly described as follows. For simplic-
ity, we add 0 to A as a0 = 0. We use n+1 piles P0,P1, . . . ,Pn

that are initially all empty and iteratively put an integer ai in
A on the top of one of the piles for 0 ≤ i ≤ n in this order.
For each 0 ≤ i ≤ n, we put ai on the top of the “leftmost”
pile Pj such that Pj is empty or the top of Pj is greater than
ai . Let us note that the top elements of all nonempty piles
are always sorted in increasing order. Now, let P0,P1, . . . ,Pn

be the piles obtained by executing the above algorithm for A.
Clearly, P0 only contains a0. For each pile Pi , observe that
Pi is an antichain (with respect to ⪯A): If ai is placed below
aj in the pile, then i < j and ai > aj . For each 1 ≤ i ≤ n,
when ai is placed on the top of Pk for some 1 ≤ k ≤ n, the
top element aj of Pk−1 is smaller than ai (i.e., aj < ai). In
this case, we say that aj blocks ai and ai is blocked by aj .
Let k be the largest index of a nonempty pile. By definition,
for 1 ≤ i ≤ n, each ai has a unique element aj that blocks
ai . Moreover, if ai is blocked by aj , we have aj ⪯A ai . This
implies that there is a chain (with respect to ⪯A) of size k+1,
which corresponds to a feasible set I for A. As each Pi is an
antichain, this chain contains exactly one element of Pi for
each 0 ≤ i ≤ k. Thus, I is a maximum feasible set for A.
The above construction of piles further implies the following
observations.

Observation 1. Let I be an arbitrary maximum feasible set
for A.

1. If av is placed below au in a pile Pi , then we have u > v
and au < av .

2. Each pile Pi contains exactly one element au with u ∈ I.
3. Let u, v ∈ I such that au ∈ Pi and av ∈ Pj for 0 ≤ i <

j ≤ k. Then, we have u ⪯A v.

Proof. The first statement follows from the construction of
Pi . The second statement follows from the fact that Pi is
an antichain with respect to ⪯A. For the third statement, it
suffices to show that u < v (as the feasibility of I implies that
au < av). Suppose for contradiction that u > v. When au is
placed on the top of Pi , the top element on a pile Pj is strictly
larger than au . This and the first statement together imply
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that au < av , contradicting the fact that I is feasible. □

Now, we turn to Longest Increasing Subsequence
Reconfiguration. Let

I = {I ⊆ {0} ∪ [n] : I is a maximum feasible set of A}

and let P0,P1, . . . ,Pk be the nonempty piles that are obtained
by applying the above algorithm to A = (ai)i=0,1,...,n with
a0 = 0. The following observation follows from (2) in
Observation 1.

Observation 2. Let I, J ∈ I such that I \ J = {u} and
J \ I = {v}. Then, au,av ∈ Pj for some 0 ≤ j ≤ k.

Our algorithm for Longest Increasing Subsequence
Reconfiguration is based on a certain equivalence relation
on I. For I, J ∈ I, we denote by I ◁ J if I \ J = {u}
and J \ I = {v} such that au is placed (strictly) below av on
pile Pi for some 1 ≤ i ≤ k. We note that this ◁ relation is
not transitive: I ◁ I ′ and I ′ ◁ I ′′ may not imply I ◁ I ′′.
For I ∈ I, a family of feasible sets M(I) ⊆ I is defined
inductively as follows: (1) M(I) contains I and (2) for every
J ∈ M(I), J ′ ◁ J implies J ′ ∈ M(I). In other words, M(I)
is the lower set of I in the transitive closure of ◁ in I. By
definition, for I ∈ I, M(J) ⊊M(I) if J ∈ M(I) with J , I.
We say that I ∈ I is ◁-minimal if there is no J ∈ I with
J ◁ I.

Lemma 1. Let I, J, J ′ ∈ I such that J ◁ I, J ′ ◁ I, and
J , J ′. Then, at least one of the following conditions is
satisfied: J ′ ◁ J, J ◁ J ′, or there is J ′′ ∈ I such that
J ′′ ◁ J and J ′′ ◁ J ′.

Proof. Let I \ J = {u}, J \ I = {v}, I \ J ′ = {u′}, and
J ′ \ I = {v ′}. If u and u′ belong to the same pile Pi , by
Observation 2, v and v ′ belong to the same pile Pi . This
implies either J ′ ◁ J or J ◁ J ′. Suppose otherwise. By
Observation 2, v and v ′ belong to distinct piles and hence
v , v ′. We claim that (J \{u′})∪{v ′} is a maximum feasible
set, which symmetrically implies that (J ′ \ {u}) ∪ {v} is a
maximum feasible set as well. Suppose for contradiction
that (J \ {u′}) ∪ {v ′} is not a feasible set. Since J \ {u′} and
J ′ = (I \ {u′}) ∪ {v ′} are feasible, v and v ′ are the unique
incomparable pair with respect to ⪯A in (J \ {u′}) ∪ {v ′}.
We assume that av and av′ are contained in piles Pi and Pj

with i < j, respectively. As v,u′ ∈ J, by Observation 1, we
have av < au′ . Moreover, as av′ is placed below au′ in Pj ,
we have au′ < av′ (by (1) in Observation 1). These together
imply that av < av′ . As av is placed below au in Pi , we
have v < u (by (1) in Observation 1). Moreover, by (3) in
Observation 1, u ⪯A v

′ as u, v ′ ∈ J ′. Thus, we have v < v ′,
contradicting the assumption that v and v ′ are incomparable
with respect to ⪯A. □

Lemma 2. For I ∈ I, there is exactly one ◁-minimal set in
M(I).

Proof. We prove the lemma by induction on |M(I)|. If
|M(I)| = 1, then I itself is the unique ◁-minimal set in

M(I). Suppose that M(I) contains at least two sets. If
there is exactly one J ∈ M(I) with J ◁ I, by the induc-
tion hypothesis, M(J) ⊊M(I) has a unique ◁-minimal set,
which is also the unique ◁-minimal set in M(I). Otherwise,
there are two J, J ′ ∈ M(I) such that J ◁ I and J ′ ◁ I. By
Lemma 1, at least one of the following conditions are satis-
fied: J ′ ◁ J, J ◁ J ′, or there is J ′′ ∈ I such that J ′′ ◁ J
and J ′′ ◁ J ′. If J ′ ◁ J, then M(J ′) ⊆ M(J) ⊊ M(I). By
induction, both M(J) and M(J ′) have unique ◁-minimal
sets, and as M(J ′) ⊆ M(J), these two sets are identical.
The case where J ◁ J ′ is symmetric. Hence, suppose that
there is J ′′ ∈ I such that J ′′ ◁ J and J ′′ ◁ J ′. By in-
duction, M(J), M(J ′), and M(J ′′) have unique ◁-minimal
sets. Similarly, as M(J ′′) ⊆ M(J) and M(J ′′) ⊆ M(J ′),
these three ◁-minimal sets are identical, which completes
the proof. □

The proof of Lemma 2 immediately implies the follow-
ing corollary.

Corollary 2. For I, J ∈ I with I ◁ J, the ◁-minimal sets of
M(I) and M(J) are identical.

We define an equivalence relation on I based on the
◁-minimality. By Lemma 2, the ◁-minimal set in M(I) is
uniquely determined for I ∈ I. We say that two maximum
feasible sets I and J are ◁-equivalent if the ◁-minimal set in
M(I) is equal to that in M(J). The key to our algorithm is
the following lemma.

Lemma 3. Let I, J ∈ I. Then, there is a reconfiguration
sequence between I and J if and only if I and J are ◁-
equivalent.

Proof. Suppose that there is a reconfiguration sequence
(I0, I1, . . . , Iℓ) between I0 = I and Iℓ = J. We prove that all
maximum feasible sets Ii belong to the same ◁-equivalence
class. By definition, either Ii ◁ Ii+1 or Ii+1 ◁ Ii , implying
respectively that M(Ii) ⊆ M(Ii+1) or M(Ii+1) ⊆ M(Ii). By
Corollary 2, their ◁-minimal sets are identical, which proves
the forward direction.

Suppose that I and J are ◁-equivalent. Then, there is
I ′ ∈ M(I) ∩ M(J). This implies that there are reconfig-
uration sequences between I and I ′ and between J and I ′.
By concatenating these sequences, we have a reconfiguration
sequence between I and J. □

Our algorithm is fairly straightforward. Given two max-
imum feasible sets I and J, we compute their ◁-minimal sets
I ′ and J ′, respectively. By Lemma 3, there is a reconfig-
uration sequence between I and J if and only if I ′ = J ′.
From a maximum feasible set I, we can compute a unique
◁-minimal set in M(I) in polynomial time by a greedy al-
gorithm. Hence, Theorem 1 follows.

3. Bipartite Case

Before proving Theorem 2, we would like to mention that
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bipartiteness in Theorem 2 is crucial, that is, Longest In-
creasing Subsequence Reconfiguration does not ad-
mit a reconfiguration sequence of length |I \ J | in gen-
eral. Let us consider an instance consisting of A =

(15,11,16,13,17,12,14)†, I = {1,3,5}, and J = {2,6,7}.
This instance requires four steps to transform I into J:
I0 = {1,3,5} = I, I1 = {2,3,5}, I2 = {2,4,5}, I3 = {2,4,7},
I4 = {2,6,7} = J, while |I \ J | = 3.

Let (A = (ai)i=1,2,...,n, I, J) be an instance of Longest
Increasing Subsequence Reconfiguration such that the
underlying permutation graph GA of A is bipartite. In the
following, we may not distinguish the elements of A from
their indices and then also refer to the elements of A as the
vertices of GA. Let P1,P2, . . . ,Pk be the piles for A defined
in the previous section. By (1) in Observation 2, every pair
of indices of elements in a pile is incomparable with respect
to ⪯A. This implies that they are adjacent in the permutation
graph GA. Thus, each pile contains at most two elements as
otherwise GA contains a triangle. A pile Pt is called a mixed
pile if it contains exactly two elements ai and aj with i ∈ I
and j ∈ J. Note that, for such a mixed pile Pt , both j < I and
i < J hold. A pair of two mixed piles is called a forbidden
pair if the four vertices corresponding to two mixed piles
induce a cycle of length 4 in GA. It is easy to observe that
(A, I, J) is a no-instance if it has a forbidden pair.

A mixed pile Pi is called the leftmost mixed pile if no
pile Pj with j < i is mixed. The following lemma is a key to
proving Theorem 2.

Lemma 4. Suppose that (A, I, J) has no forbidden pairs. Let
ai,aj be the elements in the leftmost mixed pile Pt with i ∈ I
and j ∈ J. Then, at least one of (I\{i})∪{ j} or (J\{ j})∪{i}
is feasible.

Proof. Suppose that both I ′ = (I \ {i}) ∪ { j} and J ′ =
(J \ { j}) ∪ {i} are not feasible. As I ′ is not feasible, there
is i′ ∈ I \ {i} that is adjacent to j in GA. Let Pt′ be the pile
containing ai′ . Since j ∈ J, pile Pt′ has an element aj′ with
j ′ ∈ J, which implies that Pt′ is a mixed pile with t < t ′.
Symmetrically, as J ′ is not feasible, there is a mixed pile
Pt′′ with t < t ′′ that has an element aj′′ with j ′′ ∈ J \ { j}
adjacent to i in GA. If t ′ = t ′′, the pair Pt and P′

t forms
a forbidden pair, contradicting the assumption. Assume,
without loss of generality, that t < t ′ < t ′′. Since there
are edges between j and i′ and between i and j ′′, we have
aj > ai′ and ai > aj′′ . As j, j ′′ ∈ J, we have aj < aj′′ .
Thus, we have ai′ < aj < aj′′ < ai , contradicting to the fact
ai < ai′ as i, i′ ∈ I. □

It would be worth mentioning that Lemma 4 is similar
to Lemma 6 in [6], where they showed that if G is even-hole-
free, the subgraph of G induced by I △ J = (I \ J) ∪ (J \ I)
has no cycles and then there always exists a reconfiguration
sequence between two independent sets I and J with the
same cardinality. However, the subgraph of GA induced by

†Again, we use integers more than n for the elements in A to
avoid confusion.

Fig. 1 The figure depicts the bipartite permutation graph GA corre-
sponding to sequence A = (10, 7, 11, 8, 12, 9) with I = {1, 3, 5} and
J = {2, 4, 6}.

I △ J may contain a cycle, even when it excludes forbidden
pairs. See Fig. 1, for an illustration.

By Lemma 4, at least one of (I \ {i})∪ { j} or (J \ { j})∪
{i}, say I ′ = (I \ {i}) ∪ { j}, is feasible. This decreases the
difference |I ′ \ J | by 1 and does not create a new forbidden
pair. Applying repeatedly this, Theorem 2 follows.
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