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Local-to-Global Structure-Aware Transformer for Question
Answering over Structured Knowledge

Yingyao WANG†a), Nonmember, Han WANG††,†††b), Student Member, Chaoqun DUAN†,
and Tiejun ZHAO†c), Nonmembers

SUMMARY Question-answering tasks over structured knowledge (i.e.,
tables and graphs) require the ability to encode structural information. Tra-
ditional pre-trained language models trained on linear-chain natural lan-
guage cannot be directly applied to encode tables and graphs. The existing
methods adopt the pre-trained models in such tasks by flattening structured
knowledge into sequences. However, the serialization operation will lead to
the loss of the structural information of knowledge. To better employ pre-
trained transformers for structured knowledge representation, we propose a
novel structure-aware transformer (SATrans) that injects the local-to-global
structural information of the knowledge into the mask of the different self-
attention layers. Specifically, in the lower self-attention layers, SATrans fo-
cus on the local structural information of each knowledge token to learn a
more robust representation of it. In the upper self-attention layers, SATrans
further injects the global information of the structured knowledge to inte-
grate the information among knowledge tokens. In this way, the SATrans
can effectively learn the semantic representation and structural information
from the knowledge sequence and the attention mask, respectively. We
evaluate SATrans on the table fact verification task and the knowledge base
question-answering task. Furthermore, we explore two methods to com-
bine symbolic and linguistic reasoning for these tasks to solve the problem
that the pre-trained models lack symbolic reasoning ability. The experiment
results reveal that the methods consistently outperform strong baselines on
the two benchmarks.
key words: knowledge representation, pretrained transformer, knowledge
base question answering, table fact verification

1. Introduction

With the development of deep learning and the progress of
computational power, various pre-trained language models
(PTLMs) are proposed [1]–[7] and widely applied to natural
language processing (NLP) tasks. Benefiting from a mas-
sive pretraining dataset, PTLMs can learn more syntactic
and semantic language features. However, as PTLMs are
usually trained on a dataset that consists of sentences with
a linear-chain structure, they cannot encode knowledge with
a complex structure. Therefore, PTLMs cannot be directly
applied to structured knowledge-based question-answering
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Fig. 1 Different methods to adopt PTLMs to structured knowledge-
based question answering tasks.

tasks which require understanding and reasoning over struc-
tured knowledge evidence, like tables and graphs.

Some studies have attempted to exploit the method to
apply PTLMs to structured knowledge representation to mit-
igate this issue. The existing methods can be divided into
three categories. As illustrated in Fig. 1(a), the first cate-
gory leverages PTLMs and an auxiliary model to encode
the natural language query and the structured knowledge,
respectively, and introduces additional layers to model their
relationship [8]. In these methods, encoding the query and
knowledge is implemented between two adjacent steps, re-
ducing the model efficiency because these operations can
be compressed into one step. Moreover, these methods in-
troduce more parameters that must be trained from scratch,
increasing the difficulty of training the model.

Figure 1 (b) depicts the second method type, which
leverages a unified PTLM to encode the query and its knowl-
edge simultaneously. These methods [9] serialize knowl-
edge with a complex structure into a sequence and adopt
PTLMs to encode it like a sentence. However, the serial-
ization operation destroys the structural information within
the knowledge. For example, if a table is serialized into a
sequence by connecting its row content, it is difficult for the
PTLMs to recover the column alignments of different rows
from the flattened word sequence. The same problem ex-
ists for the serialization of the knowledge graph. A common
technique to flatten a knowledge graph is to connect its paths
or triplets into a word sequence [10], causing the loss of the
adjacency information within the graph.

Ideally, applying PTLMs to structured knowledge-
based tasks should jointly encode the inputs of various struc-
tures with their structural information, such as the alignment
information of table cells and the adjacency between graph
nodes. As Fig. 1 (c) reveals, to overcome the drawback of
the second category methods, the third category methods
like [11] propose injecting the structural information from
the knowledge into the mask of the self-attention layer. The

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers



1706
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.10 OCTOBER 2023

mask leverages the original structure of the knowledge to
control the token representation fusion of the connected se-
quence. Through this mechanism, the method also succeeds
in preserving structural information.

Applying the attention mask mechanism lets the
PTLMs learn the structural information. However, existing
methods usually use the fixed mask containing the global
structural information during the whole knowledge repre-
sentation process, even though the structure of knowledge
is complex. Complex knowledge structures tend to be
multi-grained. For example, tables contain cells, rows, and
columns, while KG contains nodes, triples, and paths. In the
case of simply using the fixed mask, the encoding process of
each token is forced to consider the global structural infor-
mation from the beginning. This out-of-focus structural in-
formation will introduce noise into the basic representation
of the token. For example, when encoding a table cell, its
row neighbors are valuable lexical features because cells in
the same row usually describe the same fact. However, con-
sidering all alignment information of a cell will introduce
the lexical information from column-granularity neighbors,
but column neighbors usually have no semantic relevance.
In fact, such global structural information contributes more
to cross-granularity reasoning over the whole knowledge.

To address the above problem and better develop the
PTLMs to represent structured knowledge, we propose a
local-to-global structure-aware transformer (SATrans). It
learns the structural information of knowledge by inject-
ing local-to-global structural information into masks of dif-
ferent self-attention layers. Specifically, in the lower self-
attention layers, SATrans focus on the local neighbor infor-
mation of each knowledge token to learn a more robust rep-
resentation of it. While in the upper self-attention layers,
SATrans injects global structure information into the atten-
tion mask to integrate all token representations and perform
cross-granularity reasoning over the knowledge.

We evaluate SATrans on two structured knowledge-
based question-answering tasks, Table Fact Verification
(TFV) and Knowledge Base Question Answering (KBQA),
to verify its ability of structured knowledge representation,
respectively, on tables and graphs. The TFV task aims to
classify whether a factoid statement is entailed or refuted
by the given evidence table. The KBQA task aims to de-
termine the answer to a question from a given knowledge
base with a graphical structure. Both tasks involve a natu-
ral language query and structured knowledge evidence that
exactly matches the requirement of verifying the ability of
this method to model structured information. We conduct
experiments on the TabFact [9] dataset for the TFV task and
on the WebQSP [12] dataset for KBQA. The experimental
results show that SATrans outperforms strong baselines on
these benchmarks.

In addition to encoding structural information, struc-
tured knowledge-based question-answering tasks usually re-
quire the ability to perform symbolic reasoning. Specifi-
cally, in the TFV task, some statements require numerical
operations over the table cells, such as counting, comparing,

and calculating. In the KBQA task, the model must deter-
mine the core inference chain, representing the path from
the question-related node to the correct answer node. The
PTLMs cannot perform such symbolic reasoning. Thus, we
further explore two methods to convert symbolic reasoning
into linguistic reasoning for the two tasks to enhance the
question-answering performance. The main contributions
of this work are as follows:

1. We devise a SATrans to use PTLMs better to represent
structured knowledge, such as tables and graphs, by in-
jecting local-to-global structural information into the
attention masks of different attention layers.

2. To fill the gap that the SATrans lack symbolic reason-
ing ability, we explore two methods to combine sym-
bolic reasoning and semantic matching for the TFV and
KBQA tasks.

3. We conduct extensive experiments on two structured
knowledge-based tasks, TFV and KBQA. The results
reveal that this method outperforms strong baselines on
these benchmarks, confirming the effectiveness of the
proposed method.

This journal paper is an extended version of our con-
ference paper [13] of EMNLP. In this paper, we extend the
application of the proposed SATrans from the TFV task to
the KBQA task and conduct experiments on the widely used
dataset WebQSP. The improvement on the KBQA further
proves that our method has an advantage in encoding struc-
tured information in advance. The new content is described
in Sect. 2.3 and Sect. 3.3 respectively. In addition, we add
experiments and discussions in Sect. 3.2 to analyze the ef-
fect of different components in the model.

2. Methodology

In this work, we adopt the representative pre-trained model
BERT [1] as the backbone of SATrans. The inputs of TFV
comprise a statement and relevant table, and those of KBQA
include a query and subgraph. To use the BERT to en-
code tables and subgraphs, we serialize them into sequences.
After obtaining the serialized structured evidence, the ta-
bles and subgraphs are concatenated with the statement and
query, and input into the BERT. Moreover, we propose
SATrans, which uses a local-to-global structure-aware mask
to preserve and integrate the structural information into the
BERT.

In this section, we first introduce the framework of
SATrans and then introduce the knowledge serialization and
mask construction methods for TFV and KBQA tasks.

2.1 Structure-Aware Transformer

Figure 2 presents the architecture of the SATrans. The
model consists of a serialization operation, an attention
mask generator, and N-layer transformers. Formally, given
a query sentence P = {p1, p2, . . . , plp } and the structured
knowledge E, SATrans first serialize E into a sequence
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Fig. 2 Framework of the structured-aware transformer.

Q = {q1, q2, . . . , qlq } Then, P and Q are concatenated as
S = {w1, w2, . . . , wL}, where L = lp + lq. The sequence
S is input into the SATrans to learn the semantic repre-
sentation. Specifically, S is first converted into vectors
H0 = {h0

1, h
0
2, . . . , h

0
L} using an embedding layer. Afterward,

H0 is input into the encoder of SATrans to learn the repre-
sentation for each token.

For an input sequence containing the serialized knowl-
edge, the local-to-global attention masks are constructed by
the mask generator according to the knowledge structure.
The mask is defined as M ∈ RL×L, each value Mi, j repre-
sents the adjacent relationship of tokens wi and w j in the
knowledge structure. wi ∼ w j means that w j is attended to
when generating the representation of wi, whereas w j � wi

indicates the opposite. Each Mi, j is denoted as follows:

Mi, j =

{
0 wi ∼ w j

−∞ wi � w j
. (1)

As depicted in Fig. 2, after obtaining the mask M, it is in-
corporated into the scaled dot-product attention. For exam-
ple, in the n-th layer, given the output of the previous layer,
Hn−1 = {hn−1

1 , h
n−1
2 , . . . , h

n−1
L }, the mask is integrated into

the m-th head as follows:

Qm, Km,Vm = Hn−1WQ
m ,H

n−1WK
m ,H

n−1WV
m , (2)

A = softmax(
QmKm

T + M√
dk

), (3)

H̄n
m = AVm. (4)

where Wm is a trainable parameter.
Equation (3) combines M and QmKm

T with an addi-
tion operation to constrain the attending objects of the query.
Specifically, if w j � wi, Ai, j is reset to zero after the softmax
operation, hn−1

j does not contribute to the representation of
wi (i.e. hn

i ). Using the mask mechanism, we can precisely
control the information updating on the serialized knowl-
edge evidence and allow the information of each token to
propagate following the original structure of the knowl-
edge evidence. Mask M is generated under the guidance
of the input structure, thus, the scaled dot-product atten-
tion with the mask mechanism is denoted as the structure-
aware scaled dot-product attention. Finally, the output of

the last layer is adpoted to produce the representation of the
input sequence. Formally, given the output of the last layer
HN = {hN

1 , h
N
2 , . . . , h

N
L }, the final representation of the input

sequence is obtained through a max-pooling operation:

V = maxpooling(HN). (5)

The TFV and KBQA are formulated as binary classification
tasks in this work. Given a statement and table, or a question
and candidate answer, the model assigns a label L ∈ {0, 1},
where L = 1 indicates that the table entails the statement or
candidate answer is the correct answer to the question, and
L = 0 indicates the opposite. The model outputs a score to
indicate the probability that the concatenation is predicted
to be 1 and uses the score to obtain the binary cross entropy
to train the model:

L = BCELoss(L, Sigmoid(VWs + bs)). (6)

2.2 Table Fact Verification

2.2.1 Task Definition

Given a natural language statement P = {p1, p2, . . . , plp },
TFV aims to classify whether the statement is entailed or
refuted by table T . Table T consists of a caption t and cells
{ci, j; i ≤ m, j ≤ n}, where m and n are the numbers of rows
and columns, respectively. Each ci, j could be different types,
such as a word, number, phrase, or natural language sen-
tence. The cells {c0, j; j ≤ n} of the table shown in Fig. 3 (a)
indicate the column names which usually describe the field
of the column cells. According to table T , a statement P is
assigned with a verification label Ls ∈ {1, 0}. If P is entailed
by T , its label Ls = 1, otherwise label Ls = 0. Each given
statement is verified by matching its semantic representa-
tions and the corresponding table, and the statement with a
higher matching score is entailed.

2.2.2 Table Serialization

In the TFV task, the input sequence is connected with the
statement P, the table caption t, and the flattened table T f ,
where the table caption helps better understand the back-
ground of the statement. In T f , all table cells are connected
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Fig. 3 Example of mask construction for KG.

into a token-level sequence. The table has two serialization
ways: using the horizontal scan or the vertical scan. An ex-
ample of horizontal scanning is presented in Fig. 3 (b). As
illustrated in Fig. 3 (a), learning the table cell representation
requires both horizontal and vertical views. If the table is
flattened using a horizontal scan, the vertical alignment in-
formation is lost, and vice versa. For example, the column
header c0,2 is important to the encoding of c1,2, but its sig-
nal could be perturbed by other cells in gray, because all c0,∗
and c2,∗ cells are far from c1,2 in the flattened sequence and
are processed equally. Therefore, we construct the attention
masks and inject structure information to solve this.

2.2.3 Mask Construction for Tables

Figure 3 (b) sketches the attention masks of cell c1,2. Specif-
ically, in the lower layers, the cell representation considers
the following four types of information: a) neighbor cells in
the same row, b) the column header describing the attribute
name, c) the table caption containing the table background,
and d) the statement for verification. In the upper lay-
ers, column-level attention among cells is further enabled.
Lower layers focus on capturing low-level lexical informa-
tion, whereas upper layers are capable of simple cross-row
reasoning. It is worth mentioning that information of the
statement P and the table caption t is always visible for all
cells of the serialized table.

2.2.4 Symbolic Reasoning on Tables

As mentioned, another preferred ability of SATrans is to
perform symbolic reasoning, such as counting, comparing,
and calculating. Pretrained transformers, such as BERT, are
good at semantic-level understanding but not symbolic rea-
soning. To solve this problem to some extent, we explore
enhancing the performance of counting verification by con-
verting the counting problem into a semantic matching prob-
lem. Specifically, for every table column, the frequency of
duplicate cell content is counted as a summary cell, leading
to a summary row, which is appended to the table.

2.3 Knowledge Base Question Answering

2.3.1 Task Definition

Given a natural question P={p1, p2, . . ., plp } and a KG G,
KBQA aims to determine the answers A = {a1, . . . , ala } to
P from G. Typically, a knowledge base consists of a set
of facts, and each fact is a triplet that includes a subject
entity, relation, and object entity. Some triplets share the
same entity, therefore, the knowledge base is always con-
sidered a graph. When solving the KBQA task, a set of
topic entities S = {s1, . . . , sls } is identified using the entity
linking operation between the question and knowledge base.
Then, a KB subgraph can be extracted around the topic en-
tities. In this work, the subgraph extracted for each ques-
tion is defined as “question subgraph” Gq. Specifically, Gq

comprises n-hop paths around the topic entities S, and all
entities O = {o1, . . . , olo } in it comprise the candidate an-
swer set of the question. Besides the question subgraph, we
also define a “candidate subgraph”, Gc(ō), for each candi-
date answer, where Gc(ō) ⊂ Gq. The candidate subgraph
of oi consists of all paths between oi and one of the topic
entities si ∈ S. In this work, the candidate subgraph is em-
ployed as the knowledge evidence to determine whether the
corresponding candidate entity is a correct answer. Like the
TFV task, the KBQA task is treated as a semantic matching
problem between a question and its candidate subgraph.

2.3.2 Candidate Subgraph Serialization

In the KBQA task, the input of SATrans is the concatena-
tion of question P, and the serialized candidate subgraph
Pō = {s̄, p1, . . . , pn, ō}. When serializing a candidate sub-
graph, we first splice all the paths between the topic entity
s̄ and the corresponding candidate entity ō into a word se-
quence. Then, s̄ and ō are placed at the head and tail of
the sequence. Figure 5 reveals that given the topic entity
“Raphael”, the candidate entity “Italy” and the two paths
between them, the four parts are concatenated to obtain the
serialized candidate subgraph PItaly. The serialization op-
eration destroys the structural information in the candidate
subgraph. The node “nationality” is directly connected to
“Raphael” in the graph in Fig. 4. However, in the serialized
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candidate subgraph, they are far from each other.

2.3.3 Mask Construction for Candidate Subgraphs

A candidate subgraph consists of a set of triplets. Thus, the
tokens of Pō include three types: subject, relation, and ob-
ject. Based on this, multiple triplets connect into paths con-
sisting of the subgraph through shared entities. As Fig. 6
reveals, the lower-layer attention mask is constructed to en-
sure the representation learning of each token considers two
aspects of information: a) the triplets to which it belongs and
b) the question to be answered. Question P receives infor-
mation from all tokens of Pō. In the upper layers, path-level
attention is enabled. This way, triplets information on the
same reasoning path can be integrated, and the cross-path
information will propagate through shared entities. Fig-
ure 6 presents representation learning with the masked self-
attention of the relation token place of birth in PItaly. In
the lower layers, the entity ‘place of birth’ can only view
the triplet (Raphael, place of birth, Urbino), which makes
the self-attention focus on the local lexical information of
the one-hop neighbors of the entity. In the upper lay-
ers, ‘place of birth’ can further view the path (Raphael,
place of birth, Urbino, location contain, Italy). In this way,
the model can learn the multi-hop range reasoning of the en-
tity. In general, under the control of the attention mask, the
information on the serialized subgraph flows from triplet-
level to path-level based on the graph structure.

Fig. 4 An example of a given question q and its corresponding question
subgraph Gq. In Gq, the entity ‘Raphael’ is the topic entity obtained by
entity linking operation, all of the other entities in the subgraph are regarded
as the candidate answers. Notably, the relation names shown in this figure
is a simplified version of FreeBase relations.

Fig. 5 Candidate subgraph before and after serialization of each candidate entity in Fig. 4.

2.3.4 Chain-Guide Training

WebQSP provides the core inference chain [12], which in-
dicates crucial paths from the topic entity to the correct an-
swers. The SATrans cannot directly determine the inference
paths, thus, an auxiliary task is introduced to convert sym-
bolic reasoning into linguistic reasoning. This task aims to
predict whether a path in the candidate subgraph is the core
inference chain and uses this information to boost the train-
ing of the SATrans. We denote this mechanism as chain-
guide training. Specifically, given a candidate subgraph with
np paths, the SATrans is adopted to learn the representation
of the serialized sequence HN . Then, the average values of
the representations corresponding to each path are denoted
as semantic representations Hp = {hp1 , hp2 , . . . , hpnp

}. Af-
terward, the representation of each path is input into a clas-
sifier to output a score to indicate the probability that the
input path is the core inference chain:

spi = Sigmoid(hpiWp + bp). (7)

The binary cross entropy is adopted as the objective function
when training:

L̄p =
1
np

np∑
i=1

BCELoss(Lpi , spi ), (8)

where Lpi denotes whether the path pi is the core inference

Fig. 6 Take the serialized subgraph of ‘Italy’ as the example, this figure
gives the masked self-attention of tokens in ‘place of birth’. In the lower
layers, its visible range includes its triplet. Information of different triples
in the same path is enabled in the upper layers. The question is always
visible for each token, which is omitted in this figure.
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Table 1 The verification accuracy (%) of different models. † means the results are cited from publi-
cations. Results of Table-BERT tuned* are obtained by tuning the learning rate from 5e-5 to 1e-5.

Model Val Test Test(simple) Test(complex)
LPA [9]† 65.1 65.3 78.7 58.5
Table-BERT [9]† 66.1 65.1 79.1 58.2
Table-BERT tuned* 68.38 68.30 82.35 61.48
BERT with cell position encoding 59.31 59.44 63.24 57.58
SATrans with Horizontal scan 72.96 72.82 85.44 66.62

- w/o attention mask 68.41 67.67 75.93 63.61
- w/o summary row 72.00 72.09 85.53 65.49
- w/o attention mask w/o summary row 66.84 66.01 74.37 61.90

SATrans with Vertical scan 73.31 73.23 85.46 67.23
- w/o our attention mask 64.21 64.27 68.77 62.06
- w/o summary row 71.71 71.59 84.70 65.15
- w/o summary row and w/o our attention mask 63.03 62.34 66.71 60.19
- all layers w/ fix global mask (row and column) 72.83 72.26 84.61 66.11
- all layers w/ fix local mask (only row) 72.02 71.82 83.45 66.10

chain. If it is, Lpi equals 1, otherwise, it is 0.
Finally, we adopt the linear interpolation of the QA loss

computed in Eq. (6) and core inference chain loss computed
in Eq. (8) are employed as the loss function for the SATrans:

L̄ f inal = αL + (1 − α)Lp, (9)

where α is a coefficient to weight the importance of L and
Lp during training.

3. Experiments

In this section, we mainly report our main experimental re-
sults to verify the effectiveness of SATrans. More compara-
tive analysis and discussion are given in Sect. 4.

3.1 Implementation Details

3.1.1 Dataset

The TFV experiments are conducted using TabFact† [9], a
large-scale TFV dataset. Its instances are split into 92238,
12792 and 12779 respectively for training, validation and
testing. TabFact includes simple and complex statements.
Simple statements only contain a single row, while complex
statements involve higher-order semantics, and the state-
ments require more ability on symbolic reasoning. The
KBQA experiments are conducted on WebQSP [12], which
has 3098 instances for training and 2032 instances for test-
ing. WebQSP is built on Freebase††. Each question in We-
bQSP is further annotated in the core inference chain, de-
fined as the path connecting a topic entity to a correct an-
swer.

3.1.2 Settings

The SATrans weights are initialized using a BERT-based
model with 12 self-attention layers. In this work, we se-
lect the first 6 layers as the lower layers and the last 6 layers

†https://github.com/wenhuchen/Table-Fact-Checking
††https://developers.google.com/freebase

as the upper layers. The experiments of layer division are
reported in 3.2.4. In model training, all the training parame-
ters are consistent with the baseline models of the two tasks.
Specifically, for the TFV task, the model is fine-tuned with
a learning rate of 2e-5 and a batch size of 10. The maximum
sequence length is set to 256.

For the KBQA task, the entity linking results are from
the S-MART [14] system, and the top entity is selected as
the topic entity of the question. The two-hop range paths
around the topic entity are retrieved as the question sub-
graph using the Personalized PageRank (PPR) method [15].
In the question subgraph, the top300 entities are selected as
candidate answers by ranking the PPR scores. For model
training, the batch size is set to 20, the maximum sequence
length is set to 512, and the learning rate is set to 5e-5. Neg-
ative sampling with a 0.1 sample rate is adopted to address
the data imbalance problem, which is selected by the grid
search method in the 0.1-0.5 with 0.1 interval. For chain-
guided training, the weight coefficient α in Eq. (9) is 0.5.

3.2 Results on TabFact

We use accuracy as the evaluation metric to compare the
verification performance of SATrans and the baseline mod-
els. The experimental results on the TabFact are listed in
Table 1. The performance of SATrans is reported using hor-
izontal and vertical scans, and the only difference between
these two settings is the scanning method in the table seri-
alization process. The two settings use the same attention
mask construction method, which uses row-granularity at-
tention in the lower layers and adds column-granularity at-
tention in the upper layers. As the results revealed, SATrans,
with the vertical scan, achieves the best accuracy of 73.23%
on the complete testing set and outperforms Table-BERT by
4.93%. The improvement on complex statements is even
more significant, achieving a 5.75% improvement.

3.2.1 Effect of Attention Mask

After turning off the attention mask, the testing accuracy
values are 67.67% and 64.27% for horizontal and vertical
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scans, respectively, a decrease of 5.15% and 8.96% com-
pared to the complete SATrans. These gains are mainly from
the ability of SATrans to select actual neighbor information
for each cell in the flattened table. In other words, it weak-
ens the influence of the pseudo-neighbors adjacent to the
cell in the sequence but irrelevant to the cell in the struc-
tured knowledge. Moreover, the local-to-global mask helps
the model learn the lexical knowledge and reasoning skills
first, which further benefits the table representation ability
and verification performance.

From the results, without the attention mask, flatten-
ing tables using horizontal scan achieves better performance
than using vertical scan. The results are consistent with our
intuition that row-level neighbors are more semantic related.
Thus, row-level structural information is more critical. In
the setting of only considering the column-level informa-
tion, the gap is smaller when using SATrans, demonstrating
its robustness towards different scan directions.

3.2.2 The Summary Row

Appending a summary row to the table brings 1% improve-
ment to the verification accuracy. The improvement is sta-
ble in complex instances. This gain indicates that the pre-
trained transformer lacks the ability of symbolic reasoning,
although they have an advantage in semantic understanding.
With the counting problem in scope, the experimental re-
sults reveal that converting the symbolic reasoning problem
into semantic understanding by inputting symbolic reason-
ing results into SATrans is promising.

3.2.3 Case Study

We collected and analyzed instances fixed by SATrans com-
pared to baselines. It is observed that a large portion (43/80)
of them involve multiple table cells and require no logical
reasoning. In addition, several instances (9/80) that require
a simple count and comparison are fixed. The model was
fixed (the other 38) and failed on some samples requiring
complex symbolic reasoning, such as counting, intersect-
ing, and comparison. The behavior is likely a random guess
for both the SATrans and baselines. The results demonstrate
that SATrans enhances the table representation and symbolic
reasoning abilities, and the appended summary row benefits
solving numerical reasoning problems to some extent.

3.2.4 Attention Layers Division

It is proved that designing different mask matrices for layers
of SATrans improves performance. The results in Table 1
are under the setting, where the first and last 6 layers are re-
garded as the lower and upper layers, respectively. To select
the best division of the lower and upper attention layers, we
attempt various layer splits and report the verification results
in Table 2. The number of lower layers is denoted as Llow

successively set from 0 to 12 with 2-layer intervals, and the
other (12−Llow) layers are the upper layers. Table 2 indicates

Table 2 The accuracy (%) of different layer split.

Llow Val Test Test(simple) Test(complex)
0 72.02 71.82 83.45 66.10
2 72.71 72.72 84.53 66.91
4 72.70 72.95 85.08 66.99
6 73.31 73.23 85.46 67.23
8 72.43 72.34 84.39 66.41

10 71.13 71.92 82.95 66.51
12 72.83 72.26 84.61 66.11

that the model achieves the best accuracy on all the testing
sets when Llow = 6, due to the model’s ability to learn row
and column information thoroughly for the representation of
each cell.

3.3 Results on WebQSP

The F1 score is used as the metric of question-answering
performance of the SATrans and baseline models. We
compare the SATrans with a robust KBQA model, Graft-
Net, and use the same entity linking results to compare the
question-answering performance. Since Graft-Net uses two
different encoders to encode the question and graphs, re-
spectively, we replace its question encoder with BERT to
demonstrate the gain from the PTMLs. The results reveal
that the BERT encoder improves the performance of the
baselines by 1.2% and 0.5% for the F1 scores. In contrast,
our model achieves 65.7% F1 scores on the test set, outper-
forming the baseline models with or without BERT. These
gains prove the effectiveness of our model better to apply
the pre-trained model to the KBQA task.

3.3.1 Effect of the Attention Mask

Without the attention mask, the F1 score of SATrans drops
from 65.7% to 62.6%. These decreases indicate that
SATrans effectively represents graph-structured knowledge
better and improves the end-to-end question-answering per-
formance. To further analyze the effectiveness of the local-
to-global attention mask, we compare it with only using
masks in all attention layers, which store local and global
information. The local mask makes the encoding process of
each token consider its triplet-level information, while the
global mask allows the token encoding process to consider
the path-level information. As shown in Table 3, our local-
to-global mask outperforms the baselines, proving that the
proposed method improves graph representation learning.

The results also show that only considering triplet-level
information achieves a better F1 score than path-level infor-
mation. The reason is that fine-grained neighbors are more
related to the target token, which can enhance the token
representation. In this case, the path-level and graph-level
structure information are all implicitly learned through the
shared entities among the triplets. In contrast, considering a
more coarser-grained neighbor for each token from the be-
ginning will bring the noise to its representation learning,
which leads to worse performance.



1712
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.10 OCTOBER 2023

Table 3 The F1 score on WebQSP of different models.

Model Test
STAGG [14] 52.5
MULTIQUE [16] 61.2
GRAFT-Net [17] 62.5
GRAFT-Net w/ BERT encoder† 63.7
SATrans 65.7

- w/o attention mask 62.6
- w/o chain-guide training 64.6
- all layers w/ fix global (path) mask 63.7
- all layers w/ fix local (triplet) mask 64.1

Fig. 7 Trends of F1 score and loss during the training process with or
without the chain-guide training.

3.3.2 The Chain-Guide Training

As the last row in Table 3 illustrates, without the chain-guide
training, the F1 score achieved by SATrans on WebQSP de-
clines by 1.1%. This phenomenon is because chain-guide
training can improve the reasoning ability of SATrans. In
addition, from the loss and F1 score curves shown in Fig. 7,
the chain-guide training method can improve model perfor-
mance and accelerate the convergence of the model train-
ing. The experiment results prove that learning to determine
whether an inference chain exists in the candidate subgraph
helps the model determine the correct answers.

4. Discussion with Related Work

4.1 Table Representation and TFV

Since TabFact was proposed [9], it has attracted much re-

search attention to fact verification over structured knowl-
edge. In this paper, we mainly follow two promising ap-
proaches studied on Tabfact. One is Table-BERT, which
converts the table understanding task into a natural lan-
guage inference task using the ability of PTLMs. The
other one is Latent Program Algorithm (LPA), which solves
this task as a logic program parsing problem due to its
advantage in symbolic reasoning. Our work follows the
same aspect of Table-BERT, and we devise a local-to-global
structure-aware transformer to obtain better table represen-
tation. Besides, our work also benefits from [18] and [19].
These works enhance the symbolic reasoning ability of the
PTLMs. We can directly adopt their enhanced PTLMs in
our method.

More recently, TAPAS, an effective table parsing pre-
trained model, is proposed by [20]. It solves table-based
tasks well and achieves a significant result by 81.0† ac-
curacy on TabFact. Many works adopt TAPAS as their
backbone model and further improve the verification perfor-
mance on TabFact from various aspects [21], [22]. In the fol-
lowing, we mainly discuss the differences between TAPAS
and SATrans and analyze the advantages of SATrans.

Firstly, an intuitive difference is that TAPAS requires
expensive pretraining with large-scale tabular data, which
makes TAPAS a dedicated model for table understanding.
In contrast, SATrans does not require any additional data
for pretraining. It can be flexibly applied as a plug-in to
existing pre-trained transformers to help them understand
structured knowledge. Besides, SATrans is not limited to
table processing. In this paper, we have shown that it
works equally well for representing graph structures. This
ability enables it to be applied to understanding heteroge-
neous knowledge. For example, recent work [23] adopts our
method into BART [24] for logic form generation and ob-
tains 4.2 F1 score improvement on TAT-QA [25], a dataset
of question-answering over tabular and textual data, that
proves the above views.

Moreover, TAPAS captures tabular structure by extend-
ing BERT’s architecture with additional position embed-
dings. To identify whether the table position encoding is
better than our method, we conduct experiments where row
and column positional embeddings are added to the orig-
inal positional embeddings of BERT to identify the table
alignment information. The experimental results are listed
in the fourth row of Table 1. BERT with cell position en-
coding achieves 59.8% accuracy, while the performance of
baseline BERT is 68.3%. The results indicate that BERT
is perturbed by the additional table positional embeddings,
and the model did not converge well. Though the table po-
sition information is appended to the inputs, the following
transformer layers are not ready to accept and propagate the
signal without pretraining. It is demonstrated that simply
providing positional information without pretraining is not
sufficient for Transformer to encode tables.

†The result is from [21].
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4.2 Graph Representation and KBQA

Intuitively, methods based on the GNN [8], [26], [27] are
widely used to encode knowledge graphs that are also
“structure-aware”. Specifically, GNN is designed to encode
graph-structured data, which can aggregate neighbor infor-
mation for each node. However, compared with transform-
ers, the GNN-based models cannot capture long-distance
information at the sequence level, so they can not be pre-
trained using a large corpus. Therefore, the structure-aware
transformer has more advantage of learning semantic infor-
mation than the GNN-based model. Recently, leveraging
PTLMs to encode structured data has attracted more and
more research attention.

A representative work, K-BERT [28], explores struc-
tured knowledge representation and first injects the struc-
tural information into the attention mask. Specifically, K-
BERT adopts a fixed attention mask stored global structure
in all self-attention layers. In contrast, our SATrans lever-
age the local-to-global mask to make the model learn the
local structure in the lower attention layers and integrate the
global information in the upper global layers. Our experi-
ments have proved that our designation is effective.

For KBQA, we mainly compare our SATrans with
GRAFT-Net, since both the models are neural network
(NN)-based, which encodes the question and the KG graphs
into vectors and measures their semantic similarities to se-
lect the answer. There are also many semantic parsing
(SP)-based baselines [29], [30], which derive answers from
KG by generating query graphs or executable logic forms.
They achieve better performance on WebQSP by a 74.0 F1
score. Despite their performance on QA tasks, SP-based
methods are heavily dependent on expensive work for logic
form annotations. In contrast, our SATrans, designed to en-
hance PTLMs, achieve comparable performance with those
refined-designed models specifically for QA. We think that
the two SP-based approaches and our model pay attention
to different perspectives for solving the KBQA problems,
and it’s probably to combine them to achieve better perfor-
mance.

5. Conclusion

This work proposes a local-to-global structure-aware trans-
former to better apply the pretrained transformer in
question-answering tasks over structured knowledge. The
SATrans injects the structural knowledge information into
the attention mask of the self-attention layers and allows the
lower and upper attention layers to focus on local and global
information for each token. Furthermore, to fill the gap that
the SATrans lack symbolic reasoning ability, we explored
two methods to combine symbolic reasoning and linguist
reasoning. Extensive experiments were conducted on two
structured knowledge-based question-answering tasks (i.e.,
TFV and KBQA) to evaluate the proposed method. The re-
sults revealed that the proposed method outperforms strong

baselines on these two benchmarks.
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