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PAPER
Inference Discrepancy Based Curriculum Learning for Neural
Machine Translation

Lei ZHOU†a), Ryohei SASANO†, Nonmembers, and Koichi TAKEDA†, Member

SUMMARY In practice, even a well-trained neural machine translation
(NMT) model can still make biased inferences on the training set due to
distribution shifts. For the human learning process, if we can not reproduce
something correctly after learning it multiple times, we consider it to be
more difficult. Likewise, a training example causing a large discrepancy
between inference and reference implies higher learning difficulty for the
MT model. Therefore, we propose to adopt the inference discrepancy of
each training example as the difficulty criterion, and according to which rank
training examples from easy to hard. In this way, a trained model can guide
the curriculum learning process of an initial model identical to itself. We put
forward an analogy to this training scheme as guiding the learning process
of a curriculum NMT model by a pretrained vanilla model. In this paper, we
assess the effectiveness of the proposed training scheme and take an insight
into the influence of translation direction, evaluation metrics and different
curriculum schedules. Experimental results on translation benchmarks
WMT14 English ⇒ German, WMT17 Chinese ⇒ English and Multitarget
TED Talks Task (MTTT) English ⇔ German, English ⇔ Chinese, English
⇔ Russian demonstrate that our proposed method consistently improves
the translation performance against the advanced Transformer baseline.
key words: curriculum learning, machine translation, inference discrep-
ancy, self-paced learning

1. Introduction

Human learning is a continuous process in which individuals
use prior knowledge to build up new understandings and
modify their behaviors to adapt to the environment. It does
not necessarily mean improvements or developments in the
right direction. Goal-directed learning activities often need
a meticulous curriculum to direct the gradual acquisition of
knowledge and skills. Analogous to the nature of human
learning, Elman [1] found it beneficial for neural networks
to undergo a gradual and phased training process from easy
to hard. This is a very early approach that arranges training
examples by their learning difficulty in accordance with the
maturity of neural networks.

Curriculum learning method consists of two important
components, a criterion to assess the learning difficulty of
each training examples and a schedule to arrange training
steps for subsets of training examples with different level of
training difficulty. We describe them as difficulty criterion
and curriculum schedule. In the context neural machine
translation (NMT), recent curriculum learning approaches
structure their curriculum based on various difficulty criteria.
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Kocmi and Bojar [2] built a difficulty criterion on the basis
of linguistic features, i.e. sentence length. Platanios et al. [3]
developed this idea by computing the cumulative distribution
function (CDF) value over the distribution of sentence length
and word rarity of all training data. Other approaches derive
difficulty criterion from distribution learned by a language
model [4]–[6] or a word embedding model [7]. While great
progress has been made, commonly used difficulty criteria
do not consider the learning difficulty from the “perspective”
of an NMT model. Guiding the learning process with such
difficulty criteria may not fit close enough to the nature of
NMT model training. The idea of defining the difficulty by
an NMT model is adopted in two approaches, where Zhang
et al. [8] use an auxiliary translation model much simpler
configuration than the baseline model to get the probability
of the one-best translation and Xu et al. [9] evaluate the
decline of loss of each training samples during the NMT
model training. There are also drawbacks. First, both the
loss function and the function for the probability of one-best
translation are at the word level, while the performance of
an NMT model is usually evaluated at a sentence level with
discrete metrics or sentence similarity. The evaluation of
model performance on one training example is not consistent
with that on the test set during inference. Second, due to the
exposure bias [10], the sentences with lower training loss
may indicate higher inference accuracy.

In this paper, we continue the line of research intending
to propose a difficulty criterion that reflects the “perspec-
tive” of an NMT model itself and guide the learning process
accordingly. In human learning, if some knowledge is dif-
ficult to master, we are likely to make more mistakes when
putting it into use. Likewise, a trained NMT model tends
to make inferior translation on difficult examples. For a
well-trained NMT model, the discrepancy between transla-
tion and reference during inference, which we refer to as
inference discrepancy, reflects the gap between training and
inference. The gap is primarily attributable to three fac-
tors. First, during training the teacher forcing approach use
words from data distribution as context while during infer-
ence the auto-regressive approach use previously generated
words from model distribution as context. The distribution
shift between data distribution and and model distribution,
addressed as exposure bias, is considered to be one causal
factor [10], [11]. This is why inference discrepancy also ex-
ists when enforcing inference on the training set, which has
been seen during training, see Table 1. Second, the distri-
bution shift between test data distribution and training data
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Table 1 An example of inference discrepancy. The sentences are from
the WMT14 English-German training set. We choose German⇒English
translation direction for it is easy to read. SRC is the source sentence, REF is
the reference sentence and TR is the translation generated by a vanilla NMT
model trained on WMT14 English-German training set. The sentence-
level BLEU (4-gram) score of this translation is 7.29. The discrepant
parts of the reference and translation sentences are marked in blue and red
correspondingly.

SRC Und wie Herr Simpson sehr richtig sagte, darf der Prozeß
niemals als abgeschlossen, als gewonnen oder als vollendet
betrachtet werden.

REF As Mr Simpson has said very correctly, this is a process
which we can never take for granted or regard as having
come to an end.

TR And, as Mr Simpson quite rightly said, the process must
never be considered closed, won or completed.

distribution is another causal factor, if the test data during
inference is unseen and different from the distribution of
training data. Therefore inference discrepancy is a perva-
sive issue which can be observed on both seen and unseen
data. To summarize, small inference discrepancy indicates
minor distribution shift and examples causing small infer-
ence discrepancy fit better into the model distribution of a
trained NMT model. Third, the NMT model is trained with
loss function at the word level while evaluated with metrics
at sentence level. In that light, we propose an inference-
discrepancy difficulty criterion, according to which, exam-
ples with large inference discrepancy are more difficult for
an NMT model to master while those with small inference
discrepancy are easier. And the inference discrepancy is
measured with commonly used metrics, which allows the
metric signals to exert influence on model training process
in an indirect way.

On the basis of the inference-discrepancy difficulty cri-
terion, we propose a novel inference discrepancy based cur-
riculum learning strategy, letting a regularly trained NMT
model “guide” the curriculum learning process of other NMT
model. We refer to the regularly trained one as the vanilla
NMT model and the one undergoes curriculum learning as
the curriculum NMT model. The basic scheme of proposed
strategy consists of three steps: (1) train a vanilla NMT
model on the training set; (2) enforce inference on the train-
ing set and measure inference discrepancy with evaluation
metrics, BLEU as a default; (3) implement curriculum learn-
ing with another NMT model on the same training set. Fig-
ure 1 shows the workflow of the basic training scheme. The
vanilla model and the curriculum learning model have com-
pletely identical architecture. It is like the hindsight that
after skimming over a textbook, a man can roughly make an
initial plan to learn things from easy to hard. In this work,
we also explored several different training schemes. In the
basic scheme, the vanilla NMT model and the curriculum
NMT model have the same translation direction, and the in-
ference discrepancy is measured on the forward-translation
results. For comparison, we explored the training scheme
where the vanilla model and the curriculum model have the

Fig. 1 The basic training scheme of inference discrepancy based curricu-
lum learning strategy. Given a training set (1) train a vanilla; (2) translate
the source sentences with the trained vanilla model and measure the discrep-
ancy between translation and inference with BLEU; (3) sorted the training
data from easy to hard by the BLEU score and train the curriculum NMT
model. The analogy is that the vanilla model offer guidance to curriculum
learning process of the curriculum NMT model.

opposite translation directions, and the inference discrepancy
is computed on the back-translation results. Furthermore, in
another training scheme, we divided the training set to train
more than one vanilla models, and perform cross-validation
to get inference discrepancy on unseen data. To investigate
our proposed strategy from a broader perspective, we also
made diversified attempts within the framework of the basic
training scheme, such as experiment with different curricu-
lum schedules or different evaluation metrics. Extensive ex-
periments on WMT14 English⇒German, WMT17 Chinese
⇒English and The Multitarget TED Talks Task (MTTT) En-
glish ⇔ German, English ⇔ Chinese, English ⇔ Russian
demonstrate that our proposed method can constantly boost
the performance.

This inference discrepancy based curriculum learning
strategy contributes to the curriculum learning research in
NMT by taking the gap between training and inference into
consideration when designing the difficulty criterion and
training scheme. It also has several advantageous features:
(1) it is model agnostic and easy to implement since only
minor modifications on the training pipeline are needed; (2)
it can be easily transferred to curriculum learning research
in different tasks or even in other domain by changing the
evaluation metrics for inference discrepancy for different
preference.

2. Preliminary

2.1 NMT Training

Let X and Y denote source and target languages and let
D = {(xn, yn)}N

n=1 represent the training data. Let P̂D denote
the training data distribution as opposed to P for model
distribution. NMT model training is to learn the conditional
distribution with a probabilistic model P(y |x; θ), where θ is
estimated by minimizing the loss function J:



ZHOU et al.: INFERENCE DISCREPANCY BASED CURRICULUM LEARNING FOR NEURAL MACHINE TRANSLATION
137

J(θ) = −Ex,y∼P̂D log P(y |x; θ), (1)

where Ex,y∼P̂D is the expectation of source and target exam-
ples following the training data distribution. When both
translation directions are involved, we use MTX→Y and
MTY→X for distinction.

2.2 Curriculum Learning

In essence, curriculum learning and continuation method
are in the same line [12]. The basic idea of the continuation
method is to construct a set of objective functions in sequence
of smoothing level, e.g. J1(θ), . . . , JK (θ), and then optimize
the objectives one by one, from easy to hard. Curriculum
learning implements a very similar training strategy that
θ1, . . . , θK are learned with the same objective function but
on different collections of training examples, from easy to
hard.

We can formalize curriculum learning for NMT as
follows. Given a training set D, we use z to repre-
sent a pair of parallel sentences for simplicity, namely
zn = (xn, yn), xn, yn ∈ D. Let d(·) denote the difficulty
criterion, that the difficulty score of each training example is
d(zn). An ordered set D∗ is then obtained by ranking all N
elements in D in ascending order of difficulty, so that:

D∗ : i < j → d(zi) ≤ d(z j),∀zi, z j ∈ D∗. (2)

Then, a sequence of collections C1, . . . ,CK is constructed
from D∗ by collecting a sequence of training examples with
similar difficulty degrees, i.e.C := {zi, . . . , z j},1 ≤ i ≤ j ≤
N . At training time, these collections are loaded one by one
as the training set.

We would like to elaborate on some schedule details of
existing curriculum learning techniques.

(1) One-pass or baby-steps: In one-pass schedule,
C1, . . . ,CK are mutually exclusive and

∪
k∈K
Ck = D

∗. Model

training switches to harder examples when a new collection
is taken into use. In baby-steps schedule, every collection
starts from z1, such that C1 ⊂ C2 ⊂ · · · ⊂ CK and CK = D∗.
When a new collection is taken into use, harder examples are
merged into the current training set while easier examples are
not cast aside. As baby-steps curriculum outperforms one-
pass [13], it becomes the basis of more curriculum strategies.

(2) Multiple batches or a single batch: As collections
are loaded one by one as the current training data, one or more
than one batches are created out of it. In some works [7],
[13]–[15], multiple batches are created out of one collection
and K is set to a small value. By loading data collections
one by one, it naturally divides the training process into K
phases. In other approaches [3], [4], [16], data collection is
made at every step and then a batch is created out of it.

(3) Preset or dynamic: We identify a curriculum strat-
egy as preset if both the scope of the collections and the
training steps spent on each collection can be set before
training. Otherwise, if either can only be set during training,
we identify it as dynamic. One type of dynamic method is

sometimes addressed as self-paced learning [5], [15], [17]–
[20], in which the training steps for each collection are deter-
mined based on the model training state. Training continues
on one data collection until meeting certain conditions, then
moves forward. Another type constructs its difficulty crite-
rion based on model training states [9].

In Sect. 3, we will use these preliminaries to categorize
and explain our proposed curriculum learning strategy and
the training schemes.

3. Inference Discrepancy Based Curriculum Learning

In this section, we propose a inference-discrepancy diffi-
culty criterion and curriculum learning strategy based on
inference discrepancy. Inference discrepancy, namely the
discrepancy between translation and reference is a reflec-
tion of the learning difficulty from the perspective of the
trained vanilla NMT model. Such inference discrepancy can
be measured by commonly used metrics. Implementing the
inference-discrepancy difficulty criterion differently, we put
forward different training schemes and corporate the basic
scheme with diversified attempts to investigate our proposed
curriculum learning strategy from a broader perspective.

3.1 Training Schemes

3.1.1 Basic Scheme: Forward-Translation Inference

We denote VMT as the vanilla NMT model and CLMT as
the curriculum NMT model. For a pair of languages X,Y , we
first learn a vanilla NMT model VMTX→Y with parameters
φ by minimizing the objective function:

J(φ) = Ex,y∼P̂DL( f (x; φ), y), (3)

where f (φ) represents NMT model with a function, capable
of mapping sentences from the source side to the target side,
and L(·) is the loss function. Letting d(·) denote the difficulty
criterion, we measure the degree of inference discrepancy
with sentence-level BLEU score, i.e. for x, y ∈ D:

d(x, y) = −BLEU( f (x; φ), y). (4)

As mentioned in Sect. 2, we then sort all training examples by
ascending difficulty to obtain an ordered set D∗. Afterward,
construct a sequence of data collections C1, . . . ,CK , from
easy to hard. Eventually, we can train CLMTX→Y model
with a curriculum as:

θ1 = arg max
θ
Ex,y∼P̂C1

log P(y |x; θ),

θ2 = arg max
θ
Ex,y∼P̂C2

log P(y |x; θ),

...

θ1 → θ2 → · · · → θK .

(5)

In this basic scheme, the vanilla NMT model and the curricu-
lum NMT model have the same translation direction. The in-
ference discrepancy is computed on the forward-translation
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results, namely translation is generated from the source to
the target language. So, it is also referred to as forward-
translation inference in the following section when compar-
ing with other training schemes.

3.1.2 Back-Translation Inference

For comparison, we also devise a scheme in which the vanilla
model is trained on the same training set D but in the oppo-
site translation direction. We represent this reversed vanilla
model as VMTY→X with parameters γ. The inference dis-
crepancy is then computed on the back-translation results:

J(γ) = Ey,x∼P̂DL( f (y; γ), x), (6)

d(x, y) = −BLEU( f (y, γ), x). (7)

For distinguishing, we use dFT to represent inference discrep-
ancy on the forward-translation results and dBT to represent
inference discrepancy on the back-translation results.

As an variant of the forward and the back translation
inference, we also take the average of dFT and dBT to mea-
sure the inference discrepancy on both forward and back-
translation results:

davg(x, y) = AVG(dFT(x, y), dBT(x, y)). (8)

3.1.3 Cross-Validation Inference

In both the forward-translation and the back-translation in-
ference, the vanilla NMT model is trained and enforced to
inference on the same training set, that means all data for
inference has been seen during training. As described in
Sect. 1, inference on unseen data is also a causal factor for
the gap between training and inference. To address this is-
sue, we divide the training set into subsets to train multiple
vanilla NMT models separately and adopt cross-validation
method to enforce inference with each model on its unseen
subset. To make the computational cost low and affordable
to us, we carry on this scheme with 2-fold cross-validation.
The advantages of it is that all examples in the training set are
used for inference once and only once, and it can avoid over-
laps between the subsets for the training of vanilla models.
In this scheme, we only look at the inference discrepancy
computed on the forward-translation results.

For the 2-fold cross-validation, We first divide the train-
ing set D into two subsets {D1,D2}, then train one vanilla
NMT model VMT(1)

X→Y withD1 and train the other VMT(2)
X→Y

with D2. After training, we perform cross validation with
both vanilla models, letting VMT(1)

X→Y do inference on D2

and VMT(2)
X→Y do the same on D1. Then the two sets of

inference sentences are combined for inference discrepancy
measurements. The rest process is the same as the basic
scheme. With a simple setting, we can generally assure
that the inference discrepancy is computed on the translation
results of unseen data.

3.2 Curriculum Schedule

We train the vanilla model VMT and the curriculum learn-
ing model CLMT for the same number of time steps T .
Scheduling is to allocate time steps for each data collec-
tion properly. With the categories described in Sect. 2, we
identify our curriculum schedule as baby-steps and multi-
ple batches. We now review data collection with notations.
Given the ordered set D∗ = {z1, . . . , zi, . . . , zN }, N being
the total number of training examples, we construct K data
collections C1, . . . ,CK . In our setting, the size of these col-
lections increases with equal proportions:

Ck = {z1, . . . , zNk/K }, k = 1, . . . ,K . (9)

With the data collections, we employ different curriculum
schedules for model training. The first idea is a preset
schedule. To better understand the nature of the optimiza-
tion process, we propose three calculations for presetting
training steps: equal, exponential, and staged. The number
of training steps tk for the k-th training phase is computed
as:

Equal : tk =
1
K

T ;

Exponential : tk =
2k−1

2K − 1
T ;

Staged : tk =
{

kt0 k < K
T −∑K−1

1 tk else

}
.

(10)

We use equal-preset, exp-preset, and staged-preset to
represent these three settings. In the following sections, if
not specified, we use the exp-preset schedule by default.

Algorithm 1: Curriculum Schedule
Data: Parallel corpus D = {(zn)}N

n=1
Result: Curriculum Learning NMT Model CLMT

1 Train one or more vanilla models VMT with Eq. (3)(6) and
obtain difficulty criterion d(·) via Eq. (4)(7)(8);

2 Rank examples in D from easy to hard via Eq. (2) to get an
ordered set D∗, from which construct data collections
C1, . . . , CK according to Eq. (9);

3 Choose preset schedule or skip-dynamic schedule:
4 if preset schedule then
5 Allocate training steps t1, . . . , tK ,

∑K
1 tk = T according to

Eq. (10).
6 for k = 1, . . . , K ; do
7 Load Ck as the current training set.
8 for training steps t = 1, . . . , tk do
9 Train CLMT with Ck

10 else
11 for training steps t = 1, . . . ,T do
12 for k = 1, . . . , K ; do
13 Load Ck as the current training set.
14 while not reaching patience do
15 Train CLMT with Ck
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We also adopt a dynamic method to further approx-
imate the idea, in which the loading of data collections is
depending on the training state. When model training has
converged on the current data collection, the training will
progress toward the next phase and the next data collection
will be loaded. This process repeats until finishing with all
data collections and all training steps. Based on our obser-
vations of the preset schedule, skipping to the next training
phase before full convergence on the current data collection
is quite important at the initial stage. Therefore, we imple-
ment early stopping at earlier training phases based on the
valid performance, which is controlled by a hyperparameter,
patience, in practice. We address it as skip-dynamic in this
work. The curriculum learning algorithm of the preset and
skip-dynamic schedule can be seen from Algorithm 1, in
which preset schedule follows line 4-9 while skip-dynamic
schedule follows line 10-15.

3.3 Evaluation Metrics

Contextual embedding based evaluation metrics BLEURT
[21] and COMET [22] are often used for MT evaluation
aside from the BLEU score. As these metrics are learned
on the basis of a large-scale pre-trained language model, it
can better capture semantic information such as synonyms
for evaluation. Sometimes, they are reported to have higher
correlation with human evaluation result. We can replace
BLEU metrics in the difficulty criterion with BLEURT or
COMET in the basic training scheme described earlier:

d(x, y) = −BLEURT( f (y, γ), x), (11)

or:

d(x, y) = −COMET( f (y, γ), x). (12)

4. Experiments

4.1 Datasets

We validate the proposed curriculum learning strategy on
two large-scale benchmarks WMT14 EN⇒DE and WMT17
ZH ⇒ EN and three small-scale datasets from MTTT†, in-
cluding EN⇔DE, EN⇔ZH, EN⇔RU, on both directions.

For WMT14 EN ⇒ DE, the training set consists of
4.5m parallel sentences. We adopt newstest2012 and new-
stest2013 as the validation set, newstest2014 as the test set.
Following the common practice on this benchmark, we also
use shared vocabulary. From WMT17 ZH ⇒ EN, we ex-
tract 20m sentence pairs as the training set [23]. We adopt
newsdev2017 as the validation set and newstest2017 as the
test set.

For the MTTT dataset, three language pairs EN ⇔ DE,
EN ⇔ ZH, EN ⇔ RU each consists of 152k, 169k, 180k

†The Multitarget TED Talks Task (MTTT), is a collection
of multitarget bitexts based on TED Talks extracted from WIT3

(https://www.cs.jhu.edu/˜kevinduh/a/multitarget-tedtalks/).

training data. We simply use the validation set and test set
provided by MTTT.

We preprocess all datasets via BPE [24] with 32k merge
operations.

4.2 Model Settings

We validate our curriculum learning strategy on Trans-
former [25] with Fairseq†† [26]. We choose Transformer-
BASE as the baseline because recent curriculum learning
approaches report their results on the basis of it.

Following the common practice in NMT using
Transformer-BASE as the baseline, we use Adam opti-
mizer [27] and the label smoothing is set to 0.1 for both
vanilla model and curriculum learning model training. For
all experiments, we check for early stopping while training.

For large-scale benchmarks WMT14 EN ⇒ DE and
WMT17 ZH ⇒ EN, we empirically set 128k tokens for a
batch for both vanilla model and curriculum learning model
training. The total training steps T is 300k, and the learning
rate warms up to 5 × 10−4 for 160k steps and then decays.
The beam size is set to 5. Tuned on the validation set, the
length penalty is 0.6 for WMT14 EN ⇒ DE while 1.0 for
WMT17 ZH ⇒ EN and the dropout rate is 0.3 for WMT14
EN ⇒ DE while 0.2 for WMT17 ZH ⇒ EN.

For small-scale datasets MTTT EN ⇔ DE, EN ⇔ ZH,
EN ⇔ RU, we set 16k tokens for a batch. The beam size
is set to 5 and length penalty to 0.6 for WMT14 EN ⇒ DE
while for the rest datasets the length penalty is set to 1. The
max training steps is 40k and the learning rate warms up for
4k steps and then decays. The beam size is 5 and length
penalty is 1. The dropout rate is simply set to 0.3 for all
language pairs and directions.

We evaluate on an ensemble of 5 checkpoints to avoid
stochasticity and report lowercased, tokenized BLEU [28] for
comparison with previous work. When comparing with the
performance implementing existing approaches, we report
average and standard deviation of 3 independent training
runs with different initial values for the vanilla model and
the curriculum model, while the initial values for the vanilla
NMT model and curriculum model are the same for each
training run. Statistical significance test is made according
to Collins et al. [29]. Otherwise, only the results of training
with predefined initial values are reported.

All our experiments are conducted with 4 NVIDIA
Quadro GV100 GPUs.

4.3 Curriculum Settings

The vanilla NMT model and the curriculum NMT model
share the same Transformer-BASE setting. To measure the
inference discrepancy, we use fairseq-score to compute
sentence-level BLEU score, which implements the NIST
smoothing method [30] by default. And for evaluation
metrics comparison experiments, we use BLEURT††† and

††https://github.com/pytorch/fairseq
†††https://github.com/google-research/bleurt
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Table 2 BLEU evaluation results on large-scale bench marks WMT14 EN ⇒ DE and WMT17 ZH
⇒ EN. We adopt different difficulty criteria from existing curriculum learning (CL) methods, including
sentence rarity from Plantanios et al. [3], sentence perplexity with BERT from Zhou et al. [7], and
sentence norm with fastText from Liu et al. [4]. For approaches using multiple difficulty criteria, we
only adopt the best performed one as reported. For the results of our proposed methods, “⇑/↑” indicates
significant difference (p < 0.01/0.05) from Transformer Base.

# Model WMT14 EN ⇒ DE WMT17 ZH ⇒ EN
BLEU ∆ BLEU ∆

Baseline and Related CL Methods
1 Transformer-base 27.63 - 23.78 -
2 + Sentence Rarity (Competence-based CL) 28.10 0.47 24.12 0.34
3 + Sentence Perplexity with BERT (Uncertanty-aware CL) 28.08 0.45 24.10 0.32
4 + Sentence Norm with fastText (Norm-based CL) 27.83 0.20 24.53 0.75

Proposed Method
5 + FT-BLEU-ExpPreset 28.48(±0.39)↑ 0.85 24.63(±0.25)↑ 0.85
6 + FT-BLEU-SkipDynamic 28.53 (±0.45)⇑ 0.90 24.87(±0.23)⇑ 1.09

COMET† for inference discrepancy measurements. Follow-
ing the recent curriculum approach using baby-steps, we
also choose K = 4 for training and data collection [7], [14].
For the stage-preset schedule, t0 is set to 20k, and for skip-
dynamic schedule, we tune the patience value from 2 to 5
and choose 2 for related experiments.

Implementing the proposed curriculum learning strat-
egy, we investigate different training schemes together with
various evaluation metrics and different curriculum sched-
ules. We name different experiment settings by “Training
Scheme-Metrics-Schedule”. For different training schemes:

• FT- represents the basic training scheme, i.e. forward-
translation (FT) inference;

• BT- represents back-translation (BT) inference;

• FT/BT- represents an average of forward-translation
(FT) and back-translation (BT) inference;

• XVAL- represents cross-validation inference.

Basic training scheme with different evaluation metrics for
inference discrepancy:

• FT-BLEU-;

• FT-BLEURT-;

• FT-COMET-.

Basic training scheme with BLEU by default following dif-
ferent curriculum schedule:

• FT-BLEU-EqualPrest using equal-preset schedule;

• FT-BLEU-ExpPreset using exp-preset schedule;

• FT-BLEU-StagedPreset using staged-preset sched-
ule;

• FT-BLEU-SkipDynamic using skip dynamic sched-
ule.

†https://github.com/Unbabel/COMET

4.4 Results and Analysis

4.4.1 Results

To investigate the effectiveness of using sentence-level
BLEU as the difficulty criterion, we compare sentence level
BLEU with other difficulty criteria used in existing curricu-
lum learning methods, including sentence rarity [3], sen-
tence perplexity [7] with BERT [31], and sentence norm [4]
derived from fastText [32]. Transformer-base is used as
the backbone and the vanilla model for learning difficulty
measurements. Results are as shown in Table 2. All
these difficulty criteria outperform the strong baseline of
Transformer-Base on the WMT14 EN ⇒ DE and WMT17
ZH ⇒ EN large-scale benchmarks. We use the basic
forward-translation training scheme together with the exp-
preset schedule and skip-dynamic schedule for a fair compar-
ison across different difficulty criteria. Among these results,
sentence rarity and sentence perplexity have similar perfor-
mances and our proposed sentence-level BLEU shows an
even better results. According to the experimental results,
for both two language pairs, curriculum learning can boost
performance over the strong baseline. And if we compare
the two curriculum schedule, the skip-dynamic schedule out-
performs the exp-preset on both benchmarks.

We also conduct experiments on a small-scale MTTT
datasets with three language pairs for both directions [33].
As shown in Table 3, curriculum learning with an exp-preset
schedule can boost the performance on all the translation
directions. But different from the results of the large-scale
datasets, curriculum learning with a skip-dynamic sched-
ule can barely bring improvements. We attribute it to the
quick overfitting on the small-scale datasets. It impairs the
effect of smoothing the optimization curve with the curricu-
lum learning method as the model can get overfit on one
data collection very quickly before moving to the next data
collection.
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Table 3 BLEU evaluation results on small-scale dataset MTTT. For the results of our proposed
methods, “⇑/↑” indicates significant difference (p < 0.01/0.05) from Transformer Base. The model
name Row 3-4 is the same as in Table 2, we use a short description due to the length of this table.

# Model MTTT ENDE MTTT ENZH MTTT ENRU
EN⇒DE DE⇒EN EN⇒ZH ZH⇒EN EN⇒RU RU⇒EN

Baseline and Related CL Methods
1 Transformer-base 28.27 34.28 11.12 17.31 19.24 24.25
2 + Sentence Rarity 28.57 34.28 11.10 17.37 19.39 24.60
3 + Sentence Perplexity 28.51 34.24 11.23 17.30 19.27 24.47
4 + Sentence Norm 28.30 34.35 11.21 18.00 19.78 24.80

Proposed Method
5 + FT-BLEU-ExpPreset 28.66(±0.26)↑ 34.73(±0.45)↑ 11.36(±0.08) 18.10(±0.09)↑ 19.81(±0.16)↑ 24.83(±0.18)↑
6 + FT-BLEU-SkipDynamic 28.39(±0.37) 34.20(±0.40) 11.19(±0.02) 17.37(±0.09) 19.30(±0.21) 24.76(±0.17)

Table 4 Results of different inference method, namely forward-
translation, back-translation, an average of forward and back translation
and cross-validation.

# Model WMT14 EN⇒DE WMT17 ZH⇒EN
1 FT-BLEU-ExpPreset 28.47 24.60
2 BT-BLEU-ExpPreset 28.51 24.83
3 FT/BT-BLEU-ExpPreset 28.31 24.31
4 XVAL-BLEU-ExpPreset 28.45 24.66

4.4.2 Analysis

We conduct a number of experiments for factor analysis on
the WMT14 EN⇒DE and WMT17 ZH⇒ EN benchmarks.

Different Inference Method In the basic scheme, the
vanilla model and the curriculum learning model have the
same translation direction, in which the BLEU score is
computed one the forward-translation results. In the back-
translation inference, the vanilla model and the curriculum
learning model have opposite translation directions, in which
the BLEU score computation is on the back-translation re-
sults. To assess whether and how inference discrepancy gen-
erated by forward or back translation may affect the curricu-
lum learning performance, we perform a set of experiments,
together with an average of the BLEU score on forward
and back translation. We also experiment with the cross-
validation inference method. For better comparison, we only
use the exp-preset schedule. Table 4 compares the perfor-
mances. Row 2-4 shows that all three criteria can outperform
the baseline and the back-translation inference reports better
results than the forward-translation inference for both lan-
guage pairs. The results of average inference scores are not
better than any of the single ones. The preference of the
back-translation inference is consistent with the preference
of using the source side linguistic features or perplexity as a
difficulty criterion in related approaches. This could be at-
tributed to the assumption that source-side difficulty is more
representative of the learning difficulty of training examples.
But we would like to put forward another interpretation that
reversed vanilla model may compensate for the blind point
of exposure bias by spotting difficult examples based on a
different model distribution. But additional uncertainty also
arises from the difficulty of different translation directions.

Table 5 Results of curriculum learning with different settings of preset
schedule.

# Model WMT14 EN⇒DE WMT17 ZH⇒EN
1 FT-BLEU-EqualPreset 28.04 24.59
2 FT-BLEU-ExpPreset 28.47 24.60
3 FT-BLEU-StagedPreset 28.24 24.70

As an average of forward and back translation has not exhib-
ited any superiority, we would suggest the hypothesis that
a simple combination of two scores can harm the internal
logic of the two difficulty criteria and make the ranking less
significant. Cross-validation inference, which is only on the
forward-translation inference, shows very similar results as
the forward one. We assume that as the inference discrep-
ancy is computed on the training set, that the number of
training data is fixed, whether a training example is seen or
unseen to the vanilla model doesn’t influence the final per-
formance of the curriculum model after all. But we would
like to try more cross-validation settings in the future to test
our assumption.

Preset Schedule with Different Settings To better un-
derstand how schedules may influence curriculum learning
performance, we also make a comparison between three set-
tings of the preset schedule, i.e. equal-preset, exp-preset, and
staged-preset, as listed in Eq. (10). For staged-preset sched-
ule, t0 is set to 20k steps. To control the factors, we only use
the basic training schemes, namely forward-translation in-
ference, on this set of experiments. As seen in Table 5, exp-
preset and staged-preset schedule have better performance
than equal-preset schedule. It is important to allocate more
steps in the later training phases as the size of data collection
increases.

Contextual Embedding Based Evaluation We also
conduct a set of experiments with BLEURT and COMET
on WMT14 EN⇒DE due to the computational time for
sentence-level score. From Table 6 we can see, although
curriculum learning with COMET or BLEURT can out-
perform the strong baseline, these two metrics have not
shown superior performance over the BLEU score, but bet-
ter performance on the same metrics when evaluating the
model performance. We show the original BLEURT and
COMET scores here. But as the computation of BLEURT
and COMET is time-consuming when computing inference
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Table 6 Results of curriculum learning with BLEU, COMET, and
BLEURT as the difficulty criterion.

# Model WMT14 EN⇒DE
BLEU BLEURT COMET

1 & BLEURT 28.03 0.6603 0.7215
2 & COMET 27.91 0.6466 0.7284
3 & BLEU 28.47 0.5697 0.6448

Fig. 2 Validation results of Equal schedule during the first training phase,
including loss, negative log-likelihood loss (nll_loss) and perplexity (ppl).

discrepancy on the training set, we would recommend BLEU
more for basic set-ups.

Step forward before over-fitting In this paper, we
choose to determine the curriculum schedule through math-
ematical derivation, so that we can conduct interpretative
analysis to the core question: when to load a more difficult
data collection. Figure 2 illustrates the validation results of
the equal-preset schedule at the first training phase. The
orange vertical dashline shows its turning point towards the
next training phase, which is 75k in our set-up, and it is when
a new data collection is loaded. The red vertical dash line
is the turning point of exp-preset and staged-preset sched-
ules, both 20k. The curves of validation loss, negative log-
likelihood loss (nll_loss), and perplexity (ppl) clearly show
that exp-preset and staged-preset schedules step forward be-
fore over-fitting on the current data collection, while the
equal-preset schedule moves forward steps later. We believe
this is the reason why exp-preset and staged-preset sched-
ules outperform the equal-preset schedule. This observation
is also the basis of our proposed skip-dynamic schedule,
which determines stepping forward according to training pa-
tience. However, when conducting curriculum learning on
very small-scale datasets, the size of each data collection is
even smaller. Training patience on such small data set is not
reliable as that on large-scale datasets. We believe this is
the cause of the inferior performance of the skip-dynamic

schedule on the small-scale datasets.

5. Conclusion

In this work, we propose this inference discrepancy based
curriculum learning strategy for neural machine translation.
Through a self-reflexive process, the NMT model naturally
learns how to estimate learning difficulty and allocate time
steps properly. We assess the effect of difficulty criteria
on different translation directions, evaluation metrics, and
curriculum schedules. Empirical results show that the pro-
posed curriculum scheme under various set-ups constantly
achieves performance boosts over the strong baseline. In the
future, we are interested in applying this inference discrep-
ancy based curriculum learning strategy to other scenarios,
e.g., non-autoregressive generation [34]–[36].
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