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Mechanisms to Address Different Privacy Requirements
for Users and Locations
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SUMMARY The significance of individuals’ location information has
been increasing recently, and the utilization of such data has become indis-
pensable for businesses and society. The possible uses of location informa-
tion include personalized services (maps, restaurant searches and weather
forecast services) and business decisions (deciding where to open a store).
However, considering that the data could be exploited, users should add
random noise using their terminals before providing location data to collec-
tors. In numerous instances, the level of privacy protection a user requires
depends on their location. Therefore, in our framework, we assume that
users can specify different privacy protection requirements for each loca-
tion utilizing the adversarial error (AE), and the system computes a mech-
anism to satisfy these requirements. To guarantee some utility for data
analysis, the maximum error in outputting the location should also be out-
put. In most privacy frameworks, the mechanism for adding random noise
is public; however, in this problem setting, the privacy protection require-
ments and the mechanism must be confidential because this information
includes sensitive information. We propose two mechanisms to address
privacy personalization. The first mechanism is the individual exponential
mechanism, which uses the exponential mechanism in the differential pri-
vacy framework. However, in the individual exponential mechanism, the
maximum error for each output can be used to narrow down candidates of
the actual location by observing outputs from the same location multiple
times. The second mechanism improves on this deficiency and is called
the donut mechanism, which uniformly outputs a random location near the
location where the distance from the user’s actual location is at the user-
specified AE distance. Considering the potential attacks against the idea of
donut mechanism that utilize the maximum error, we extended the mech-
anism to counter these attacks. We compare these two mechanisms by
experiments using maps constructed from artificial and real world data.
key words: location privacy, personalization, entropy, error, privacy

1. Introduction

Recently, the significance of personal location information
has increased. Such data can be utilized for weather fore-
casting services and to locate nearby stores. Provided sig-
nificant data are compiled and aggregated, it can help make
business decisions such as opening new stores or expanding
service areas. Furthermore, they can be utilized in applica-
tions that provide information on traffic congestion. How-
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ever, considering the data could be exploited, users should
add random noises using their terminals before providing lo-
cation information to the collectors. When users output lo-
cation information in such a framework, in many instances,
the degree of privacy protection required by each user differs
between locations. In this study, we investigate a method for
privacy personalization that can manage different privacy re-
quirements for each location.

Two closely corresponding studies have addressed the
personalization of location privacy. PIVE and DPIVE [1],
[2] guarantee that the adversarial error (AE) in each region
is greater than or equal to the required error value of the user.
Customizable Robust Geo-Indistinguishability (CORGI) [3]
allows a user to specify the degree of privacy protection re-
garding output range and output granularity for each region.
However, in [1], [2], users are not allowed to specify the
privacy protection degree for each location, and [3] does not
consider the AE or entropy at all. To the best of our knowl-
edge, no studies are exploring methods that allow users to
specify the privacy protection degree in the AE for each lo-
cation. This study is the first work that explores such per-
sonalization of privacy.

The remainder of this paper is organized as follows:
First, in Sect. 2, we describe the problem setting and frame-
work of the proposed system. In Sect. 3, we introduce
the studies on privacy personalization. Section 4 describes
the privacy standards used in this study. Subsequently, in
Sect. 5, we show two mechanisms proposed to achieve pri-
vacy personalization and attacks against the mechanism. Fi-
nally, in Sect. 6, we compare the proposed two mechanisms
through experiments using an actual map; in Sect. 7, we dis-
cuss the limitations of the two mechanisms.

2. Preliminary

2.1 Problem Setting

In this section, we describe the problem settings used in this
study.

Users must transmit their location information to ser-
vice providers or data collectors to utilize location-based
services. Before transmitting the location information, the
user adds noise to the location using a mechanism. How-
ever, users often have different privacy preferences. For ex-
ample, users are expected to have high privacy protection
requirements for areas where their homes, workplaces, or
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Table 1 Meanings of symbols

Symbol Meaning
M A mechanism for adding random noise to data
X The set of the entire region in a grid

x, x′ One specific region in the grid
x̂ An adversary’s expected region

to the user’s actual region
Pr(M(x) = x′) The probability that M outputs x′ when x is input
Pr(h(x′) = x̂) The probability that x̂ is a prediction of the user’s

actual region when an adversary observes x′
π(x) The prior probability that users are in x

d(x, x′) Distance between centers of x and x′
reqerr(x) Requirement for AE specified by the user in x

rx Maximum error in output from x
Cx Set of candidate regions of the user’s actual region,

refined by an adversary when the user is in x

facilities such as hospitals, are located. Furthermore, they
have low requirements for locations where many people
gather such as train stations or recreational facilities. There-
fore, developing mechanisms that allow users to specify the
degree of privacy protection for each location is necessary.
We propose methods to achieve this requirement by adjust-
ing the amount of noise for each location.

It should be noted that the system operates only on the
user’s terminal and does not transmit any data to the server
when constructing the mechanism. This is because, users
are expected to specify a high privacy protection level for
locations where they do not want to be located by adver-
saries, and thus, their privacy preferences contain sensitive
information. Similarly, the mechanism should be confiden-
tial because it is computed based on the user’s privacy pref-
erences. However, the mechanism is considered public in-
formation in the differential privacy framework. This aspect
is the primary difference between our study and existing re-
search.

2.2 Framework

In this section, we introduce our proposed system frame-
work. The symbols used in this paper and their meanings
are listed in Table 1.

In this study, we use a grid to represent a map. The lo-
cation information used for service or data analysis is man-
aged in units of grid cells (regions). The set of all regions
in the grid is denoted by X = {x1, x2, . . . , xn}. We denote
the number of regions by |X|. Let x and x′ be the regions
containing locations p and p′, respectively, then the distance
between p and p′ is approximated by the Euclidean distance
between the centers of the regions x and x′, denoted d(x, x′).

Before transmitting the data, the user specifies the de-
gree of privacy protection reqerr(x) for each region x (∈ X)
using the expected distance between the user’s actual loca-
tion and an adversary’s prediction of the user’s location after
observing the noise-added location (AE). The AE is a more
intuitive measure than the privacy parameter ε of differential
privacy [4]; thus, it is a reasonable value for users to specify.
Because it is considered to be burden for the user to spec-
ify the degree of privacy protection for all regions, it is also

effective to design the system so that the user only specifies
AE in regions that require protection. In addition, default
values are utilized for other regions. Subsequent to receiv-
ing reqerr(x) for each region x (∈ X), the system computes
a mechanism M. The user stores M (or the parameters used
to develop M) and exploits it, adding noise to the user’s lo-
cation. Data analysts perform various analyses, and adver-
saries attempt to identify the user’s actual region based on
the observed location.

3. Related Work

In this section, we present previous work related to this
study.

3.1 k-Anonymity

k-anonymity is a widely known privacy protection tech-
nique. It was originally proposed as a way to guarantee pri-
vacy in relational databases. In k-anonymity, there should
be at least k−1 identical data for each data. This ensures in-
distinguishability among at least k records. There has been
extensive research on the application of k-anonymity to the
protection of location information. Gruteser et al. [5] pro-
posed a method to guarantee k-anonymity in space by di-
viding the region up to the limit where k data exist at the
same time. Moreover, they proposed a method to guarantee
k-anonymity in time by delaying the output until k data are
collected.

3.2 Differential Privacy

In the field of privacy, differential privacy by Dwork [4] has
attracted considerable attention. Differential privacy is a pri-
vacy criterion that makes it challenging to distinguish be-
tween two databases that differ only by a single record when
observing query answers. Chatzikokolakis et al. [6] ex-
tended the definition of differential privacy to general data,
called dX-privacy. If a mechanism M on X satisfies the fol-
lowing inequality for any x, x′ ∈ X,Z ⊆ Z, then M satisfies
ε-dX-privacy.

Pr[M(x) ∈ Z]
Pr[M(x′) ∈ Z]

≤ exp
(
εdX(x, x′)

)
(1)

In dX-privacy, the difficulty in identifying any two data de-
pends on the distance between them. For data with a slight
distance, the distribution of the outputs of the mechanism is
closer, and it is challenging to distinguish which of the two
is the actual data by only observing the outputs. The expo-
nential mechanism on X was proposed as a mechanism that
satisfies dX-privacy.

Definition 1 (The Exponential Mechanism on X). For the
privacy parameter ε ∈ R+, the exponential mechanismMεdX
on X outputs x′ ∈ X with a probability proportional to
exp

(
− ε2 dX(x, x′)

)
when data x ∈ X is input.
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Table 2 Comparison with existing studies

Indistinguishability User input parameters

[11] At least k data that are output at the same time k, spatial and temporal tolerances
[12] All locations within an output circle Relevance (relative accuracy loss)
[13] Any two points in the safe region Safe region and ε in it
[1], [2] Any two regions in PLS AE common to all regions
[3] Any two regions within the output range Output range and granularity
ours Regions within rx from output location AE per region

Pr
(
MεdX(x) = x′

)
=

exp
(
− ε2 dX(x, x′)

)
∑

x′′∈X exp
(
− ε2 dX(x, x′′)

)

Andrés et al. [7] proposed Geo-Indistinguishability
(GeoI), which applied dX-privacy to location information.
In this definition, X is regarded as a set of locations on a
two-dimensional plane and dX as the Euclidean distance.

3.3 Privacy Personalization

In this section, we present studies on the personalization of
privacy.

In a study on databases, smooth sensitivity [8] was pro-
posed to vary the amount of noise in each dataset. In ad-
dition, personalized differential privacy [9] was proposed to
allow users to specify the degree of privacy protection re-
quired for databases. Hassan et al. [10] studied threats to the
mechanism introduced in fitness-tracking social networks
such as Strava, which allows users to specify the location
that they want to protect privacy.

Gedik et al. [11] proposed a method to personalize k-
anonymity for location. A user specifies k in k-anonymity,
which represents the privacy strength, spatial tolerance (dx,
dy) and temporal tolerance (dt). dx and dt are parameters
to guarantee that the k − 1 locations to be indistinguishable
are only dx in the x direction and dy in the y direction away
from the actual location, respectively. dt is a parameter to
guarantee that k − 1 data are only dt apart in time from ac-
tual data. These are the utility requirements from the user.
A trusted system receives user identifiers, users’ actual lo-
cations, and their privacy preferences one after another, and
performs perturbation that satisfies conditions of user pref-
erences by searching for a clique based on the constraint
graph constructed from the preferences.

Ardagna et al. [12] proposed a method to achieve pri-
vacy personalization in a setting where users can specify
the degree of privacy protection with a metric called “rel-
evance”, which is measured by a relative accuracy loss. In
[12], the location information is measured in the form of a
circle containing the actual location of the user due to the
measurement error. The system determines the radius and
location of a circle to ensure that “relevance” metric is less
than the user specified value, and outputs the circle as the
user’s location information.

Chen et al. [13] proposed personalized local differential
privacy (PLDP), where data is aggregated in the settings of
privacy personalization and LDP. In PLDP, a user specifies
a safe region, such as “Kyoto Prefecture” or “Sakyo Ward,”,

and differential privacy is guaranteed to be satisfied at any
two points within the safe region. Based on this setup, they
proposed a mechanism specialized for aggregating data and
obtaining distributions.

Yu et al. [1] stated that in addition to GeoI, developing
a mechanism that considers the AE for each region is essen-
tial. They proposed PIVE, a method to develop a mecha-
nism such that the AE required by the user (common for the
whole map) is satisfied. Zhang et al. [2] demonstrated that
the method proposed by [1] may not satisfy differential pri-
vacy, and proposed DPIVE, which improves PIVE such that
differential privacy is satisfied in all regions.

Pappachan et al. [3] proposed Customizable Robust
Geo-Indistinguishability (CORGI), which allows users to
specify the degree of privacy protection in detail. In [3],
a user-specified three parameters for privacy requirements:
the output range, the output granularity, and more detailed
preferences for the output (e.g., regions not to be out-
put). The system calculates the general mechanism for GeoI
based on the output range and granularity by solving a linear
programming problem. The client customizes the mecha-
nism based on the third parameter to realize personalization
for each region.

The differences between these related studies and the
problem settings we are attempting to address are summa-
rized in Table 2. Two studies that are particularly relevant to
this study are DPIVE (PIVE) [1], [2] and CORGI [3]. In
[1], [2], users could only specify AE common to all re-
gions and not specify each location’s privacy protection de-
gree. In addition, [3] did not consider AE; however, many
works [1], [2], [14], [15] have noted that it is insufficient to
satisfy differential privacy and it is crucial to consider AE.
To the best of our knowledge, no research on the problem
settings allows users to specify the degree of privacy protec-
tion in the form of AE for each location.

4. Privacy Criterion

In this section, we describe the privacy criteria used in this
study. In the problem setting of our study, the mecha-
nism used by a particular user is unknown to the adver-
saries. Consequently, the left side of dX-privacy (Eq. (1))
is unknown to the adversaries, so satisfying dX-privacy for-
mula is not considered to be an appropriate measure of the
strength of privacy. Moreover, we believe that it is difficult
to achieve location-specific privacy for various user require-
ments because of its definition formula (Eq. (1)). Therefore,
in this study, we use AE (Eq. (2)) and entropy (Eq. (3)) as
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the privacy criterion.

4.1 Adversarial Error (AE)

First, we define adversarial error (AE), a measure of user
privacy widely used in privacy studies. Intuitively, AE rep-
resents the expected distance in the map between the user’s
actual region and the region predicted by an adversary ob-
serving the user’s noisy location using the mechanism M.
In this study, we consider AE(x), an error in the adversary’s
prediction for each region instead of the entire map.

Definition 2 (AE per Region (AE(x))). When a user is in the
region x(∈ X), the AE per region (AE(x)) can be calculated
using the following equation:

AE(x) =
∑

x′,x̂∈X
Pr(M(x) = x′) Pr(h(x′) = x̂)dp(x̂, x)

where h is a function of the adversary’s prediction, and
Pr(h(x′) = x̂) is the probability that the adversary’s predic-
tion is x̂ when observing the noisy region x′.

To obtain h, an attack using Bayesian inference or the
optimal attack [16] to minimize the average AE was consid-
ered. However, because these attacks use the actual mecha-
nism utilized by a user, an adversary oblivious to the mech-
anism attacks by assuming that the user’s output region is
the user’s actual region, hereinafter referred to as the naive
attack. In this case, Pr(h(x) = x) = 1, and thus AE(x) can be
obtained using the following equation:

AE(x) =
∑
x′∈X

Pr(M(x) = x′)d(x, x′) (2)

From the perspective of data users, AE is an metric directly
related to the utility of the data. Therefore, AE(x) should be
as small as possible while satisfying the user’s required AE
to ensure utility.

4.2 Entropy

In this section, we introduce the second privacy criterion,
entropy. In [17], it was argued that GeoI and AE are insuf-
ficient to protect privacy, and that privacy criteria based on
entropy should also be considered. In this study, we utilize
a privacy criterion based on entropy. When the output of
the mechanism is x′, entropy is expressed by the following
equation:

H(x|x′) = −
∑
x∈X

Pr(x|x′) log
(
Pr(x|x′))

where Pr(x|x′) denotes the posterior probability that the
user’s actual location is x when the user’s output is x′. In
this study, we adapt this entropy to the problem settings and
use entropy per region as a privacy criterion.

Definition 3 (Entropy per region). If the user’s actual region
is x and the set of candidates for the user’s actual region pre-
dicted by an adversary is denoted as Cx (⊆ X), the entropy

for region x is calculated by the following formula:

H(x) = −
∑
x′∈Cx

π(x′)∑
x′′∈Cx

π(x′′)
log

(
π(x′)∑

x′′∈Cx
π(x′′)

)
(3)

Intuitively, this criterion indicates how adequately an
adversary can narrow down candidates of the user’s ac-
tual region when observing the user’s output. Determining
whether the prediction is accurate is irrelevant. Specifically,
this criterion takes the maximum value log |X|when the pos-
terior probability is equal for all regions and the minimum
value of zero when a region’s posterior probability is one.

5. Proposed Mechanisms

In this section, we propose two mechanisms for the problem
in this study.

In the differential privacy framework, the average error
between the user’s actual location and the output location is
moderately guaranteed to the data users because the specific
mechanism used by the user is obtained. However, in the
problem settings of this study, mechanisms are concealed;
thus, there is no guarantee to the data users regarding the
utility of the data. Therefore, to guarantee that the output
region x′ is at most rx away from the user’s actual region x,
we restrict the range of x′ to within a certain radius rx. When
outputting the location, the user transmits the rx and x′ pair
(x′, rx) to the server. Considering the perspective of data
utility, a smaller rx is adequate; however, it must sufficiently
large to satisfy the AE requirement of the user.

Subsequently, we propose the individual exponential
mechanism and donut mechanism to allow users to spec-
ify the degree of privacy protection for each location. These
two mechanisms ensure that AE in each region x is greater
than or equal to reqerr(x) specified by the user.

5.1 Individual Exponential Mechanism

The first mechanism is called the individual exponential
mechanism (IExpM), which uses the exponential mecha-
nism in Definition 1 for privacy personalization. As men-
tioned above, the exponential mechanism allows adjusting
the output data accuracy by changing the parameter ε. Us-
ing this property, we can obtain ε by solving the following
equation when a region x is input, such that AE requirement
reqerr(x) for x is satisfied.

∑
x′∈X

Pr(Mεd(x) = x′)d(x, x′) = reqerr(x) (4)

In Eq. (4), the left side is AE due to the naive attack in
Eq. (2). However, the maximum error would become im-
mense, depending on the map’s size, which results in util-
ity degradation. Therefore, we limit the output range of the
mechanism to a radius rx and output this rx as the maximum
error. A smaller rx is preferable for data users.

Therefore, we determine the smallest possible rx that
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Table 3 Attacks against DONM

Attack method Assumptions at the time of attack Outcome for an adversary

Maximum error attack Multiple outputs from region x. Identification of the set Cx of candidate regions x.
Maximum error aggregation attack Multiple outputs from any regions on the map Identification of an area where the user has specified a large AE
Output range reference attack Multiple outputs from region x and Further refinement of Cx in maximum error attack

mechanism construction method

satisfies the AE requirement. This rx can be discovered us-
ing a simple method, such as a binary search. In this case,
by determining whether a solution to Eq. (4), we can inspect
whether there exists ε that satisfies the user requirement in
the current rx.

However, in IExpM, the actual region of the user can
be exposed by observing the outputs from the same region
multiple times. Specifically, the candidates for the user’s
actual region can be narrowed down by collecting data that
are considered output from the same region based on the
maximum error and consider regions common set within a
radius rx from each output region. Note that such an attack
succeeds when the adversary can identify outputs from the
same region. If the user specifies the same degree of pri-
vacy requirements for regions’ proximity, the attack will not
necessarily be succeed.

5.2 Basic Idea of Donut Mechanism

The second mechanism is called the donut mechanism
(DONM). In IExpM, output range depends only on the
user’s actual region and it renders the mechanism vulnerable
to the attack mentioned in Sect. 5.1. Therefore, in DONM,
the mechanism is designed such that the output range de-
pends not on the actual region but on regions determined
from the actual region (which may be selected even when
the actual region is another region). Specifically, the output
range of the mechanism is a rectangle whose “center” is a
region of distance approximately reqerr(x) in a randomly se-
lected direction. The user randomly outputs a region within
the output range. First, we outline the algorithm for devel-
oping this mechanism based on Fig. 1.

The algorithm considers as input the user’s actual re-
gion x and the privacy requirement reqerr(x) for x, and out-
puts a rectangle R representing the output range from x.
First, we randomly select x′ from among the regions whose
distance from x is approximately reqerr(x) (the yellow re-
gions in Fig. 1). The best rectangle that includes x′ is then
selected as the output range. In Fig. 1, a peach-colored
rectangle R marked as “Output range” is selected. Subse-
quently, a region selected uniformly at random from the re-
gions inR is output as the user’s noisy location, concurrently
with the maximum distance rx between x and the region in
X. In this mechanism, once a rectangle is determined, it is
fixed afterwards, and no new output range is calculated.

5.3 Attacks against DONM

In this section, we introduce possible attacks on the DONM,
called maximum error attack, maximum error aggregation

Fig. 1 Donut mechanism.

attack and output range reference attack. Table 3 summa-
rizes the conditions necessary for these three attacks and the
information the adversary can obtain after an attack. In this
study, we assume that the maximum error aggregation at-
tack is the attack made under the strongest assumption, and
does not consider adversaries with more information than
this attack.

5.3.1 Maximum Error Attack

A maximum error attack is an attack that predicts a user’s
actual region by integrating the multiple outputs from the
same region. We call this the maximum error attack because
it is performed using the maximum error output. A con-
ceptual diagram of maximum error attack against DONM is
shown in Fig. 2. The specific attack procedure is as follows:

1. Assuming that the outputs with equal maximum error
rx are from the same region, select all outputs from the
same region (let x be that region).

2. Considering outputs selected in 1, identify the output
range rectangle R from x (the orange area of Fig. 2)

3. Find the set Cx of regions whose maximum distance
from the region in R is rx (the pink area of Fig. 2).

Cx obtained in Procedure 3 is a set of candidates for the
actual region of the user. While no output-limited regions
exists, such as oceans, the set contains multiple regions and
cannot be reduced. We can estimate this attack’s perfor-
mance using the entropy exhibited in Eq. (3). Note that this
maximum error attack assumes the worst-case in which an
adversary can identify outputs from the same region based
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Fig. 2 Maximum error attack.

on the maximum error, and an attack on IExpM explained
in Sect. 5.1.

5.3.2 Maximum Error Aggregation Attack

A maximum error aggregation attack is an attack that in-
tegrates multiple outputs from any region in a map by a
user and roughly predicts the region where the user specifies
strong privacy protection. Specifically, this attack general-
izes the maximum error attack described in Sect. 5.3.1 and
considers all outputs from the same user. The specific attack
procedure is as follows:

1. Extract all outputs from a user and execute maximum
error attack to predict the output range rectangle from
each region.

2. In addition, create a set that stores the regions on dis-
tance rx from the output range for each region x.

3. Based on the set created in Procedure 2, compute the
average of the maximum error when included in the
candidates for each region.

4. The region with a significant average of the maximum
error calculated in Procedure 3 is likely to be a sensitive
region where the user has specified a high degree of
privacy protection.

Because Procedure 3 is a bit complicated, we use a simple
example to illustrate it.

Figure 3 exhibits an example of performing Procedure
3. x̂ is a region whose maximum distance from the output
range for the four regions x1, x2, x3, x4 is rx1 , rx2 , rx3 , rx4 , re-
spectively; and is a candidate for the user’s actual region,
which is limited using each of the four output ranges. Usu-
ally, the immense the AE specified by the user, the larger
the maximum error. Therefore, the average maximum error
(rx1 + rx2 + rx3 + rx4 )/4 for x̂ can be utilized as a criterion
for the user-specified AE in x̂. Wherever, the user-specified
AE are considerable in the surrounding regions, the average
maximum error value may be significant in x̂, which does

Fig. 3 Maximum error aggregation attack example.

Fig. 4 The central area should be strongly protected.

Fig. 5 Result of applying Procedure 3 to Fig. 4.

not indicate that the user strongly wants to protect x̂. How-
ever, considering this case, the adversary can realize that the
user strongly wants to protect the region surrounding x̂.

Results of this attack are shown in Fig. 4 and Fig. 5.
In this example, for simplicity, we assume that the user se-
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lects AE requirements between 200m, 500m, and 1,000m.
Figure 4 exhibits the privacy protection requirements for the
case where a user expects to strongly protect the center area
in a 61 × 61 grid. The result until procedure 3 of maxi-
mum error aggregation attack for this requirement is shown
in Fig. 5. The average maximum error is considerable near
the center of the grid, and the adversary can determine that
the grid’s center area comprises sensitive user information.

Note that this attack is based on hypothesis that a user
outputs location information multiple times from any area:
it is occasionally impossible to locate a location that retails
sensitive user information. Therefore, this paper only de-
scribes the attack method, and proposing countermeasures
against this attack is a future work.

5.3.3 Output Range Reference Attack

An output range reference attack is an attack in that an ad-
versary refers to output range information from all region in
a grid. The adversary is assumed to have prior knowledge of
the output range in DONM for a given combination of the
region and AE specification in that region. While the actual
mechanism utilized by a specific user is hidden: how the
mechanism is developed can be revealed. Therefore, adver-
saries with prior knowledge must be considered. In output
range reference attack, an adversary uses maximum error at-
tack to discover an output range rectangle R and then locates
a set of candidate regions Cx. By selecting regions from R
where the output range can be Cx, the adversary can limit
the candidates by more than Cx.

5.4 Algorithm for DONM

For the naive idea of DONM, described in Sect. 5.2, attacks
described in Sect. 5.3 are expected, especially it is necessary
to adopt countermeasures against the maximum error attack
and output range reference attack. We should consider the
following points when developing the mechanism to counter
each attack.

• Maximum error attack: Round the maximum error
value to output.
• Output range reference attack: When developing the

mechanism from the region narrowed down by an ad-
versary, the output range should be the same rectangle.

Before analyzing the specific algorithm description, we pro-
vide insight into the differences from Sect. 5.2 by using
Fig. 1 and Fig. 2. First, the output maximum error value is
rounded (rounded up) and the granularity varies. For exam-
ple, if the maximum error is output in units of 100m, the
maximum error is output as 1,100m, whether it is 1,001m
or 1,050m. Therefore, when adversaries select candidates
for actual region of the user, it is as shown in Fig. 2, they
require selecting regions between 1,001m and 1,100m from
an output region, which increases the number of candidate
regions. This outcome increases the entropy and counters
the maximum error attack. Meanwhile, a large granularity

Algorithm 1 Compositional algorithm of donut mecha-
nismfor a single region
Input: User’s actual region x, Privacy protection requirement for x

reqerr(x), The set of all regions X, prior distribution π for each region,
Selection range of output center δ, Rectangular search range radius r,
The maximum error output unit errunit

Output: Rectangle R that will be the output range
1: O ⇐ Randomly sorted list of regions consisting of x′ that satisfy

reqerr(x) ≤ d(x, x′) ≤ reqerr(x) + δ
2: for x′ in O do
3: R⇐ The list of rectangles containing x’ and inside a circle of radius

r from x’
4: metric list⇐ []
5: for R′ in R do
6: errnaive ⇐ compute naive error(x,R′)
7: if errnaive ≤ reqerr(x) then
8: metric list.add(0)
9: continue

10: end if
11: rx ⇐Maximum distance from x to a region in R′
12: errmax ⇐ The smallest value that is a multiple of errunit and

greater than or equal to rx.
13: C ⇐ {x̂ ∈ X|errmax − errunit ≤ dmax(x̂) ≤ errmax ∧ com-

pute naive error(x̂,R′) ≥ reqerr(x)}
14: naive error list⇐ [compute naive error(c,R′) for c in C]
15: m⇐ mean(naive error list)
16: e⇐ compute entropy(C)
17: metric list.add(compute metric(m, e, errmax, π))
18: end for
19: if max(metric list) � 0 then
20: i⇐ arg max(metric list)
21: R ⇐ R[i]
22: return R
23: end if
24: end for
25: return None

of the maximum error decreases the utility of the data; there-
fore, it is necessary to set an appropriate value in sequence
with the usage. Second, when selecting the output range, we
consider the average errors caused by the naive attack in the
candidate regions limited by the maximum error attack. The
adversary uses the maximum error attack to limit the candi-
dates of the user’s actual region to the peach-colored region
in Fig. 2. When the same reqerr(x) is utilized to develop the
DONM from each of these candidate regions, and the same
region x′ is assumed to be selected as the center of the out-
put range; the output range must also be R. The selection
of the output range rectangle is unrelated to the user’s actual
region but depends on x′. This aspect is to counteract the
output range reference attack. Specifically, when calculat-
ing the metric for selecting rectangle R as the output range,
we use the average of the naive errors from all peach-colored
regions to R.

Based on the above explanation, the algorithm for de-
veloping donut mechanism is presented in Algorithm 1.
Note that dmax(x̂) in Algorithm 1 represents the maximum
distance from x̂ (∈ X) to the region inside the rectangle R′
on the grid. The function compute naive error calculates
the naive error using Eq. (2). The compute entropy func-
tion calculates the entropy of the adversary’s prediction us-
ing Eq. (3), and compute metric function calculates a metric
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that expresses the “advantages” of a rectangle R′ as the out-
put range. The function mean is a function that extracts the
mean of the elements in the list of arguments.

The algorithm considers as input the user’s actual re-
gion x, the privacy protection requirement for the region
reqerr(x) and other parameters, and outputs a rectangle R
representing the output range from the region x. First, we
develop a set of regions whose distance from x is approxi-
mately reqerr(x) and then randomly sort the set intoO in line
1. A parameter δ can adjust the maximum distance between
the candidate region and reqerr(x). A large delta leads to an
increase in the likelihood that a location with a distance from
the user’s region x greater than reqerr(x) will be selected as
x′. Consequently, the possibility that a rectangle of the out-
put range is constructed in the area with a large distance
from x is increased, and the utility is reduced. However, it
is difficult to determine δ theoretically, and considered that
δ is often determined empirically.

Next, we inspect whether we can develop an output
range that satisfies the user’s privacy requirements for each
element x′ of O in lines 2 to 24. In line 3, we create a list
R of all rectangles that are output range candidates from x.
In lines 5 to 18, for each rectangle R′ (∈ R), we compute the
metric of “advantages” to be the output range. In line 7, we
determine whether the error of the naive attack errnaive satis-
fies the user’s requirements. If it does not satisfy the user’s
requirement, the metric value is set to zero. If it is satisfied,
we prepare to compute the metric in line 11 and thereafter.
In line 13, we discover candidate regions by the maximum
error attack and select a set of regions C where the naive er-
rors are more than reqerr(x) when the output range from the
candidate region is R′. This is because, in region x̂ (∈ C),
if the naive error is less than reqerr(x), then the R′ is never
selected as the output range from x̂. In lines 14 and 15, we
compute the naive error when each region in C is input and
the average value of naive errors is calculated, which is uti-
lized when calculating the metric in line 17. If only the naive
error from the actual region x is used to calculate the met-
ric, the “best” rectangle may differ from that of the region
c (∈ C). In this case, c is excluded from the candidates for
the adversary’s prediction by the output range reference at-
tack. Therefore, we require a measure of the naive error that
is independent of x. This outcome makes the output range
reference attack impossible. Finally, the rectangle with the
highest metric is selected as the algorithm’s output in lines
19 to 23. Note that if any x′ and any rectangle R′ cannot
satisfy the user requirement, the output range cannot be de-
termined; therefore none is output.

6. Experiments

In this section, we compare the effectiveness of IExpM and
DONM using two experiments. One compares IExpM and
DONM regarding the naive error, maximum error, and ex-
ecution time. The other investigates the change in entropy
by changing the output granularity of the maximum error in
DONM, as described in Sect. 5.4. The experiments in this

Fig. 6 Map of the area used in the experiment.

Fig. 7 Prior probability of the area in Fig. 6.

section were performed on a MacBook Pro with an Apple
M1 chip and 16GB of memory.

6.1 Settings of Experiments

In the experiments, we used an artificial map with uniform
prior distribution, and an actual map of Tokyo with non-
uniform prior distribution. The actual map of the region
used in the experiment is depicted in Fig. 6. These two maps
are represented by a 120 × 120 grid, such that each region is
a rectangle with a height of 115.625m and 141.5m in width.
The size is determined by the mesh†, used by the Japanese
government to organize statistical data.

We calculated the prior probabilities for regions in an
actual map in units of five × five regions using the “People
Flow 2008 Tokyo Metropolitan Area” by the People Flow
Project [18]††. This dataset is a collection of trajectory data
for people in the Tokyo metropolitan area collected on Octo-
ber 1, 2008. The results of the prior probability calculations
are in Fig. 7 using a heat map.

The output range is the area excluding the sea in the
IExpM and the area within the rectangle excluding the sea in
the DONM (with such constraints, R and ε are calculated),

†https://www.stat.go.jp/data/mesh/pdf/gaiyo1.pdf
††https://pflow.csis.u-tokyo.ac.jp/
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to avoid outputting over the sea.
In the first experiment, we vary the AE required by

a user for a region in the center of the artificial map (de-
noted as region C), and for two regions in the map of Tokyo
that are sufficiently far from the sea (region A) and close to
the sea (region B). The approximate locations of the regions
A and B on the map of Tokyo are indicated by red dots in
Fig. 6). We apply IExpM and DONM in three regions and
compare the naive error, maximum error, and execution time
for each mechanism. We utilize 200m, 500m, and 1,000m
as the values of AE. In the DONM, from the perspective of
privacy, only those with entropy (Eq. (3)) greater than 2.5
when req(x) = 200(m), 3 when req(x) = 500(m), and 3.5
when req(x) = 1, 000(m), respectively.

Because the construction of DONM is stochastic, the
naive and the maximum errors are calculated as the aver-
age of the results of 10 runs. In both mechanisms, the run-
ning time is compared with the average of the results of 10
runs. The parameters required to develop DONM are set
to δ = 182.73(m), r = reqerr(x), errunit = 182.73(m). The
value 182.73(m) corresponds to the length of the diagonal
of one region. By setting this value to δ, it is expected that
regions in O are in every direction from x and each of which
is not too far from x. In addition, in the development of
DONM, Eq. (5) is used to select the best rectangle in line 17
of Algorithm 1.

compute metric(m, e, errmax)

= −wmmnorm − werrmax errnorm
max + weenorm (5)

In Eq. (5), mnorm, enorm, and errnorm
max are m, e, and

errmax normalized using mean and variance, respectively.
wm, we, werrmax are the weights for mnorm, enorm, and errnorm

max ,
respectively. By varying each weight wm, we, and werrmax ,
we can specify which privacy and utility metric is impor-
tant. When wm is larger than the other weights, the rect-
angle of the output range is selected with emphasis on the
small average error (high utility). When we is larger than
the other weights, the rectangle with large entropy will be
more likely to be selected (high privacy strength). When
werrmax is larger than the other weights, the rectangle with
small maximum error will be selected (high utility). It is
also possible to extend the system in such a way that the
user specifies these values in some way. In the experiment,
we use wm = we = werrmax = 1.

In the second experiment, we investigate the effect on
the entropy of varying the output granularity of the maxi-
mum error in DONM. We search for rectangles that are can-
didates for the output range for all regions in DONM and
calculate the distribution of entropy when the output range
is a rectangle that satisfies the user’s requirements. This out-
comes enabled us to examine the difficulty of developing a
mechanism with high entropy for different output granulari-
ties. In this experiment, we consider the cases when the out-
put granularity of the maximum error is 0m, 50m, 182.73m,
500m, and 2,000m for region A in the first experiment. Gen-
erally, when the output granularity of the maximum error
becomes coarse, it is challenging for an adversary to dis-

Fig. 8 Comparison of naive error.

Fig. 9 Comparison of maximum error.

tinguish whether the outputs are from the same region in
the maximum error attack. However, this experiment exam-
ines the worst-case scenario, where adversary can identify
outputs from the same region. Note that when the output
granularity is 2,000m, we assume the maximum error output
from all regions is 2,000m. This is a unique case where the
adversary cannot identify which outputs are from the same
region; entropy can be computed by assuming that all re-
gions within a radius of 2,000m are candidate regions. We
utilize reqerr(x) = 1,000(m) and r = 500(m) as the experi-
mental parameters. We utilize the same values as those in
the first experiment for the other parameters.

6.2 Results

In this section, we present the results of the experiments de-
scribed in Sect. 6.1.

The results of the experiments comparing IExpM and
DONM are shown in Fig. 8 to Fig. 10. Figure 8 and Fig. 9
illustrate the results of plotting naive errors and maximum
errors for each combination of mechanisms and regions A,
B, and C. The smaller these values are above AE required
by the user, the better they are from the perspective of the
data utility.

From Fig. 8, we note that IExpM is better regarding
naive errors. This aspect is because, in IExpM, the mech-
anism is obtained by solving Eq. (4) so that the naive error
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Fig. 10 Comparison of execution time.

Fig. 11 Comparison of entropy distributions for varying output granular-
ity of maximum error (region A)

by the adversary is equal to the user’s requirement. How-
ever, in DONM, the output range is determined in units of
rectangles; therefore, it is difficult to adjust the naive error.
From Fig. 9, we note that the maximum error can be reduced
by using DONM. This result is because IExpM outputs
the user’s actual region x and its surroundings; therefore,
it is necessary to output the region farther away to satisfy
the user’s requirement. Meanwhile, DONM only outputs
around regions such that the distance from x is reqerr(x).

Figure 10 depicts the execution time for each combina-
tion of mechanisms, and regions A, B, and C. It is evident
from the figure that IExpM is much better than DONM re-
garding execution time. This feature is because, IExpM lo-
cates the mechanism by solving unitary equations or binary
searches, which are computationally inexpensive, whereas
DONM searches for all candidate rectangles and selects the
most suitable. The reason why the execution time of re-
gion B is shorter than that of the other two regions is con-
sidered that the presence of the ocean in the surrounding
area reduces the number of candidates for rectangle search.
In addition, because the biased prior distribution in region
A allows the elimination of candidate rectangles with small
entropy before computing the metric, the computation time
in region A is shorter than that in region C, which assumes
a uniform prior distribution.

Figure 11 presents the results of the second experiment.
As depicted in Fig. 11, the output granularity of the maxi-

mum error becomes coarser (i.e., the output unit becomes
immense), the number of rectangles that can guarantee a
high entropy increases. Therefore, it can be noted that in-
creasing the output unit of the maximum error is an effective
countermeasure against the maximum error attack.

7. Limitations of Proposed Mechanisms

In this section, we examine the limitations of these two pro-
posed mechanisms. IExpM is vulnerable to the maximum
error attack and has difficulty outputting the maximum error
rx from the actual region each time it outputs the location.
Thus, it can only output the maximum error for the entire
region, and it is challenging data users to realize the amount
of noise added to the output. This outcome makes it chal-
lenging to handle the data.

In the DONM, the naive error can be adjusted only on
a regional basis: this may cause the actual naive error value
to be more considerable than the value required by the user,
thereby reducing the utility of the data. Although the mech-
anism itself can be pre-computed and does not require re-
computation each time the location information is output.
The calculation of the mechanism is computationally more
expensive than IExpM because it requires searching all can-
didates of rectangles to find the optimal output range.

A common limitation is that when using errors to guar-
antee data utility for data users, attacks such as the maxi-
mum error attack, maximum error aggregation attack, out-
put range reference attack are possible. In this study, we
primarily output the maximum error. However, the same
argument can be applied to the case where the average dis-
tance between the user’s actual region and the region within
the output range is the output. Generally, we consider that
outputting additional information to guarantee data utility
inevitably provides opportunities for such attacks.

8. Conclusion

In this study, we proposed a framework that allows users
to specify the degree of privacy protection for each region
as AE. To satisfy this requirement, we propose two mecha-
nisms. One is IExpM, which utilizes the exponential mech-
anism, and the other is a mechanism that selects a region in
a randomly selected direction and designates the rectangle,
including the region as the output range. We subsequently
describe possible attack methods against the latter mecha-
nism and define a mechanism incorporating approaches to
counter these attacks. Finally, we demonstrate that privacy
personalization can be realized using the two mechanisms;
that IExpM is superior regarding the naive error; DONM
is superior regarding the maximum error. We also demon-
strate that it is possible to counter maximum error attack by
changing the granularity of the maximum error output.

There are two potential topics for future research. First,
we should enable IExpM to output the maximum error each
time location information is transmitted. The second is to
extend the output range of DONM to other than rectangular.
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Future research should address these two challenges.
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bility What You Are Looking for?,” Proceedings of the 2017 on

Workshop on Privacy in the Electronic Society, Dallas Texas USA,
pp.137–140, ACM, Oct. 2017.

[16] R. Shokri, G. Theodorakopoulos, C. Troncoso, J.-P. Hubaux, and
J.-Y.L. Boudec, “Protecting location privacy: optimal strategy
against localization attacks,” Proceedings of the 2012 ACM confer-
ence on Computer and communications security - CCS ’12, Raleigh,
North Carolina, USA, pp.617–627, ACM Press, 2012.

[17] S. Oya, C. Troncoso, and F. Pérez-González, “Back to the Draw-
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Appendix: Cases Where Users’ Requirements are Not
Given in AE

In this study, the user specifies a lower bound of AE (dis-
tance) for each region. This aspect has the advantage of
being more intuitively understandable for users than param-
eters such as ε used in differential privacy. In addition, it
is a natural problem setting because AE is widely used to
estimate the degree of user’s privacy protection. However,
there is an aspect that mechanisms are restricted by provid-
ing the degree of privacy protection users require regarding
AE. For example, in DONM proposed in Sect. 5.2, the out-
put range is limited to regions around x′ where the distance
from the actual region x is approximately at the user require-
ment reqerr(x).

We compare DONM with the following more flexible
mechanism: First, x′ in DONM is randomly chosen within
a radius r of the distance from x (r is a predefined parame-
ter). As in the case of DONM, we develop a rectangle that
includes x′ as the output range. The maximum distance rx

that is output simultaneously with the region after adding
noise is the maximum distance between the rectangles de-
veloped by selecting each x′ from the region within radius
r. Although in many cases, this mechanism will not sat-
isfy the user’s requirement specified as AE; it is expected to
improve the entropy. This aspect is because the number of
candidates of the actual region for which the rectangle may
be the output range is more considerable than that in the case
of DONM. In addition, because the maximum error rx is al-
most similar to that of the DONM, the perceived utility for
the data user does not change significantly. However, the
actual utility of the data increases because the probabilities
of outputting regions close to x are increased.

In addition to the fact that privacy protection require-
ments differ between persons and regions, there may be
preferences on how to specify privacy protection require-
ments, such as the requirement that AE is above a certain
level or the possibility of being identified by an adversary is
reduced. Thus, extensions that allow users to select how to
specify privacy protection requirements are also considered
topics for future work.
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