
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.1 JANUARY 2024
53

PAPER
Node-to-Set Disjoint Paths Problem in Cross-Cubes

Rikuya SASAKI†, Hiroyuki ICHIDA†, Htoo Htoo Sandi KYAW†, Nonmembers, and Keiichi KANEKO†a), Member

SUMMARY The increasing demand for high-performance computing
in recent years has led to active research on massively parallel systems.
The interconnection network in a massively parallel system interconnects
hundreds of thousands of processing elements so that they can process large
tasks while communicating among others. By regarding the processing
elements as nodes and the links between processing elements as edges, re-
spectively, we can discuss various problems of interconnection networks in
the framework of the graph theory. Many topologies have been proposed
for interconnection networks of massively parallel systems. The hypercube
is a very popular topology and it has many variants. The cross-cube is such
a topology, which can be obtained by adding one extra edge to each node
of the hypercube. The cross-cube reduces the diameter of the hypercube,
and allows cycles of odd lengths. Therefore, we focus on the cross-cube
and propose an algorithm that constructs disjoint paths from a node to a
set of nodes. We give a proof of correctness of the algorithm. Also, we
show that the time complexity and the maximum path length of the al-
gorithm are O(n3 log n) and 2n − 3, respectively. Moreover, we estimate
that the average execution time of the algorithm is O(n2) based on a com-
puter experiment.
key words: high-performance computing, hypercube, interconnection net-
work, massively parallel system, shortest path, topology

1. Introduction

Today, the demand for high-performance computing prevails
in many fields. However, the performance of a single proces-
sor hits a ceiling, and the large-scale computation becomes
difficult because it takes a considerable amount of time to
implement. Hence, much attention is focused on the parallel
computation, which improves computation performance by
interconnecting multiple processors through a network and
distributing tasks to them.

A topology of the interconnection network of a par-
allel system decides the pattern to interconnect processing
elements in the system. The system performance such as
the communication bandwidth and the dependability signif-
icantly relies on the network topology. There are many
topologies proposed for interconnection networks [1]–[9].
Among them, we focus on the cross-cube [3], which is a vari-
ant of the hypercube [6]. The hypercube has been adopted
for various parallel systems. The cross-cube is obtained by
adding an extra edge to each node of the hypercube. The
diameter of an n-dimensional cross-cube is n − 1, which is

Manuscript received April 1, 2023.
Manuscript revised July 7, 2023.
Manuscript publicized October 6, 2023.

†The authors are with Graduate School of Engineering, Tokyo
University of Agriculture and Technology, Koganei-shi, 184–8588
Japan.

a) E-mail: k1kaneko@cc.tuat.ac.jp (Corresponding author)
DOI: 10.1587/transinf.2023EDP7067

smaller than the diameter of an n-dimensional hypercube by
one. In addition, the cross-cube has cycles of odd lengths
of 3 or more while the hypercube does not include any cy-
cle with an odd length. Hence, the cross-cube has more
flexibility than the hypercube.

The node-to-set disjoint paths problem is to find k paths
Pi: s { di (1 ≤ i ≤ k) between a source node s and a
set of destination nodes {d1, d2, . . . , dk} in a k-connected
graph G(V,E) so that the paths Pi are node-disjoint, or dis-
joint in short, except for s. The node-to-set disjoint paths
problem [10]–[17] is as important as the node-to-node dis-
joint paths problem [18]–[22] and the set-to-set disjoint paths
problem [23]–[28]. If an algorithm can solve the node-to-
set disjoint paths problem efficiently in a topology, it can
be applied to improve the performance of the systems with
networks based on the topology. That is, the system can
maximize its communication bandwidth and communicate
avoiding faulty nodes and/or links inside.

In this paper, we propose an algorithm that solves the
node-to-set disjoint paths problem in a cross-cube. In an n-
dimensional cross-cube, Wang et al. have proposed an algo-
rithm that solves the node-to-set disjoint paths problem [29].
Their algorithm constructs (n + 1) paths from a source node
to (n + 1) destination nodes that are disjoint except for the
source node. It takes O(n22n) time and the path lengths are at
most 2n− 2. As it is well-known, Menger’s theorem ensures
the existence of a solution [30], and we can obtain one of
the solutions by applying a maximum-flow algorithm. Even
if we apply the simple Ford-Fulkerson algorithm [31] in an
n-dimensional cross-cube, we can obtain the paths from the
source node to the destination nodes that are disjoint except
for the source node in O(n2n) time. Therefore, the contri-
bution of Wang et al. is that they have shown that the path
lengths are at most 2n − 2. The algorithm we propose in
this paper solves the problem in O(n3 log n) time with the
maximum path length 2n − 3. Hence, it provides significant
improvement regarding the time complexity while decreas-
ing the upper bound of the maximum path length by one.

The rest of this paper is organized as follows. Sec-
tion 2 gives a definition of the cross-cube and a lemma re-
garding its property. Next, we propose an algorithm, SPR
(Shortest-Path Routing), that constructs one of the shortest
paths between an arbitrary pair of nodes in the cross-cube in
Sect. 3. Then, we give an algorithm that constructs disjoint
paths between a source node and a set of destination nodes
in the cross-cube in Sect. 4. In Sect. 5, we give the proof
of correctness of the algorithm and its time complexity. We

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



54
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.1 JANUARY 2024

also estimate the maximum length of the constructed paths.
Section 6 shows the result of a computer experiment. Fi-
nally, Sect. 7 gives the conclusion and the future work of this
study.

2. Preliminaries

In this section, we give a definition of the cross-cube and a
lemma related to it following the notations and terminology
from the traditional graph theory. For example, a path in a
graph G(V,E) is an alternate sequence of nodes and edges:
a1, (a1, a2), a2, . . . , al−1, (al−1, al), al for ai ∈ V (1 ≤ i ≤ l),
and we use a shorthand a1 → a2 → · · · → al or a1 { al .
The length of a path is the number of edges included in the
path. For two nodes a and b, the paths between them with the
shortest length are called the shortest paths, and the distance
between them, d(a, b), is given by the length of the shortest
paths between them. For two paths L0: a1 { al and L1:
b1 { bm, they are disjoint if they do not have any common
node. If L0 and L1 do not have any common node except
for their terminal nodes a1 = b1, they are disjoint except for
a1(= b1).
Definition 1: An n-dimensional cross-cube Cn (n ≥ 2) is an
undirected graph whose node set, V(Cn), is {0,1}n. For two
nodes a = (a1,a2, . . . ,an) and b = (b1, b2, . . . , bn)(∈ V(Cn)),
an edge (a, b)(∈ E(Cn)) exists if and only if either H(a, b) =
1 or ai = bi (1 ≤ i ≤ n−2), an−1 = bn−1, and an = bn holds.
Note that H(a, b) represents the Hamming distance between
a and b, and it is calculated by H(a, b) = ∑n

i=1 ai ⊕bi , where
⊕ is the exclusive-or operator defined by 0 ⊕ 0 = 1 ⊕ 1 = 0
and 0 ⊕ 1 = 1 ⊕ 0 = 1. Then, the neighbor node b obtained
by reverting the ith bit (1 ≤ i ≤ n) of a is represented
by a(i), and the neighbor node b obtained by reverting the
(n − 1)th and nth bits of a simultaneously is represented by
ac. In addition, the node obtained by reverting the jth bit
(1 ≤ j ≤ n) of a node a(i) (1 ≤ i ≤ n) is represented by
a(i, j).

Figure 1 shows an example of a 4-dimensional cross-
cube, C4.

Let C[i:b]
n represent the sub graph of Cn induced by

the set of nodes a = (a1,a2, . . . ,an)(∈ V(Cn)) with ai = b
(1 ≤ i ≤ n, b ∈ {0,1}).

Lemma 1: For a node a in V(C[1:b]
n ) (n ≥ 3, b ∈ {0,1}),

we can construct (n+ 1) paths of lengths at most 2 from a to
a(1), a(2,1), . . . , a(n,1), and (ac)(1) in V(C[1:b]

n ) such that the
paths are disjoint except for a.
(Proof) We can construct (n + 1) paths, Li (1 ≤ i ≤ n + 1),
of lengths at most 2 as follows (Fig. 2):

Li :


a → a(1) (i = 1)
a → a(i) → a(i,1) (2 ≤ i ≤ n)
a → ac → (ac)(1) (i = n + 1)

Then, a(1) ∈ V(C[1:b]
n ) and H(a, a(1)) = 1 hold. On the

other hand, because H(a, a(i,1)) = 2 (2 ≤ i ≤ n) and

Fig. 1 Example of a 4-dimensional cross-cube, C4.

Fig. 2 (n + 1) disjoint paths from node a(∈ V (C[1:b]
n )) to C

[1:b]
n .

H(a, (ac)(1)) = 3, a(1) is not included in any other paths.
Hence, L1 is disjoint from other paths except for a. Also,
(ac)(1) and a(i,1) (2 ≤ i ≤ n) are distinct. Moreover, because
H(a, ac) = 2 and H(a, a(i)) = 1 (2 ≤ i ≤ n), ac and a(i)

(2 ≤ i ≤ n) are distinct. Hence, Ln+1 is disjoint from Li

(2 ≤ i ≤ n) except for a. Furthermore, for i and j such that
2 ≤ i , j ≤ n, a(i) and a(j) are distinct. Also, a(i,1) and a(j ,1)

are distinct. Hence, Li and Lj are disjoint except for a. From
the above discussion, the (n + 1) paths, Li (1 ≤ i ≤ n + 1),
of lengths at most 2 are disjoint except for a.

3. SPR Algorithm

For a source node s = (s1, s2, . . . , sn) and a destination node
d = (d1, d2, . . . , dn) in V(Cn), we show an algorithm SPR in
this section that constructs one of the shortest paths of length
at most n − 1 between s and d.

Step 1 If s = d, terminate.
Step 2 Let i∗ = min{i | si , di,1 ≤ i ≤ n}.
Step 3 If i∗ ≤ n − 2, let s be s(i

∗), and go back to Step 1.
Step 4 If i∗ = n, let s be s(n), and terminate.
Step 5 If sn = dn, let s be s(n−1), and terminate.
Step 6 Let s be sc, and terminate.

SPR Algorithm clearly constructs one of the shortest
paths of length at most n − 1 between s and d in O(n) time.

4. N2S-R Algorithm

For a source node s and a set of destination nodes D =
{d1, d2, . . . , dn+1} in V(Cn), we give an algorithm, N2S-R,
that constructs (n + 1) paths that are disjoint except for s. If
n = 2, the three disjoint paths are trivially s → s(1), s → s(2),
and s → sc. Hence, we assume that n ≥ 3 in the rest of



SASAKI et al.: NODE-TO-SET DISJOINT PATHS PROBLEM IN CROSS-CUBES
55

Fig. 3 After Step 2 of Case 1.

Fig. 4 (n + 1) disjoint paths Ui : s { di (1 ≤ i ≤ n + 1) in Case 1.

this paper. N2S-R Algorithm consists of three procedures
depending on the relative distribution of the source node and
the destination nodes. Without loss of generality, we can
assume that s ∈ V(C[1:0]

n ).

4.1 Case 1 (|D ∩ V(C[1:0]
n )| = n + 1)

In this case, we can construct (n+ 1) disjoint paths from s to
D, Ui: s { di (1 ≤ i ≤ n + 1), by using Procedure 1 below.

Procedure 1

Step 1 In C[1:0]
n , apply N2S-R Algorithm recursively to

construct n disjoint paths, Pi: s { di (1 ≤ i ≤ n),
from s to d1, d2, . . . , dn.

Step 2 If dn+1 is included in one of Pi , say Px , discard
the sub path dn+1 { dx to obtain Px : s { dn+1, and
exchange the indices of dx and dn+1 (Fig. 3).

Step 3 Select two edges s → s(1) and d(1)
n+1 → dn+1.

Step 4 In C[1:1]
n , apply SPR Algorithm to construct one

of the shortest paths, Pn+1: s(1) { d(1)
n+1, from s(1) to

d(1)
n+1.

Step 5 Construct (n + 1) disjoint paths, Ui: s { di (1 ≤
i ≤ n + 1), as follows (Fig. 4):

Ui :

{
s

Pi{ di (1 ≤ i ≤ n)
s → s(1)

Pn+1{ d(1)
n+1 → dn+1 (i = n + 1)

4.2 Case 2 (|D ∩ V(C[1:0]
n )| = n)

In this case, we can assume without loss of generality that
D∩V(C[1:0]

n ) = {d1, d2, . . . , dn} and D∩V(C[1:1]
n ) = {dn+1}.

Fig. 5 (n + 1) disjoint paths Ui : s { di (1 ≤ i ≤ n + 1) in Case 2.

Then, we can construct (n + 1) disjoint paths from s to D,
Ui: s { di (1 ≤ i ≤ n + 1), by using Procedure 2 below.

Procedure 2

Step 1 In C[1:0]
n , apply N2S-R Algorithm recursively to

construct n disjoint paths, Pi: s { di (1 ≤ i ≤ n) from
s to d1, d2, . . . , dn.

Step 2 Select the edge s → s(1).
Step 3 In C[1:1]

n , apply SPR Algorithm to construct one
of the shortest paths, Pn+1: s(1) { dn+1, from s(1) to
dn+1.

Step 4 Construct (n + 1) disjoint paths, Ui: s { di (1 ≤
i ≤ n + 1), as follows (Fig. 5):

Ui :

{
s

Pi{ di (1 ≤ i ≤ n)
s → s(1)

Pn+1{ dn+1 (i = n + 1)

4.3 Case 3 (|D ∩ V(C[1:0]
n )| = k < n)

In this case, we can assume that without loss of generality
that D ∩ V(C[1:0]

n ) = {d1, d2, . . . , dk} and D ∩ V(C[1:1]
n ) =

{dk+1, dk+2, . . . , dn+1} (k < n). Then, we can construct
(n+1) disjoint paths from s to D, Ui: s { di (1 ≤ i ≤ n+1),
by using Procedure 3 below.

Procedure 3

Step 1 For each of the destination nodes di (k + 1 ≤ i ≤
n + 1), if d(1)i < D, select the edge d(1)i → di , and
let it be the path Pi: d(1)i → di . Also, let d′i be d(1)i .
Without loss of generality, we can assume that edges
d(1)i (= d′i) → di (k + 1 ≤ i ≤ l) were selected.

Step 2 For each of the destination nodes di (l + 1 ≤ i ≤
n + 1), consider (n − 1) paths, d

(j ,1)
i → d

(j)
i → di

(2 ≤ j ≤ n). If there is a path among them such
that it does not include any other destination nodes
or the nodes on the paths constructed from the other
destination nodes, select it as Pi: d′i { di . Without
loss of generality, we can assume that paths Pi: d′i { di
(l + 1 ≤ i ≤ m) were selected.

Step 3 If m = n, select the path Pn+1: (dn+1
c)(1) →

dn+1
c → dn+1, and let d′

n+1 be (dn+1
c)(1) (Fig. 6).

Step 4 Select the edge s → s(1).



56
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.1 JANUARY 2024

Fig. 6 After Step 3 of Case 3 with m = n.

Fig. 7 During Step 6 of Case 3.

Fig. 8 After Step 7 of Case 3.

Step 5 In C[1:1]
n , apply SPR Algorithm to construct one of

the shortest paths, Q: s(1) { dn+1, from the node s(1)

to the destination node dn+1.
Step 6 If the path Q includes some of the nodes on the path

constructed in Steps 1 to 3, let d̂x be the closest one to
s(1) along Q. Also, let Px : d′x { d̂x { dx be the path
to which d̂x belongs (Fig. 7). Then, discard the sub
path d̂x { dn+1 of Q, and select Q: s(1) { d̂x { dx .
Also, exchange the indices of Px and Pn+1, the indices
of dx and dn+1, and the indices of d′x and d′

n+1.
Step 7 Discard the path Pn+1: d′

n+1 { dn+1 (Fig. 8).
Step 8 In C[1:0]

n , apply N2S-R Algorithm recursively to
construct paths Ri: s { di (1 ≤ i ≤ k) and
s { d′i (k + 1 ≤ i ≤ n), from the source node s
to d1, d2, . . . , dk, d

′
k+1, d

′
k+2, . . . , d

′
n that are disjoint ex-

cept for s.
Step 9 Construct (n + 1) disjoint paths, Ui: s { di (1 ≤

i ≤ n + 1), as follows (Fig. 9):

Fig. 9 (n + 1) disjoint paths Ui : s { di (1 ≤ i ≤ n + 1) in Case 3.

Ui :


s

Ri{ di (1 ≤ i ≤ k)
s

Ri{ d′i
Pi{ di (k + 1 ≤ i ≤ n)

s → s(1)
Q
{ dn+1 (i = n + 1)

5. Correctness and Complexities

Let T(n) and L(n) represent the time complexity and the
upper bound of the lengths of the paths constructed by N2S-
R Algorithm applied to Cn.

Lemma 2: Procedure 1 constructs (n + 1) disjoint paths of
lengths at most max{L(n − 1),n} from s to D in T(n − 1) +
O(n × L(n − 1)) time.
(Proof) From the hypothesis of induction, Ui (1 ≤ i ≤ n)
are disjoint except for s. Also, from Step 2, Ui (1 ≤ i ≤ n)
do not include dn+1. In addition, because Un+1 is included
in C[1:1]

n except for s and dn+1, it is disjoint from other Ui

(1 ≤ i ≤ n) except for s.
Step 1 takes T(n−1) time to construct n paths of lengths

at most L(n − 1). Step 2 takes O(n × L(n − 1)) time to check
if dn+1 is included in the paths constructed in Step 1. If
it is included, it takes O(1) time to discard the sub path
dn+1 { dx and exchange the indices. Step 3 takes O(1)
time to select two edges of length 1. Step 4 takes O(n) time
to construct a path of length at most n − 2. From the above
discussion, Procedure 1 constructs (n + 1) disjoint paths of
lengths at most max{L(n−1),n} in T(n−1)+O(n×L(n−1))
time.

Lemma 3: Procedure 2 constructs (n + 1) disjoint paths
of lengths at most max{L(n − 1),n − 1} from s to D in
T(n − 1) +O(n) time.
(Proof) From the hypothesis of induction, Ui (1 ≤ i ≤ n)
are disjoint except for s. Also, because Un+1 is included in
C[1:1]
n except for s, it is disjoint from other Ui (1 ≤ i ≤ n)

except for s.
Step 1 takes T(n−1) time to construct n paths of lengths

at most L(n − 1). Step 2 takes O(1) time to select an edge
of length 1. Step 3 takes O(n) time to construct a path of
length at most n−2. From the above discussion, Procedure 2
constructs (n+1) disjoint paths of lengths at most max{L(n−
1),n − 1} in T(n − 1) +O(n) time.

Lemma 4: Procedure 3 constructs (n + 1) disjoint paths of
lengths at most max{L(n − 1) + 2,n − 1} from s to D in
T(n − 1) +O(n2 log n) time.



SASAKI et al.: NODE-TO-SET DISJOINT PATHS PROBLEM IN CROSS-CUBES
57

(Proof) Step 1 selects disjoint edges Pi: d(1)i → di (k +
1 ≤ i ≤ l). Step 2 selects disjoint paths Pi: d′i { di
(l + 1 ≤ i ≤ m). In Steps 1 and 2, if a path from dn+1 is
not selected, it means that d(1)

n+1 ∈ D. Also, in Step 2, if
the path Pi1 : d

(j1 ,1)
i1

→ d
(j1)
i1

→ di1 is selected for a certain
destination node di1 (l +1 ≤ i1 ≤ m), it means that d(1)i1

∈ D.
Therefore, for a destination node di2 (i1 + 1 ≤ i2 ≤ n),
dn+1 blocks at most one of the n paths d(1)i2

→ di2 and
d
(j ,1)
i2

→ d
(j)
i2

→ di2 (2 ≤ j ≤ n) that are disjoint except for
di2 . However, d(1)

n+1(∈ D) cannot block any other remaining
path. On the other hand, the path Pi1 blocks at most 2 of
the n paths. However, d(1)i1

(∈ D) cannot block any other
remaining path. Hence, among n paths considered with the
source node di2 , one path can be always selected. In Step
3, for dn+1, if all of the n paths considered in Steps 1 and 2
cannot be selected, Pn+1: (dn+1

c)(1) → dn+1
c → dn+1 can

be selected as a disjoint path from the above discussion and
Lemma 1. The path s → s(1) { dn+1 constructed in Steps
4, 5, 6, and 7 is disjoint from other paths from the process
of its construction. From the hypothesis of induction, Ri

(1 ≤ i ≤ n) are disjoint. Also, the paths are disjoint from the
paths Pi (k + 1 ≤ i ≤ n) except for d′i . In addition, they are
disjoint from the path s → s(1) { dn+1 except for s. Hence,
Ui (1 ≤ i ≤ n + 1) are disjoint except for s.

In Step 1, for each destination node di (k+1 ≤ i ≤ n+1),
it takes O(n) time to check d(1)i < D and select an edge of
length 1. Hence, it takes O(n2) time in total. In Step 2, for
each destination node di (l+1 ≤ i ≤ n+1), by using the data
structure of the balanced binary tree, it takes O(n log n) time
to find one of the paths d(j ,1)i → d

(j)
i → di (2 ≤ j ≤ n) such

that it does not include other destination nodes or the nodes
on the paths constructed from other destination nodes, and
select the path of length 2. Thus, it takes O(n2 log n) time
in total. Step 3 takes O(1) time to select a path of length 2.
Step 4 takes O(1) time to select an edge. Step 5 takes O(n)
time to construct a path of length at most n − 2. In Step 6,
it takes O(n2) time to check the existence of d̂x . If it exists,
it takes O(1) time to delete the sub path of Q, update Q,
and exchange the indices. Step 7 takes O(1) time to delete
the path Pn+1. From the induction hypothesis, Step 8 takes
T(n−1) time to construct n paths of lengths at most L(n−1)
that are disjoint except for s. From the above discussion,
Procedure 3 constructs (n + 1) disjoint paths of lengths at
most max{L(n− 1)+ 2,n− 1} in T(n− 1)+O(n2 log n) time.

Theorem 1: For a source node s and a set of (n+1) destina-
tion nodes D in V(Cn), N2S-R Algorithm constructs (n + 1)
paths of lengths at most 2n − 3 from s to D that are disjoint
except for s in O(n3 log n) time.
(Proof) From Lemmas 2 to 4, N2S-R Algorithm constructs
(n+ 1) paths from s to D that are disjoint except for s. Also,
from Lemmas 2 to 4, T(n) = max{T(n − 1) + O(n × L(n −
1)),T(n− 1)+O(n2 log n)} and L(n) = max{L(n− 1)+ 2,n}
hold. From L(2) = 1, L(n) = 2n − 3 holds. Thus,

T(n) = T(n − 1) +O(n2 log n) = O(n3 log n) holds.

6. Computer Experiment

To observe the average behavior of N2S-R Algorithm, we
have implemented it by using the programming language
C++. We have conducted an experiment on a computer with
the Intel Core i9-13900KS (3.20GHz) processor, 128.0GB
memory, and the Microsoft Windows 11 Pro Edition operat-
ing system.

By taking advantage of the node-symmetric property of
the cross-cube, the source node was fixed to (0,0, . . . ,0), and
the experiment was carried out in three steps as follows:
Step 1) For each n between 2 to 31, execute Steps 2 and 3 for
10,000,000 times.
Step 2) In an n-dimensional cross-cube, select (n+1) distinct
destination nodes randomly.
Step 3) Apply N2S-R, and measure the sum of execution
time and the maximum path length.
Figures 10 and 11 show the average execution time and the
maximum path length, respectively.

The obtained result regarding the time complexity (see
Fig. 10) indicates that the average time complexity of the pro-
posed algorithm is O(n2) except for the base case n = 2. This
is to be compared with the theoretical worst-case time com-
plexity that has been previously established (see Theorem 1).
The gap between the pessimistic worst-case time complexity

Fig. 10 Average time complexity of N2S-R Algorithm to construct (n+1)
disjoint paths in n-dimensional cross-cubes.

Fig. 11 Maximum length of (n + 1) disjoint paths constructed by N2S-R
Algorithm in n-dimensional cross-cubes.



58
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.1 JANUARY 2024

O(n3 log n) and the experimentally estimated average time
complexity O(n2) is a good indicator of the performance of
the algorithm.

The experimental result (see Fig. 11) shows that the
theoretical upper bound 2n − 3 is attained with 2 ≤ n ≤ 8.
But the maximum path length stays well on n − 1 as the
dimension n of the network increases, where n − 1 is the
diameter of the n-dimensional cross-cube and is also the
lower bound of the maximum path length. So, the difference
between the experimentally obtained maximum path length
and the theoretical one is yet another strong indicator of the
performance of our proposed algorithm.

7. Conclusion

In this paper, we have proposed an algorithm that solves
the node-to-set disjoint paths problem in the cross-cube.
For a source node s and a set of destination nodes
{d1, d2, . . . , dn+1} in an n-dimensional cross-cube, our al-
gorithm constructs (n + 1) paths Ui: s { di (1 ≤ i ≤ n + 1)
of lengths at most 2n−3 such that the paths are disjoint except
for s in O(n3 log n) time. This is a significant improvement
over the time complexity O(n22n) of the algorithm by Wang
et al. [29]. Also, we have conducted a computer experiment,
which indicated that the average time complexity of our al-
gorithm is O(n2). Also, it showed that the maximum path
length stays well on n − 1 with larger n, and the theoretical
upper bound 2n − 3 is attained with 2 ≤ n ≤ 8.

To reduce the time complexity of the algorithm by elim-
inating its recursive structure is one of our future works.

Acknowledgments

The authors would like to express special thanks to the re-
viewers for their insightful comments and suggestions. This
study was partly supported by a Grant-in-Aid for Scientific
Research (C) of the Japan Society for the Promotion of Sci-
ence under Grant No. 23K11029.

References

[1] P. Cull and S.M. Larson, “The Möbius cubes,” IEEE Trans. Comput.,
vol.44, no.5, pp.647–659, May 1995.

[2] K. Efe, “The crossed cube architecture for parallel computation,”
IEEE Trans. Parallel Distrib. Syst., vol.3, no.5, pp.513–524, Sept.
1992.

[3] E. Haq, “Cross-cube: a new fault tolerant hypercube-based network,”
Proc. Fifth International Parallel Processing Symposium, pp.471–
474, 1991.

[4] P.A.J. Hilbers, M.R.J. Koopman, and J.L.A. van de Snepscheut,
“The twisted cube,” Volume I: Parallel Architectures on PARLE:
Parallel Architectures and Languages Europe, London, UK, pp.152–
159, Springer-Verlag, 1987.

[5] H.-S. Lim, J.-H. Park, and H.-C. Kim, “The bicube: An interconnec-
tion of two hypercubes,” International Journal of Computer Mathe-
matics, vol.92, no.1, pp.29–40, Jan. 2015.

[6] C.L. Seitz, “The cosmic cube,” Communications of the ACM, vol.28,
no.1, pp.22–33, Jan. 1985.

[7] X. Wang, J. Liang, D. Qi, and W. Lin, “The twisted crossed cube,”
Concurrency and Computation: Practice and Experience, vol.28,

no.5, pp.1507–1526, 2016.
[8] X. Yang, D.J. Evans, and G.M. Megson, “The locally twisted

cubes,” International Journal of Computer Mathematics, vol.82, no.4,
pp.401–413, April 2005.

[9] W. Zhou, J. Fan, X. Jia, and S. Zhang, “The spined cube: a new
hypercube variant with smaller diameter,” Information Processing
Letters, vol.111, no.12, pp.561–567, June 2011.

[10] A. Bossard and K. Kaneko, “A node-to-set disjoint paths routing
algorithm in torus-connected cycles,” ISCA International Journal of
Computers and their Applications, vol.22, no.1, pp.22–30, Jan. 2015.

[11] Q.-P. Gu and S. Peng, “Node-to-set disjoint paths problem in star
graphs,” Information Processing Letters, vol.62, no.4, pp.201–207,
April 1997.

[12] K. Kaneko and Y. Suzuki, “An algorithm for node-to-set disjoint
paths problem in rotator graphs,” IEICE Trans. Inf. & Syst., vol.E84-
D, no.9, pp.1155–1163, Sept. 2001.

[13] K. Kaneko, “An algorithm for node-to-set disjoint paths problem in
burnt pancake graphs,” IEICE Trans. Inf. & Syst., vol.E86-D, no.12,
pp.2588–2594, Dec. 2003.

[14] D. Kocík, Y. Hirai, and K. Kaneko, “Node-to-set disjoint paths prob-
lem in a Möbius cube,” IEICE Trans. Inf. & Syst., vol.E99-D, no.3,
pp.708–713, March 2016.

[15] C.-N. Lai, “An efficient construction of one-to-many node-disjoint
paths in folded hypercubes,” Journal of Parallel and Distributed Com-
puting, vol.74, no.4, pp.2310–2316, April 2014.

[16] C.-N. Lai, G.-H. Chen, and D.-R. Duh, “Constructing one-to-many
disjoint paths in folded hypercubes,” IEEE Trans. Comput., vol.51,
no.1, pp.33–45, Jan. 2002.

[17] L. Lipták, E. Cheng, J.-S. Kim, and S.W. Kim, “One-to-many node-
disjoint paths of hyper-star networks,” Discrete Applied Mathemat-
ics, vol.160, no.13-14, pp.2006–2014, Sept. 2012.

[18] K. Kaneko and N. Sawada, “An algorithm for node-to-node disjoint
paths problem in burnt pancake graphs,” IEICE Trans. Inf. & Syst.,
vol.E90-D, no.1, pp.306–313, Jan. 2007.

[19] D. Kocík and K. Kaneko, “Node-to-node disjoint paths problem
in a Möbius cubes,” IEICE Trans. Inf. & Syst., vol.E100-D, no.8,
pp.1837–1843, Aug. 2017.

[20] T.-C. Lin and D.-R. Duh, “Constructing vertex-disjoint paths in
(n, k)-star graphs,” Information Sciences, vol.178, no.3, pp.788–
801, Feb. 2008.

[21] Y. Li, S. Peng, and W. Chu, “Disjoint-paths and fault-tolerant rout-
ing on recursive dual-net,” International Journal of Foundations of
Computer Science, vol.22, no.5, pp.1001–1018, Aug. 2011.

[22] Y. Suzuki and K. Kaneko, “The container problem in bubble-sort
graphs,” IEICE Trans. Inf. & Syst., vol.E91-D, no.4, pp.1003–1009,
April 2008.

[23] A. Bossard, “A set-to-set disjoint paths routing algorithm in hyper-
star graphs,” ISCA International Journal of Computers and Their
Applications, vol.21, no.1, pp.76–82, March 2014.

[24] A. Bossard and K. Kaneko, “The set-to-set disjoint-path problem
in perfect hierarchical hypercubes,” The Computer Journal, vol.55,
no.6, pp.769–775, June 2012.

[25] A. Bossard and K. Kaneko, “Time optimal node-to-set disjoint paths
routing in hypercubes,” Journal of Information Science and Engi-
neering, vol.30, no.4, pp.1087–1093, July 2014.

[26] X.-B. Chen, “Many-to-many disjoint paths in faulty hypercubes,”
Information Sciences, vol.179, no.18, pp.3110–3115, Aug. 2009.

[27] Q.P. Gu, S. Okawa, and S. Peng, “Set-to-set fault tolerant routing in
hypercudes,” IEICE Trans. Fundamentals, vol.E79-A, no.4, pp.483–
488, April 1996.

[28] Q.P. Gu and S. Peng, “Set-to-set fault tolerant routing in star graphs,”
IEICE Trans. Inf. & Syst., vol.E79-D, no.4, pp.282–289, April 1996.

[29] X. Wang, J. Fan, S. Zhang, and J. Yu, “Node-to-set disjoint paths
problem in cross-cubes,” Journal of Supercomputing, vol.78, no.1,
pp.1356–1380, Jan. 2022.

[30] K. Menger, “Zur allgemeinen Kurventhoerie,” Fundamenta Mathe-
maticae, vol.10, pp.96–115, 1927.

http://dx.doi.org/10.1109/12.381950
http://dx.doi.org/10.1109/12.381950
http://dx.doi.org/10.1109/71.159036
http://dx.doi.org/10.1109/71.159036
http://dx.doi.org/10.1109/71.159036
http://dx.doi.org/10.1109/ipps.1991.153821
http://dx.doi.org/10.1109/ipps.1991.153821
http://dx.doi.org/10.1109/ipps.1991.153821
http://dx.doi.org/10.1007/3-540-17943-7_126
http://dx.doi.org/10.1007/3-540-17943-7_126
http://dx.doi.org/10.1007/3-540-17943-7_126
http://dx.doi.org/10.1007/3-540-17943-7_126
http://dx.doi.org/10.1080/00207160.2014.890715
http://dx.doi.org/10.1080/00207160.2014.890715
http://dx.doi.org/10.1080/00207160.2014.890715
http://dx.doi.org/10.1145/2465.2467
http://dx.doi.org/10.1145/2465.2467
http://dx.doi.org/10.1002/cpe.3707
http://dx.doi.org/10.1002/cpe.3707
http://dx.doi.org/10.1002/cpe.3707
http://dx.doi.org/10.1080/0020716042000301752
http://dx.doi.org/10.1080/0020716042000301752
http://dx.doi.org/10.1080/0020716042000301752
http://dx.doi.org/10.1016/j.ipl.2011.03.011
http://dx.doi.org/10.1016/j.ipl.2011.03.011
http://dx.doi.org/10.1016/j.ipl.2011.03.011
http://dx.doi.org/10.1016/s0020-0190(97)00059-8
http://dx.doi.org/10.1016/s0020-0190(97)00059-8
http://dx.doi.org/10.1016/s0020-0190(97)00059-8
http://dx.doi.org/10.1587/transinf.2015edp7331
http://dx.doi.org/10.1587/transinf.2015edp7331
http://dx.doi.org/10.1587/transinf.2015edp7331
http://dx.doi.org/10.1016/j.jpdc.2013.12.005
http://dx.doi.org/10.1016/j.jpdc.2013.12.005
http://dx.doi.org/10.1016/j.jpdc.2013.12.005
http://dx.doi.org/10.1109/12.980015
http://dx.doi.org/10.1109/12.980015
http://dx.doi.org/10.1109/12.980015
http://dx.doi.org/10.1016/j.dam.2012.04.006
http://dx.doi.org/10.1016/j.dam.2012.04.006
http://dx.doi.org/10.1016/j.dam.2012.04.006
http://dx.doi.org/10.1093/ietisy/e90-1.1.306
http://dx.doi.org/10.1093/ietisy/e90-1.1.306
http://dx.doi.org/10.1093/ietisy/e90-1.1.306
http://dx.doi.org/10.1587/transinf.2016edp7475
http://dx.doi.org/10.1587/transinf.2016edp7475
http://dx.doi.org/10.1587/transinf.2016edp7475
http://dx.doi.org/10.1016/j.ins.2007.09.014
http://dx.doi.org/10.1016/j.ins.2007.09.014
http://dx.doi.org/10.1016/j.ins.2007.09.014
http://dx.doi.org/10.1142/s0129054111008532
http://dx.doi.org/10.1142/s0129054111008532
http://dx.doi.org/10.1142/s0129054111008532
http://dx.doi.org/10.1093/ietisy/e91-d.4.1003
http://dx.doi.org/10.1093/ietisy/e91-d.4.1003
http://dx.doi.org/10.1093/ietisy/e91-d.4.1003
http://dx.doi.org/10.1093/comjnl/bxr135
http://dx.doi.org/10.1093/comjnl/bxr135
http://dx.doi.org/10.1093/comjnl/bxr135
http://dx.doi.org/10.1016/j.ins.2009.05.006
http://dx.doi.org/10.1016/j.ins.2009.05.006
http://dx.doi.org/10.1007/s11227-021-03872-8
http://dx.doi.org/10.1007/s11227-021-03872-8
http://dx.doi.org/10.1007/s11227-021-03872-8
http://dx.doi.org/10.4064/fm-10-1-96-115
http://dx.doi.org/10.4064/fm-10-1-96-115


SASAKI et al.: NODE-TO-SET DISJOINT PATHS PROBLEM IN CROSS-CUBES
59

[31] L.R. Ford, Jr. and D.R. Fulkerson, “Maximal flow through a net-
work,” Canadian Journal of Mathematics, vol.8, pp.399–404, 1956.

Rikuya Sasaki is a master program student
of Tokyo University of Agriculture and Technol-
ogy in Japan. His main research areas are inter-
connection networks and fault-tolerant systems
based on graph theory and network theory. He
received the B.E. degree from Tokyo University
of Agriculture and Technology in 2023.

Hiroyuki Ichida is a Ph.D. program student
of Department of Electronic and Information En-
gineering, Graduate School of Engineering, To-
kyo University of Agriculture and Technology
in Japan. His research interests include depend-
able systems and graph theory. He received the
B.E. and M.E. degrees from Tokyo University of
Agriculture and Technology in 2019 and 2021,
respectively.

Htoo Htoo Sandi Kyaw is an Assistant Pro-
fessor at Tokyo University of Agriculture and
Technology in Japan. Her main research ar-
eas are educational technology, web application
systems, and graph theory. She received the
B.E. and M.E. degrees from University of Tech-
nology (Yatanarpon Cyber City) in Myanmar in
2015 and 2018, respectively, and the Ph.D. de-
gree from Okayama University in Japan in 2021.

Keiichi Kaneko is a Professor at Tokyo Uni-
versity of Agriculture and Technology in Japan.
His main research areas are functional program-
ming, parallel and distributed computation, and
fault-tolerant systems. He received the B.E.,
M.E., and Ph.D. degrees from the University of
Tokyo in 1985, 1987 and 1994, respectively. He
is a member of ACM, IEEE CS, IPSJ and JSSST.

http://dx.doi.org/10.4153/cjm-1956-045-5
http://dx.doi.org/10.4153/cjm-1956-045-5

