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PAPER

Enhancing VQE Convergence for Optimization Problems with
Problem-Specific Parameterized Quantum Circuits

Atsushi MATSUO†,††a), Yudai SUZUKI†††b), Ikko HAMAMURA†c), Nonmembers,
and Shigeru YAMASHITA††d), Senior Member

SUMMARY The Variational Quantum Eigensolver (VQE) algorithm is
gaining interest for its potential use in near-term quantum devices. In the
VQE algorithm, parameterized quantum circuits (PQCs) are employed to
prepare quantum states, which are then utilized to compute the expectation
value of a given Hamiltonian. Designing efficient PQCs is crucial for im-
proving convergence speed. In this study, we introduce problem-specific
PQCs tailored for optimization problems by dynamically generating PQCs
that incorporate problem constraints. This approach reduces a search space
by focusing on unitary transformations that benefit the VQE algorithm, and
accelerate convergence. Our experimental results demonstrate that the con-
vergence speed of our proposed PQCs outperforms state-of-the-art PQCs,
highlighting the potential of problem-specific PQCs in optimization prob-
lems.
key words: VQE algorithm, optimization problem, problem-specific pa-
rameterized quantum circuit

1. Introduction

Quantum computing has been attracting significant attention
due to its potential for solving complex tasks such as integer
factorization [1], and the Boolean satisfiability problem [2].
However, current quantum devices suffer from high error
rates and are limited in the size of quantum circuits they can
execute [3], which hinders the execution of quantum circuits
for more complicated tasks.

The Variational Quantum Eigensolver (VQE) algo-
rithm has been proposed to utilize these limited quantum
devices and has been studied intensively [4]–[8]. The VQE
algorithm is designed to find the minimal eigenvalue for a
given Hamiltonian. It comprises two parts: one executed on
quantum computers and the other on classical computers.
The part executed on quantum computers utilizes a shallow
quantum circuit with parameters, known as a parameterized
quantum circuit (PQC) or a variational ansatz, to prepare a
quantum state. By adjusting the parameters, the PQC can
generate various quantum states. The expectation value of a
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given Hamiltonian is then calculated using the created quan-
tum state through sampling outcomes. As the VQE algo-
rithm employs the variational method based on sampling re-
sults, designing sophisticated PQCs is crucial for ensuring
faster convergence.

The VQE algorithm has potential applications in
solving optimization problems by constructing appropriate
Hamiltonians [9]–[11]. Despite extensive research in the
field, there is limited work on developing PQCs specifically
for optimization problems. Existing PQCs face two main
challenges: (1) there are only a few known types of PQCs
with static structures, and (2) they often yield infeasible so-
lutions for optimization problems.

To overcome these challenges, we propose novel
problem-specific PQCs for two types of optimization prob-
lems. These PQCs are designed to incorporate problem con-
straints, tailored for each problem. Problem-specific PQCs
ensure feasible solutions and significantly reducing search
spaces, thereby accelerating the convergence of VQE algo-
rithms.

The remainder of this paper is structured as follows:
Sect. 2 provides background information on quantum cir-
cuits and the VQE algorithm. Section 3 presents the pro-
posed PQCs for two types of optimization problems. In
Sect. 4, we summarize the experimental results of our pro-
posed PQCs, demonstrating their effectiveness in improving
convergence speed. Finally, Sect. 5 concludes the paper and
highlights potential avenues for future research.

2. Background

In this section, we provide an overview of quantum circuits
and the VQE algorithm.

2.1 Quantum Circuits

Quantum circuits serve as a model for quantum compu-
tation [12], comprising qubits and a sequence of quantum
gates.

Unlike classical bits, which can only be in a state of 0
or 1, qubits in quantum computation can exist in the state
|0〉, |1〉, or a superposition state. The superposition state is a
linear combination of |0〉 and |1〉, represented as α |0〉+β |1〉,
where α, β ∈ C and |α|2 + |β|2 = 1. The coefficients α and
β are called amplitudes of the corresponding basis states.
An n-qubit state can be denoted as |ψ〉 = ∑

k∈0,1n αk |k〉,
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where αk ∈ C and
∑

k∈0,1n |αk |2 = 1. This state can also
be represented by a 2n-dimensional state vector, such as
(α0, α1, . . . , α2n−1)T .

Quantum gates perform specific unitary operations on
qubits. They represent which unitary operator is applied to
the corresponding qubits. The details of quantum gates used
in the proposed PQCs are discussed in Sect. 3.

2.2 The VQE Algorithm

The VQE algorithm aims to find the minimal eigenvalue
and corresponding eigenvector of a given Hamiltonian. It
leverages the variational principle, which is represented as
λmin ≤ 〈ψ|H|ψ〉. In this inequation, H represents the given
Hamiltonian, |ψ〉 denotes a quantum state, and λmin symbol-
izes the minimal eigenvalue of H. According to the varia-
tional principle, the expectation value 〈ψ|H|ψ〉 for any quan-
tum state |ψ〉 is greater than or equal to the minimal eigen-
value of H.

The VQE algorithm consists of two parts, executed on
quantum and classical computers. The quantum computer
component involves a shallow quantum circuit with param-
eters, called a PQC. A PQC prepares a quantum state from
an initial state and can generate various quantum states by
adjusting its parameters. The expectation values of each
term in the given Hamiltonian are obtained by sampling out-
comes from the prepared quantum state.

Subsequently, the classical computer calculates the to-
tal expectation value by summing the expectation value of
each term. It then determines the next set of PQC param-
eters using classical optimization algorithms, such as the
Nelder–Mead algorithm [13], the COBYLA algorithm [14],
and others [15]–[17]. Afterwards, the PQC with the updated
parameters are used to estimate the expectation values of
individual terms in the Hamiltonian again. The procedure
is repeated until the terminating condition is met; i.e., the
minimum eigenvalue is obtained, or the number of iteration
reaches the maximum number.

3. Problem-Specific PQCs: A Tailored Approach to
Constraint Solving

3.1 Overview of the Problem-Specific PQC

In this subsection, we introduce the general concept of the
problem-specific PQC. After mapping each binary variable
xi to qubit qi, we focus on the constraints of an optimization
problem. Constraints limit the set of feasible solutions for
the optimization problem. We leverage these constraints to
dynamically construct a problem-specific PQC that reflects
the optimization problem’s constraints. This allows us to
restrict the unitary transformation provided by the problem-
specific PQC while considering the constraints. As a result,
we can reduce the set of basis states in the output state vec-
tor of the problem-specific PQC to shrink the search space
effectively.

For instance, consider an optimization problem with

the constraint
∑

i xi = 1. This constraint indicates that ex-
actly one variable must be 1 while the other variables must
be 0. This type of constraint frequently appears in optimiza-
tion problems, such as the traveling salesman problem and
the job scheduling problem. The constraint

∑
i xi = 1 re-

stricts the set of feasible solutions to the set of basis states
corresponding to a W state. A W state is a superposition of
states where exactly one qubit is |1〉 while the other qubits
are |0〉, with equal amplitudes. An n-qubit W state is repre-
sented as |W〉 = 1√

n
(|10 . . . 0〉 + |01 . . . 0〉 + |00 . . . 1〉).

The fundamental concept of the problem-specific PQC
is as follows. Let Sall be the set of all basis states of n qubits,
with |Sall| equal to 2n. Let Sfeasible be the set of basis states
corresponding to feasible solutions of an optimization prob-
lem after mapping variables to qubits. By definition, Sall

includes Sfeasible. For example, if one feasible solution is
x0 = 1, x1 = 0, and x2 = 0, the corresponding basis state is
|q0q1q2〉 = |100〉. Thus, |100〉 belongs to Sfeasible. With the
problem-specific PQC, we consider a set Sproposed that in-
cludes Sfeasible but has a smaller size than |Sall|. The relation
between each set is described as Sfeasible ⊆ Sproposed ⊆ Sall.

Using Sproposed, the basic concept of the problem-
specific PQC is expressed in Eq. (1).

Uproposed |0〉 =
∑

i

αi |ψi〉 , |ψi〉 ∈ Sproposed (1)

Uproposed denotes a unitary transformation provided by a
problem-specific PQC and |0〉 represents a basis state with
all zero indices, which we use as the initial state for the
problem-specific PQC. Also, αi indicates the amplitude of
|ψi〉. These amplitudes are controlled by parameters of
the problem-specific PQC. Using an appropriate problem-
specific PQC, we can modify only αi while ensuring that
the amplitudes of all other states outside Sproposed are set to
0. We will explain how the problem-specific PQC functions
using examples later.

In many cases, an optimization problem has multi-
ple constraints. For such situations, we create multiple
problem-specific parameterized quantum sub-circuits, each
of which reflects a corresponding constraint. By properly
combining these sub-circuits, we can create a problem-
specific PQC that reduces the search space even when the
optimization problem has multiple constraints. This ap-
proach allows us to explore the feasible solution space more
efficiently and potentially find optimal solutions faster.

Quinones et al. [18] and Perelshtein et al. [19] con-
sider constructions for different types of constraints than
those proposed in this paper. Although our approach dif-
fers in terms of the specific constraints and optimization
problems considered, we also propose further ideas to im-
prove problem-specific PQCs by restricting the achievable
quantum state space and reducing cost for noisy quantum
devices.

3.2 Problem-Specific PQCs for the TSP

In this subsection, we introduce problem-specific PQCs tai-
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lored for the traveling salesman problem (TSP). The TSP is
a well-known NP-hard problem that appears in the field of
combinatorial optimization. The problem involves a trav-
eling salesman visiting a set of cities with the objective of
finding the shortest possible route that allows the salesman
to visit each city exactly once and return to the starting point.

Given an undirected graph G = (V, E), where each
edge (u, v) ∈ E has an associated weight Wu,v, the goal is to
find the Hamiltonian cycle with the minimum sum of edge
weights. Let N = |V | and label the vertices 1, . . . ,N. For a
quadratic program, we use N2 variables xv,p, where v repre-
sents the vertex and p represents its order in a prospective
cycle. The quadratic program of the TSP can be formulated
as shown in Eq. (2). Note that xv,N+1 is interpreted as xv,1 in
Eq. (2).

Minimize
∑

(u,v)∈E
Wu,v

N∑
p=1

xu,pxv,p+1

Subject to
N∑

v=1

xv,p = 1, p = 1, . . . ,N

N∑
p=1

xv,p = 1, v = 1, . . . ,N

xv,p ∈ {0, 1}

(2)

In this paper, we propose four distinct PQCs for the
TSP. Each PQC possesses unique characteristics, such as
the types of constraints considered, the number of quantum
gates used, and the number of parameters required. The de-
tails of these PQCs will be elaborated upon in Sect. 3.2.1,
Sect. 3.2.2, Sect. 3.2.3, and Sect. 3.2.4.

3.2.1 PQCs Satisfying First-Line Constraints Only

In this section, we discuss the first proposed PQC which
accounts for only the first line of constraints. Each con-
straint in Eq. (2) requires exactly one variable to be 1 while
the others are 0. As previously explained, this type of
constraint narrows down the feasible solutions to the bases
of the corresponding W state. With a constraint for each
p = 1, . . . ,N, the total number of constraints represented by
the first line,

∑N
v=1 xv,p = 1, is N. By mapping binary vari-

ables to qubits and taking the tensor product of the N corre-
sponding W states, we limit the search space to

⊗N
p=1 |Wp〉.

We can ignore other bases outside of
⊗N

p=1 |Wp〉 since they
do not satisfy the constraints in the first line. It is worth
noting that we do not consider the constraints in the sec-
ond line. Consequently, some bases in Sproposed may not sat-
isfy these second-line constraints. However, the relationship
Sfeasible ⊆ Sproposed ⊆ Sall remains valid, and the search space
is reduced.

In order to generate W states for use in the VQE al-
gorithm, we must construct quantum circuits that produce
these specialized states. Deterministic methods for creat-
ing W states of arbitrary sizes have been discussed in earlier

Fig. 1 Quantum circuit for a parameterized W state of three qubits

studies [20], [21]. Traditional W states have equal ampli-
tudes for each base, but for the VQE algorithm, we need
to control the amplitudes of each base with parameters as
shown in Eq. (3). These parameters are then optimized by a
classical optimizer to find the minimum eigenvalue.

|W(φ)〉 =
∑

i

αi(φ) |ψi〉 ,
∑

i

|αi(φ)|2 = 1, |ψi〉 ∈ {|10 . . . 0〉 , |01 . . . 0〉 , |00 . . . 1〉}
(3)

In Eq. (3), |ψi〉 denotes one of the bases in the corre-
sponding W state where the i-th qubit is |1〉 and the re-
maining qubits are |0〉. The amplitude αi possesses a set
of parameters, φ, which can be adjusted. It is important
to note that φ may include multiple parameters such as
{θ1, θ2, . . .} ∈ φ. We refer to |W(φ)〉 in Eq. (3) as a parame-
terized W state.

In this paper, we utilize several quantum gates to create
a quantum circuit. These gates include single-qubit gates (X
and Ry(θ)) and multi-qubit gates (Controlled Z or CZ, Con-
trolled NOT or CNOT, Controlled SWAP or CSWAP, and
Toffoli gate). The behavior of these multi-qubit gates de-
pends on the state of the control qubits. The unitary matrices
representing these gates are provided in [12]. The Ry(θ) gate
has a parameter θ, which can be adjusted dynamically, while
the other gates have fixed matrix elements. Gate indices in-
dicate which qubit the gate is applied to, and for two-qubit
gates, the left index represents the control bit, and the right
index represents the target bit.

A quantum circuit for a parameterized W state is cre-
ated using these gates, with an example provided for a case
with three qubits, q1, q2, and q3. The initial state is |000〉,
and a series of gates are applied, including X gates, Ry(θ)
gates, CZ gates, and CNOT gates. The quantum circuit is
illustrated in Fig. 1. The resulting state (Eq. (4)) is a param-
eterized W state of three qubits.

α1(φ) |100〉 + α2(φ) |010〉 + α3(φ) |001〉 ,
3∑

i=1

|αi(φ)|2 = 1,

α1(φ)=cos θ1, α2(φ)=− sin θ1 cos θ2, α3(φ)=sin θ1 sin θ2

(4)

By constructing quantum circuits for parameterized W
states, we can develop a problem-specific PQC tailored for
the VQE algorithm applied to the TSP. As previously men-
tioned, a quadratic program representation of the TSP is
given by Eq. (2). In order to utilize the VQE algorithm, we
must map these variables onto qubits. To achieve this, we
prepare N2 qubits, denoted as qv,p, and associate each vari-
able xv,p with its corresponding qubit qv,p. It is important to
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Fig. 2 Problem-specific PQC for the TSP, constructed using N distinct
quantum circuits to generate parameterized W states, considering only the
constraints in the first line of Eq. (2)

Fig. 3 Constraints considered for each case: (a) only the first line, (b)
an L-shaped constraint constraint and remaining constraints, and (c) all
constraints. The blue box represents a constraint from the first line, while
the red box indicates a constraint from the second line of Eq. (2).

note that N represents the number of vertices.
We then employ N distinct quantum circuits to gen-

erate parameterized W states with N qubits each. For
qubits q1,1, q1,2, . . . , q1,N , we introduce the first quantum
circuit, which creates an N-qubit parameterized W state.
Following this, we incorporate the second circuit for
qubits q2,1, q2,2, . . . , q2,N . We proceed in a similar manner,
adding quantum circuits to produce the desired parameter-
ized W states. The final circuit is designated for qubits
qN,1, qN,2, . . . , qN,N . The resulting quantum circuit is illus-
trated in Fig 2.

In this figure, each box signifies a quantum circuit re-
sponsible for creating a parameterized W state with a spe-
cific set of parameters φi for the associated qubits. Each
|Wi(φi)〉 (i = 1, . . . ,N) on the right side of Fig 2 represents
the output of the corresponding circuit. It is worth not-
ing that the parameter sets for each |Wi(φi)〉 (i = 1, . . . ,N)
are distinct. Utilizing the circuit depicted in Fig. 2, we can
generate a tensor product of the parameterized W states:⊗N

p=1 |Wp(φp)〉.

3.2.2 PQCs Satisfying L-Shaped and Remaining Con-
straints with CNOT Gates

In the second PQC, we consider not only the first line of
constraints but also a constraint

∑N
p=1 x1,p = 1 in the sec-

ond line of Eq. (2), as illustrated in Fig. 3 (b). This allows
for a further reduction of the search space. In contrast to
the first PQC, the current scenario demands greater “corre-
lations” among qubits mapped from variables, as the vari-
ables x1,p, p = 1 . . .N appear in both the first and second
lines. Therefore, it is no longer feasible to realize the con-
straints using a tensor product of N quantum states. Instead,
we employ CNOT gates combined with parameterized W
state gates to construct the quantum circuit.

The construction of the PQC involves two main steps.

In the first step, we create a quantum circuit that satisfies
both constraints,

∑N
p=1 x1,p = 1 and

∑N
v=1 xv,1 = 1. We re-

fer to this as an “L-shaped constrain” due to the L-shape
formed by the involved variables in Fig. 3 (b). In the second
step, we apply unitary operations to address the remaining
constraints. Detailed descriptions of the construction pro-
cess and the specific quantum circuits used can be found in
Appendix A.1.

By following this process, we successfully create a
problem-specific PQC tailored to address the L-shaped and
remaining constraints present in the problem at hand, ulti-
mately leading to a more efficient exploration of the search
space.

3.2.3 PQCs Satisfying L-Shaped and Remaining Con-
straints with Parameter Sharing

In the third PQC, we modify the second PQC to reduce the
implementation cost for current quantum devices [3]. Cur-
rent noisy devices suffer from exponential decay of quantum
coherence which makes deep circuits problematic. The sec-
ond PQC becomes deep due to its dependence on construct-
ing a quantum circuit for an L-shaped constraint followed
by other gates for the remaining constraints.

To address this issue, we introduce the technique of pa-
rameter sharing, which results in a shallower circuit with
fewer CNOT gates. The primary idea behind this technique
is to replace CNOT gates (and X gates in parameterized W
state gates) with Ry gates having shared parameters. These
parameters ensure that the probability of obtaining specific
outcomes is equal to that of other related outcomes. We
provide a detailed demonstration of the parameter sharing
technique in Appendix A.2.

By leveraging this “classical correlation”, we can cre-
ate a shallower PQC satisfying the constraints, which is
more suitable for current noisy devices. However, the tech-
nique has a limitation on its ability to restrict the set of bases
compared to the second PQC. The quantum state created by
the PQC is not fully entangled, i.e. it can be written as a
tensor product of smaller quantum states. Consequently, the
set of bases for the quantum state includes bases that are not
present in the second PQC, although the probability of ob-
taining such additional bases is at most half. This character-
istic contributes to interesting results, which we will discuss
in Sect. 4.

3.2.4 PQCs Satisfying All Constraints

We present the fourth PQC, which considers all constraints
of Eq. (2) to completely exclude infeasible answers as illus-
trated in Fig. 3 (c). This ensures that the set of the bases
of the quantum states includes only feasible answers, i.e.,
Scase 4 = Sfeasible.

The construction of such a PQC for arbitrary N can be
achieved in a recursive manner. The basic idea is that the
assignments of feasible answers on the 2D grid can be inter-
preted as permutation matrices, as the constraints of Eq. (2)



1776
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.11 NOVEMBER 2023

are exactly the same as the definition of permutation matri-
ces. Utilizing the equivalence between permutation matrices
and the assignment of feasible answers on the 2D grid, we
can construct the quantum circuit.

We start with a PQC for N = 2, which can be repre-
sented as the superposition of two bases, |0110〉 and |1001〉,
with the order of qubits |q1,1q2,1q1,2q2,2〉. Then, we demon-
strate that the PQC with N = k can be constructed using the
quantum circuit with N = k − 1 by following a set of pro-
cedures. We provide a detailed explanation of these proce-
dures, along with a simple example of the PQC with N = 3,
in Appendix A.3.

By recursively performing the explained procedure, we
can construct the PQC for arbitrary N, starting from the
quantum circuit with N = 2. This PQC guarantees that the
quantum state is the superposition of bases corresponding to
feasible answers, making it suitable for solving the TSP.

3.2.5 PQCs Satisfying All Constraints with Parameter
Sharing

In the fifth PQC, we aim to reduce the implementation cost
by modifying the fourth PQC, similar to how the third PQC
was constructed in Sect. 3.2.3. As described in Sect. A.3, the
fourth PQC contains many CSWAP gates, which are imple-
mented using two CNOT gates and one Toffoli gate, result-
ing in a high implementation cost.

To mitigate this issue, we employ parameter sharing
as done in the third PQC. In the case of the fifth PQC,
we replace CSWAP gates with Hop gates (explained in Ap-
pendix A.4) that have shared parameters, reducing the im-
plementation cost and making the circuit more suitable for
current noisy devices. However, like the third PQC, the fifth
PQC has a limitation in its ability to restrict the set of bases
compared to the fourth PQC due to its reduced entangle-
ment. Further details can be found in Appendix A.4.

3.3 Problem-Specific PQC for the Minimum Vertex Cover

In this subsection, we demonstrate the application of the
proposed method to the minimum vertex cover problem,
another well-known NP-hard combinatorial optimization
problem. The minimum vertex cover aims to find the small-
est set of vertices in an undirected graph G = (V, E) such
that each edge has at least one endpoint in the set. Let
N = |V | and label the vertices as 1, . . . ,N. The problem can
be formulated as a linear programming problem as shown in
Eq. (5), with the number of constraints equal to |E|.

Minimize
N∑

i=1

xi

Subjectto (1 − xu)(1 − xv) = 0, ∀(u, v) ∈ E

xi ∈ {0, 1}

(5)

Each constraint in Eq. (5) can be interpreted as requir-
ing that if xu is zero, xv must be one, and vice versa. To

Fig. 4 Enumerating feasible variable assignments in vertex cover solu-
tions

illustrate the process of enumerating feasible variable as-
signments for the vertex cover, we consider two constraints,
(1 − x1)(1 − x2) = 0 and (1 − x2)(1 − x3) = 0. As Fig. 4
shows, when x1 = 0, there is only one feasible assignment
for x1 and x2 which is (x1 = 0, x2 = 1). When x1 = 1,
there are two feasible assignments for x1 and x2 which are
(x1 = 1, x2 = 0) and (x1 = 1, x2 = 1). We then move on
to the second constraint (1 − x2)(1 − x3) = 0. In the same
manner, when x2 = 0, there is only one feasible assignment
for x2 and x3 which is (x2 = 0, x3 = 1). When x2 = 1,
there are two feasible assignments for x2 and x3, which are
(x2 = 1, x3 = 0) and (x2 = 1, x3 = 1). By combining the re-
sult of the first constraint and that of the second constraint,
the feasible assignments of x1, x2 and x3 can be written as
the rightmost column in Fig. 4.

The construction of a PQC for the minimum vertex
cover problem is detailed in Appendix A.5. By following
the approach described in the appendices, we can create
a problem-specific PQC that efficiently represents the con-
straints and structure of the Minimum Vertex Cover problem
in order to reduce the search space.

4. Experimental Results

In this section, we present the simulation experiments con-
ducted to compare the convergence speed of the proposed
Problem-specific PQCs and Ry PQCs using Python. An Ry
PQC is one of the most advanced PQCs and it alternates a
layer of Ry gates and CZ gates [22]. The number of layers is
called the depth. Qiskit Optimization was utilized for con-
verting optimization problems into their corresponding Ising
Hamiltonians. We used exact state vectors in the simulation
experiments. Therefore, only small size problems were ex-
perimented with. Experimenting with larger size problems
is future work.

4.1 Experiments for the Traveling Salesman Problem

For the TSP, the VQE algorithm in Qiskit was run using
the statevector simulator. 10 trials were conducted with dif-
ferent initial parameters for each PQC. The COBYLA al-
gorithm [14] served as the classical optimizing algorithm of
the VQE algorithm for the TSP. The experiments focused on
a complete graph with four nodes for the TSP. All the results
presented in this work were obtained with a MacBook Pro
with Apple M1 Max and 64GB memories.

Figure 5 compares the performance of each proposed
problem-specific PQC and Ry PQCs with depth one, two,
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Table 1 Comparison of required resources for proposed problem-specific PQCs and Ry PQC in the
n-qubit TSP. Proposed 4 employs CSWAP gates, while Proposed 5 employs Hop gates instead. D in the
Ry PQC corresponds to the depth of the Ry PQC.

Necessary Resources
PQCs Parameters One-Qubit Gates Two-Qubit Gates CSWAP/Hop Gates

Ry PQC (D + 1)n (D + 1)n D(n − 1) —
Proposed 1 n − √n 2n − √n 2n − 2

√
n —

Proposed 2 n − √n − 1 2n − √n − 2 2n − √n − 3 —
Proposed 3 n − √n − 1 2n − √n − 2 2n − 2

√
n − 2 —

Proposed 4 and 5 1
2 n − 1

2

√
n n − 1 n − √n + 2 1

3 n
√

n − 1
2 n + 1

6

√
n − 1

Fig. 5 Comparison of proposed problem-specific PQCs and Ry PQCs
with depth one, two, and three for the four-city TSP.

Fig. 6 Focused comparison of proposed problem-specific PQCs, ex-
tracted from Fig. 5.

and three. Parameterized W-state PQC (Proposed 1), L-
shaped PQC (Proposed 2), Parameter sharing L-shaped
PQC (Proposed 3), Permutation matrix PQC (Proposed
4), and Parameter sharing permutation matrix PQC (Pro-
posed 5) correspond to the PQCs detailed in Sect. 3.2.1,
Sect. 3.2.2, Sect. 3.2.3, Sect. 3.2.4, and Sect. 3.2.5, respec-
tively. The proposed PQCs exhibit significantly faster con-
vergence compared to the Ry PQCs. The expectation values
of the proposed PQCs decreased rapidly in the first 60 itera-
tions, and their initial expectation values were considerably
lower than those of the Ry PQCs. Figure 6 presents a graph
extracted from Fig. 5 to focus on the experimental results of
the proposed PQCs. The convergence time was observed to
follow the pattern Proposed 4 < Proposed 5 < Proposed 2 <
Proposed 3 < Proposed 1 < Ry, which is closely related to
the number of each set of bases.

We also analyzed the ability of each PQC to reach the
global minimum. The results show that Proposed 4 reached
the global minimum in every trial, while the others did not.
Proposed 5 reached the global minimum nine times. Pro-
posed 1, 2, and 3 occasionally reached the global minimum,
with Proposed 1, 2, and 3 reaching the global minimum

three times, four times, and four times, respectively. Ry
PQCs did not converge well, producing infeasible answers
even after 400 iterations. It is important to note that reach-
ing the global minimum depends on various factors such as
problem configurations, types of classical optimizers, and
initial parameters.

The average execution times for the proposed PQCs in
the current numerical simulations were 20.22, 44.41, 17.5,
15.5, and 339.48 seconds for Proposed 1, 2, 3, 4, and 5,
respectively. It is important to note that these values repre-
sent the runtime of the numerical simulations until the ter-
mination condition is met, and thus, they may not reflect the
actual convergence speed of the proposals.

Table 1 presents the number of necessary gates and pa-
rameters for each PQC. From the experimental results, Pro-
posed 4 demonstrated the best performance in terms of con-
vergence speed and reaching the global minimum. However,
it requires a significant number of CSWAP gates, which are
challenging to implement on current noisy devices.

4.2 Experiments for the Minimum Vertex Cover

For the minimum vertex cover, NumPy 1.18.4 [23] was used
to calculate the expectation values of Ising Hamiltonians,
and SciPy 1.4.1 [24] was employed to optimize parameters
for the VQE algorithm. The Nelder-Mead algorithm served
as a classical optimizer for the minimum vertex cover. The
experiments focused on a graph with six nodes containing
a cycle. All experiments were conducted on a MacBook
Air with a 1.6 GHz Intel Core i5 processor, DDR3 8 GB
memory, and macOS 10.14.6.

Figure 7 compares the performance of the proposed
Problem-specific PQC for the minimum vertex cover and
Ry PQCs with depth one, two, and three. Similar to the case
of the TSP, the proposed PQC exhibited significantly faster
convergence than the Ry PQCs. The expectation values of
the proposed PQC also decreased rapidly. For example, the
expectation value of the proposed PQC after the first iter-
ation was 6342.657, decreasing to 36.770226 after the sec-
ond iteration. The answer for the minimum vertex cover was
3, and the expectation value of the proposed PQC reached
3.0138958 after 150 iterations. In contrast, the expectation
value of the Ry PQC with depth 1 reached 1088.1005 after
150 iterations and was still 4.729469 even after 400 itera-
tions. The execution time of the current numerical simula-
tion for the proposed PQC was 17.7 seconds.
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Fig. 7 Comparison of the proposed problem-specific PQC and Ry PQCs
with depth one, two, and three for the six-node minimum vertex cover.

Table 2 Comparison of required resources for proposed problem-
specific PQCs and Ry PQC in the n-qubit minimum vertex cover. D in
the Ry PQC corresponds to the depth of the Ry PQC.

Necessary Resources
PQCs Parameters Gates

Ry PQC (D + 1)n (D + 1)n + D(n − 1)
Proposed n 3n − 2 + n − 1

Table 2 presents a comparison of the necessary param-
eters and gates between the proposed Problem-specific PQC
and the Ry PQCs for the minimum vertex cover. Similar to
the case of the TSP, the proposed PQC had a smaller num-
ber of parameters than the Ry PQC. Additionally, when the
depth of the Ry PQC was large, the numbers of one-qubit
gates and two-qubit gates in the proposed PQC were lower
than those of the Ry PQC.

Although the amplitudes in the proposed Problem-
specific PQCs are not completely independent, they exhibit
a slight correlation with each other. This correlation ensures
that the amplitudes of the bases corresponding to the opti-
mization problem’s answers can be 1. A careful examina-
tion of the relationship between the proposed method for
the VQE algorithm and existing methods for classical com-
puters is necessary. Future work will continue to study the
convergence to the global minimum and explore strategies
for improving the performance of the proposed PQCs.

5. Conclusion

In this paper, we introduced problem-specific PQCs for the
VQE algorithm applied to optimization problems. By fo-
cusing on the constraints inherent to a given optimization
problem, we were able to dynamically construct PQCs that
incorporate these constraints. This approach significantly
reduces the search space, leading to faster convergence of
the VQE algorithm.

Through numerical experiments, we compared the per-
formance of our proposed PQCs with that of state-of-the-art
PQCs. The results demonstrated that our problem-specific
PQCs effectively reduced the search space and achieved
considerably faster convergence than the current state-of-
the-art PQC.

In future work, we aim to explore additional problem-
specific PQCs for a wider range of optimization problems
and investigate methods to further improve the convergence
and implementation efficiency on noisy quantum devices.
In addition, experimenting with larger size problems is fu-
ture work. Furthermore, we recognize the need for scala-
bility analysis when dealing with larger problem sizes. As
the exploration space becomes limited, the energy landscape
may become increasingly complex, potentially leading to a
deterioration in the number of iterations compared to naive
strategies. In this case, it is crucial to explore strategies to
mitigate this issue, which will also be a focus of our future
research.
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Appendix A: Construction of Problem-Specific PQCs

A.1 Construction of PQCs for L-Shaped and Remaining
Constraints with CNOT Gates

The creation of a problem-specific PQC involves a two-step
process. First, we design a quantum circuit that satisfies
both the L-shaped constraint, characterized by

∑N
p=1 x1,p = 1

and
∑N

v=1 xv,1 = 1, which arises from the interplay of vari-
ables in the first and second constraints of Eq. (2). Fig-
ure 3 (b) illustrates the L-shape formed by these variables.
When x1,1 equals zero, one variable from each set {x1,p′ |p′ =
2 . . .N} and {xv′,1|v′ = 2 . . .N} must equal one, while when
x1,1 equals one, all variables within these sets must equal
zero. Parameterized W state gates can be applied to the qubit
sets {q1,p′ |p′ = 2 . . .N} and {qv′,1|v′ = 2 . . .N} when |0〉q1,1
is present, whereas identity gates are applied when |1〉q1,1 is
present. The PQC is then constructed using CNOT gates and
parameterized W state gates, as shown in Fig. A· 1 (a).

In the second step, we incorporate unitary operations
for the remaining constraints,

∑N
v=1 xv,p′ = 1, p′ = 2 . . .N,

into the quantum state obtained from the first step. As the
qubits corresponding to the variables {x1,p′ |p′ = 2 . . .N}
in the constraints have already been determined, the con-
straints can be addressed similarly to the first step. When
x1,p′ equals one, all variables in the set {xv′,p′ |v′ = 2 . . .N}

Fig. A· 1 PQC Construction for L-shaped and Remaining Constraints
with CNOT gates: (a) Quantum Circuit for the L-shaped Constraint, (b)
Quantum Circuit for the Constraint

∑N
v=1 xv,p′ = 1, and (c) Comprehensive

View of the PQC

are zero, while when x1,p′ equals zero, one variable in the
set {xv′,p′ |v′ = 2 . . .N} must equal one. A CNOTq1,p′ ,q2,p′
gate, followed by parameterized W state gates on the qubit
set {qv′,p′ |v = 2 . . .N}, can achieve the corresponding uni-
tary operation, as depicted in Fig. A· 1 (b). By employing
N − 1 CNOT gates and N − 1 circuits for parameterized W
states, we can create unitary operators that generate a quan-
tum state adhering to the remaining constraints.

By following these two steps, the problem-specific
PQC is constructed as shown in Fig. A· 1 (c).

A.2 Construction of PQCs for L-Shaped and Remaining
Constraints with Parameter Sharing

We provide a detailed explanation of the parameter sharing
technique employed in the construction of the third PQC,
which aims to reduce the implementation cost for current
quantum devices. This technique results in a shallower cir-
cuit with fewer CNOT gates while satisfying the constraints.

The primary idea behind parameter sharing is to re-
place CNOT gates (and X gates in parameterized W state
gates) used in the second PQC with Ry gates that share pa-
rameters. These shared parameters ensure that the probabil-
ity of obtaining specific outcomes is equal to that of other re-
lated outcomes, thereby maintaining the desired constraints.

To demonstrate the parameter sharing technique in de-
tail, let us consider a simple example of a quantum circuit
with N = 3. As shown in Fig. A· 2, parameters φ0 and φ2 are
employed for q1,1, q1,3, q2,2, and q2,3 in unique ways. These
shared parameters are chosen such that the probability of ob-
taining |1〉q1,p′ is equal to that of |0〉⊗2

q2,p′ ,q3,p′ . This technique
can be easily extended for PQCs with arbitrary N since the
probability of obtaining |1〉q1,p′ for all p′ = 2 . . .N is ana-
lytically calculated in the similar way as shown in Eq. (4).
By using the shared parameters, the probability of obtaining
|1〉q1,p′ becomes equal to that of |0〉⊗N−1

{qv′ ,p′ |v′=2...N}.

http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1103/physrevresearch.2.043158
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41592-020-0772-5
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Fig. A· 2 Shallower quantum circuit with parameter sharing for the third
PQC: Demonstrating an N = 3 PQC in which the top-left circuit from the
second PQC is replaced by the top-right circuit, employing the parameter
sharing technique to reduce circuit depth.

A.3 Construction of PQCs for All Constraints

We provide a detailed explanation of the construction of
quantum circuits for the fourth PQC, which takes into ac-
count all the constraints of Eq. (2) to exclude infeasible an-
swers. We will present the method for constructing the PQC
recursively, starting with an example for N = 2, and then
generalizing the approach to arbitrary N.

PQC with N = 2
We begin with the construction of the PQC for N = 2.

For this case, we have two feasible answers, represented by

two 2×2 permutation matrices,

[
1 0
0 1

]
and

[
0 1
1 0

]
. The

quantum state we want to create can be described by the
superposition of two bases, |1001〉 and |0110〉, with the order
of qubits |q1,1q2,1q1,2q2,2〉. A quantum circuit for N = 2 can
be created as shown in Fig. A· 3, where the quantum state is
represented as cos φ |1001〉 − sin φ |0110〉.

Recursive Construction for PQCs with N = k
Next, we describe the recursive construction of PQCs

for arbitrary N = k. The construction of the PQCs relies on
the properties of permutation matrices and their relationship
to feasible answer assignments on the 2D grid.

The recursive construction consists of the following
steps:

1. Preparation of quantum states for N = k − 1:
Firstly, we need to prepare the quantum state |Ψk−1〉
that represents all feasible answers for N = k −
1. This quantum state has the order of qubits
as |q1,1...q1,k−1q2,1 . . . q2,k−1 . . . qk−1,1 . . . qk−1,k−1〉. Note
that the quantum state for N = 2 serves as the starting
point for the recursive construction.

2. Initialization of qubits for N = k: Prepare the ini-
tialized 2k − 1 qubits, labeled as qk,p′ , p′ = 2 . . . k and
qv,k, v = 1 . . . k. These qubits will be used to extend the
quantum state |Ψk−1〉 to represent the feasible answers
for N = k.

Fig. A· 3 Fourth PQC with N = 2, which creates a superposition of two
feasible answers, |1001〉 and |0110〉.

Fig. A· 4 Conceptual overview for recursive construction of the forth
PQCs: (a) illustrates the property of permutation matrices to obtain permu-
tation matrices of size k using a permutation matrix of size k−1 to construct
the PQC. (b) shows a schematic view of creating the desired quantum state
for N = k using a quantum state for N = k − 1.

3. Application of the parameterized W state gate: Ap-
ply a parameterized W state gate to the set of qubits,
{qv,k |v = 1 . . . k}. This step is crucial as it allows us to
represent the additional k-th row of the k × k matrix,
which can be regarded as the permutation inside the k-
th row. The parameterized W state gate enables us to
manipulate the probabilities of different permutations
in the k-th row.

4. Application of CSWAP gates: Apply CSWAP gates
to the corresponding qubits in |Ψk−1〉, |Wk(ψ)〉{qv,k |v=1...k},
and |0〉⊗k−1

{qk,p′ |p′=1...k−1}. The set of CSWAP operations,
CSWAP{qv′ ,k ,qk,p′ ,qv′ ,p′ |p′=1...k−1}, are applied for all v′ =
1 . . . k − 1. The CSWAP gates are used to serve as the
permutation of the remaining rows depending on the
state of the k-th row. The states of {qk,p′ |p′ = 1 . . . k−1}
and {qv,p′ |p′ = 1 . . . k−1} are exchanged if |1〉qv,k

, while
they remain unchanged if |0〉qp,k.

Following these steps, we can construct PQCs for arbi-
trary N = k that represent the superposition of feasible an-
swers for the traveling salesman problem. The conceptual
overview of the recursive construction for the fourth PQC
is shown in Fig. A· 4. The recursive approach allows for ef-
ficient construction and manipulation of quantum states for
various problem sizes.
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Fig. A· 5 Fourth PQC with N = 3, which represents the superposition of
only feasible solutions for the three-city TSP.

As an example, we provide the PQC for the case
of N = 3. The quantum circuit for this case is
shown in Fig. A· 5. The corresponding quantum state
is represented as Eq. (A· 1), with the order of qubits
|q1,1q2,1q3,1q1,2q2,2q3,2q1,3q2,3q3,3〉, which is exactly the su-
perposition of bases of six feasible answers.

|Ψ3〉 = − cos φ0 sin φ1 cos φ2 |100001010〉
+ sin φ0 sin φ1 cos φ2 |001100010〉
+ cos φ0 sin φ1 sin φ2 |100010001〉
− sin φ0 sin φ1 sin φ2 |010100001〉
+ cos φ0 cos φ1 |001010100〉
− sin φ0 cos φ1 |010001100〉

(A· 1)

The recursive construction method enables us to rep-
resent all possible N! states of feasible answers using N2

qubits. This property is advantageous, as the required mem-
ory scales polynomially rather than factorially, which could
be a significant improvement over classical computing ap-
proaches.

A.4 Construction of PQCs for All Constraints with Param-
eter Sharing

We present a detailed construction of the fifth PQC, which
utilizes the parameter sharing technique introduced in
Sect. A.2 and combines it with the fourth PQC discussed
in Sect. A.3 to reduce implementation costs. We replace the
CSWAP gates in the fourth PQC with Hop gates, which are

represented as Hop(θ) =

(
1 0 0 0
0 sin θ cos θ 0
0 cos θ − sin θ 0
0 0 0 1

)
. A Hop gate is a

two-qubit gate with a parameter θ, where Hop(0) equals a
SWAP gate. It swaps the states |01〉 and |10〉 based on the
value of θ. We choose the shared parameter in Hop gates
such that when the control bits of CSWAP gates are 1, the
Hop gate is equivalent to a SWAP gate. Figure A· 6 shows
the PQC for the case of N = 3.

A.5 Construction of Problem-Specific PQCs for the Mni-
mum Vertex Cover

In this appendix, we present a method for constructing quan-
tum circuits tailored to the minimum vertex cover problem.
By mapping binary variables xi to qubits qi, we can create

Fig. A· 6 Fifth PQC with N = 3 by replacing the CSWAP gates in
Fig. A· 5 with Hop gates. A Hop gate can be decomposed into 3 CNOT
gates and 2 Ry gates, as described at the bottom of the figure.

Fig. A· 7 Quantum circuit for implementing a single constraint of the
Minimum Vertex Cover problem.

Fig. A· 8 (a) A graph with four nodes and a cycle, (b) a spanning tree of
(a), and (c) a problem-specific PQC for the minimum vertex cover based
on the spanning tree (b). A sub circuit labeled with VC in (c) corresponds
to the sub-circuit in the dashed box of Fig. A· 7.

a quantum circuit that enumerates feasible variable assign-
ments for the vertex cover, as shown in Fig. 4. The circuit
in Fig. A· 7 demonstrates this process, where the initial state
|q1q2〉 = |00〉 evolves to the state in Eq. (A· 2) after the cir-
cuit is applied. The amplitudes of each basis, αi(φ), can be
controlled by adjusting the parameters θ1 and θ2 in the cir-
cuit.

α1(φ) |01〉 + α2(φ) |10〉 + α3(φ) |11〉 ,
∑

i

|αi(φ)|2 = 1,

α1(φ) = cos
θ1

2
, α2(φ) = − sin

θ1

2
sin θ2, α3(φ) = sin

θ1

2
cos θ2

(A· 2)

To accommodate multiple constraints, we can con-
struct a larger quantum circuit by incorporating multiple
instances of the sub-circuit shown in the dashed box of
Fig. A· 7. Connecting the sub-circuits requires considering
the dependencies among constraints and the topology of the
underlying graph. This is crucial because using the sub-
circuit in Fig. A· 7 for every constraint when a graph has
cycles could break the relation Sfeasible ⊆ Sproposed. One ap-
proach to handle this issue is to construct a spanning tree of
the graph and use the sub-circuits only for the constraints
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corresponding to the edges in the spanning tree. This en-
sures that the resulting quantum circuit maintains the re-
lationship Sfeasible ⊆ Sproposed and helps reduce the search
space.

For example, consider the graph shown in Fig. A· 8 (a).
A spanning tree of this graph is depicted in Fig. A· 8 (b).
Figure A· 8 (c) illustrates an example of a problem-specific
PQC for the minimum vertex cover of the graph based on
the spanning tree in Fig. A· 8 (b). This approach reduces the
number of bases of the search space, yielding a number of
bases < 2N compared to existing circuits, resulting in a more
efficient search process.
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