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Loosely-Stabilizing Algorithm on Almost Maximal Independent Set

Rongcheng DONG†a), Nonmember, Taisuke IZUMI†, Member, Naoki KITAMURA†,
Yuichi SUDO††, Nonmembers, and Toshimitsu MASUZAWA†, Member

SUMMARY The maximal independent set (MIS) problem is one of the
most fundamental problems in the field of distributed computing. This
paper focuses on the MIS problem with unreliable communication be-
tween processes in the system. We propose a relaxed notion of MIS,
named almost MIS (ALMIS), and show that the loosely-stabilizing algo-
rithm proposed in our previous work can achieve exponentially long hold-
ing time with logarithmic convergence time and space complexity regard-
ing ALMIS, which cannot be achieved at the same time regarding MIS in
our previous work.
key words: maximal independent set, distributed algorithm, self-
stabilization, loose-stabilization, unreliable communications

1. Introduction

1.1 Background

The maximal independent set (MIS) problem is one of the
most fundamental and well-studied problems in distributed
algorithms. Let I be a set of processes in a network, then
I is an MIS if it satisfies (1) processes in I are not adja-
cent to each other (i.e., I is an independent set), and (2) I
is not a proper subset of any other independent set. Self-
stabilization [1] is a promising paradigm for designing dis-
tributed systems that can autonomously adapt to dynamics
caused by transient faults and topology changes of networks.
A self-stabilizing system is characterized by two properties
called convergence and closure. The convergence allows the
system to eventually reach legitimate configurations (i.e.,
configurations satisfying the problem specification) regard-
less of the initial configuration, and the closure makes the
system stay in legitimate configurations forever. The MIS
problem is also one of the central topics in self-stabilizing
distributed graph algorithms, and a vast number of algo-
rithms have been presented so far (see the related work sec-
tion for their details).

This paper focuses on self-stabilizing MIS algorithms
in the system with unreliable communication between pro-
cesses in the graph, i.e., each communication channel suf-
fers the corruption of the transmitted messages (stochasti-
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cally or adversarially). An inherent limitation of conven-
tional self-stabilizing algorithms is that it requires the sys-
tem to be fault-free during its convergence. Thus, the design
of self-stabilizing algorithms under the threat of perpetual
faults is often recognized as a challenging problem. The
adversarial message corruption is one of the popular and
strong models of perpetual faults, where at each time step
the adversary chooses a set of links (whose size is typically
constrained) and modifies the messages transferred through
the chosen edges maliciously. Even if the number of cor-
rupted edges is bounded, the adversarial message corrup-
tion model can preclude self-stabilizing solutions for most
non-trivial problems. It can be easily proved by the stan-
dard partition-based argument: consider the MIS problem
in a graph where two processes, A and B, are neighboring to
each other. In a legitimate configuration where A is indepen-
dent (i.e., a member of an MIS I) and B is dominated (i.e.,
a non-member of I) only by A, when A sends a message to
inform B that A is an independent process, such message
may be corrupted in the link by the adversary and B can-
not get the correct information. Hence B decides to change
its state to become an independent process, which leads to
an illegitimate configuration. Thus, the closure property of
self-stabilization is violated. This observation also yields an
interest in exploring a reasonably relaxed model of message
corruption. Probabilistic error models, where message cor-
ruption is modeled as a stochastic event that the adversary
cannot control, are widely accepted as reasonable assump-
tions. It is not only standard in information theory but also
popular in distributed computing. Self-stabilizing solutions
are, however, still ruled out even in most of the probabilis-
tic error-models because it still admits the partition-based
argument. More precisely, it allows an execution starting
from any legitimate configuration to some non-legitimate
one with a non-zero probability.

To circumvent the impossibility of self-stabilization
in probabilistic error models, this paper focuses on loose-
stabilization [2], which is a relaxed variant of conventional
self-stabilization. While keeping the same convergence
property with self-stabilization, loose-stabilization relaxes
the closure property: the system is allowed to deviate
from legitimate configurations after being legitimate for a
long time in expectation with high probability. Loose-
stabilization is practically equivalent to self-stabilization if
the duration when the system stays in legitimate configura-
tions (called holding time) is much longer (e.g., exponen-
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Table 1 Performance of three loosely-stabilizing MIS algorithms pro-
posed in [3].

Redundant-State Step-Up Repetition

Process ID Unavailable Unavailable Available

Maximum Degree Constant Arbitrary Arbitrary

Error Distribution Uniform Uniform Arbitrary

maxECT O(log n) O(n log3 n) O(n2 log n)

minEHT Ω(nd) Ω(nd) eΩ(n)

Space O(log n) O(log n) O(nΔ log n)

tially longer) than the time required to reach a legitimate
configuration (called convergence time). Therefore, even if
some unexpected error occurs and causes the system to be-
come illegitimate, in a relatively short time the system can
converge to legitimate configurations again and keeps being
legitimate for a sufficiently long time with high probabil-
ity. In our previous work [3], we proposed three loosely-
stabilizing MIS algorithms considering unreliable commu-
nications: the redundant-state, the step-up, and the repe-
tition algorithms. Three algorithms work under different
settings and have different performances listed in Table 1,
where d is a sufficiently large constant, Δ is the maximum
degree in the graph, maxECT is the maximum expected
convergence time, and minEHT is the minimum expected
holding time. One of the major differences among these
three algorithms lies at the trade-off between space and ex-
pected holding time. While a reasonable goal in this context
is exponentially-long holding time with logarithmic space
complexity, none of them attains such a performance guar-
antee.

1.2 Our Contribution

The primary contribution of this paper is to present a relaxed
notion of the MIS problem, named almost MIS (ALMIS),
and presents a loosely-stabilizing ALMIS algorithm over-
coming the trade-off between space and holding time. More
precisely, our motivation for relaxing the problem specifica-
tion is derived from the following observation: In many of
loose-stabilizing algorithms, including the three algorithms
mentioned above, an execution period of holding legitimate
configurations terminates with a small violation of the legit-
imacy of configurations. In the case of MIS, for example,
it is typically terminated by the event that a small number
of processes violate the specification of MIS. Conversely,
even if the system drops out from legitimate configurations
(after a holding period), almost all processes still locally sat-
isfy the specification of MIS. Then one can also expect that
the system quickly recovers a legitimate configuration again.
Hence the system is expected to keep a large portion of pro-
cesses “locally” legitimate, for a period much longer than
the expected holding time with respect to the specification
of MIS. Our notion of ALMIS aims to capture such a behav-
ior.

The concrete results of this paper are twofold: first,

Table 2 Performances of the Redundant-State algorithm on ALMIS and
MIS.

ALMIS MIS

kAL 1/γ 1/o(n) 1/Θ(n) 0

maxECT O(log n)

minEHT Ω(eΘ(n)) Ω
(
eo(n)

)
Ω(poly(n)) Ω(poly(n))

Space O(log n)

we newly formulate the ALMIS problem fitting our objec-
tive. Roughly, our formulation divides the specification of
MIS into two properties referred to as independence and
maximality, and quantify the magnitude of violation for
each property. The precise definition of ALMIS follows a
parametric specification with an acceptable level of viola-
tion. The second result is to show that our formulation cer-
tainly captures what we want, by demonstrating the loosely-
stabilizing redundant-state algorithm presented in [3] can
achieve the exponential minimum expected holding time re-
garding ALMIS with a reasonably small acceptable level of
violation, while it still keeps O(log n) maximum expected
convergence time. In addition, one can also show that the
algorithm keeps the precise MIS within most of the hold-
ing periods. The performances of the algorithm are sum-
marized in Table 2, where kAL is a parameter, n is the num-
ber of processes, γ is a sufficiently large constant, maxECT
is maximum expected convergence time, and minEHT is
minimum expected holding time. The parameter kAL (which
will be defined in the latter chapters) represents the extent
that the requirements of MIS are relaxed, and by adjusting
the value of kAL, we can make a trade-off between the qual-
ity of ALMIS and the performance of the algorithm. When
kAL = 0, the ALMIS problem degenerates to the MIS prob-
lem.

1.3 Related Work

One of the most classical distributed MIS algorithms is pro-
posed by Luby [4]. This algorithm uses randomization and
solves the MIS problem in O(log n) rounds based on the
Monte Carlo method, where n is the number of processes.
It was first improved by Barenboim et al. [5], who proposed

an MIS algorithm running in O(log2 Δ+2O(
√

log log n)) rounds
where Δ is the maximum degree, while the message size
is up to poly(Δ log n) bits. Rozhon et al. [6] improved the
round complexity to O(logΔ)+poly(log log n), which is cur-
rently the fastest randomized MIS algorithm. In their pa-
per, they also proposed a deterministic MIS algorithm that
runs in poly(log n) rounds while the message size is only
O(log n).

Hedetniemi et al. [7] proposed a simple self-stabilizing
MIS algorithm with constant round complexity while as-
suming a centralized scheduler. Arapoglu et al. [8] proposed
a self-stabilizing MIS algorithm under the fully distributed
scheduler running in max{3n − 6, 2n − 1} moves (the total
number of process actions). Turau [9] considered random-
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ization and proposed a randomized self-stabilizing MIS al-
gorithm in the synchronous model that converges in O(log n)
rounds. Afek et al. [10] proposed a self-stabilizing alter-
nating bit protocol while considering message loss. Dolev
et al. [11] proposed a self-stabilizing data-link protocol that
emulates a reliable FIFO communication channel over un-
reliable non-FIFO channels, where messages could be lost,
duplicated, created or reordered.

The notion of (α, β)-loose-stabilization, where α and
β are convergence and holding time respectively, was first
proposed [2] to circumvent the impossibility that the self-
stabilizing leader election problem cannot be solved in
the population protocol model unless the exact number of
agents is available to agents in advance [12]. In [2], au-
thors proposed a (O(nN log n),Ω(NeN))-loosely-stabilizing
leader election algorithm in a complete graph using the
population protocol model, where n is the number of pro-
cesses and N is the upper bound of n. In [13], Sudo et
al. generalized the topology to arbitrary graphs while requir-
ing identifiers or random numbers. Sooner, they showed
that such requirements could be eliminated and proposed
another algorithm in [14]. Izumi solved the same prob-
lem and optimized the convergence time to linear while
keeping the holding time to be exponential in [15]. In
[16], Sudo et al. further improved the convergence time
to be polylogarithmic, while the holding time is no longer
exponential but polynomial with an arbitrarily large de-
gree. In [17], Sudo et al. proposed a time-optimal loosely-
stabilizing leader election protocol with logarithm conver-
gence and polynomial holding times in expectation. Feld-
mann et al. [18] first applied loose-stabilization to the mes-
sage passing model on server-client networks. They pro-
posed a (O(polylog(c(p−1

min+n3))),Ω(nc))-loosely-stabilizing
congestion control algorithm, where c is a parameter that
can be chosen depending on the context, n is the number of
clients and pmin is the minimum probability that a client will
send a message to the server.

The weak variant of MIS has been proposed in several
works. In [19], authors proposed the maximal nearly inde-
pendent set, which relaxed the first requirement of MIS such
that the number of chosen processes that are adjacent to each
other is not too large, and based on this they proposed paral-
lel greedy approximation algorithms for set cover problems.
On the other hand, the second requirement of MIS, i.e., the
maximality requirement, is weakened in [5] and [20], such
that there exists a restrictive number of processes that are not
independent nor adjacent to any independent process in the
network. Such an almost-maximal independent set is used
as an intermediate result to compute a strict MIS. Differ-
ently from previous works, in this paper, we formulate the
definition of ALMIS that relaxes both the requirements, and
analyze the performance of our previous loosely-stabilizing
MIS algorithm [3] in the ALMIS problem.

2. Preliminaries

A distributed system comprises a set of autonomous pro-

cesses and the communication links that connect the pro-
cesses. We abstract such a system as an undirected graph
G = (V, E): the vertex set V = {p0, p1, . . . , pn−1} repre-
sents the set of n processes where n ≥ 1, and the edge set
E ⊆ {{pi, p j} | pi, p j ∈ V, pi � p j} represents the set of
communication links. If {pi, p j} ∈ E, we say pi and p j are
the neighbors of each other and can communicate with each
other.

The set of neighbors of a process pi is denoted by
N(pi) = {p j | {pi, p j} ∈ E}, and pi can distinguish each
of its neighbors by some local labeling mechanism. Denote
the degree of process pi by Δpi = |N(pi)| and the maximum
degree among all processes by Δ = maxi Δpi . Throughout
this paper, we assume Δ = Θ(1).

Denote N∗(I) as the set of the processes that are not
in the set I ⊆ V and adjacent to the processes in I, i.e.,
N∗(I) = {p ∈ V \ I | N(p)∩ I � ∅}. For any I ⊆ V , we denote
the edge boundary of I by ∂(I) = {{p, q} ∈ E | p ∈ I, q � I}.
By definition, we have |N∗(I)| ≤ |V − I| and |∂(I)| ≤ ∑

p∈I Δp

for any set I.
The computational model used in this paper is the

atomic-state model: an algorithm is the state-machine de-
ployed to each process. We assume all the processes are the
identical state machine. Let S be the domain of the process
states. A configuration of G is a tuple C = (s0, s1, . . . , sn−1)
where si is the state of process pi. For a given configuration
C and process p, denote by C(p) the state of p in C. Each
process can read its state and all of its neighbors’ states but
can update only its state.

With respect to unreliable communication, we assume
that each time a process pi tries to read the state of each pro-
cess p j ∈ N(pi), pi obtains an incorrect state with a prob-
ability ρ (0 < ρ < 1 − ε) for some positive constant ε.
Furthermore, we also assume the uniformly distributed er-
ror model: when pi reads an incorrect state of its neighbor
p j ∈ N(pi), pi gets the state s as p j’s current state with prob-
ability 1/(|S | − 1) for each s ∈ S \ {s j}, where s j is the true
state of p j.

Synchrony or asynchrony of a system is characterized
by the scheduler, which decides the set of activated pro-
cesses at each time step. We assume the uniformly dis-
tributed scheduler U in this paper: at each time step (step
for short hereafter), each process is independently activated
with a constant probability φ. Note that the analysis and re-
sult presented in [3] and in this paper hold even if φ = 1 (so-
called the synchronous scheduler), since φ is only a constant
factor. The activated process reads the states of all its neigh-
bors and its own, then does some local computations, and
updates its state if necessary. As we only consider the uni-
formly distributed scheduler and the uniformly distributed
error model, we omit the notations of the scheduler and the
error model in the followings for simplicity. In addition,
since any time measurement depends on φ, and the asymp-
totic bound is the same as far as φ is a constant, we do not
explicitly describe such a dependency.

Given an initial configuration C0, the scheduler U, and
the error model M, we define EA(C0) as the set of all pos-
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sible executions of algorithmA, where each execution is an
infinite sequence of configurations C0,C1, . . . where Ci+1 is
obtained by taking a step from Ci for all i ≥ 0 under the error
model M. Each execution has the probability of its occur-
rence, which is determined by U, M, andA. A specification
SP is a predicate over a configuration, which is the formal
definition of the problem to be solved.

In this paper, we say that an event occurs with high
probability in the system if it occurs with probability more
than 1 − 1/na for some constant a > 0 over all possible
executions.

2.1 ( f , g)-ALMIS

A set of processes I ⊆ V is called an independent set if
{p, q} � E holds for any p, q ∈ I. In addition, if I is not a
proper subset of any other independent set, then I is a maxi-
mal independent set (MIS). This paper introduces a relaxed
notion of MIS, which we refer to as almost MIS (ALMIS).
For an MIS I in graph G, we see the independence of I as
the property that the cardinality of the edge boundary of I is
equal to the summation of the degrees of all processes in I.
That is, I is an independent set if and only if it satisfies

|∂(I)| =
∑
p∈I

Δp.

We also see the maximality of I as the property that the num-
ber of the processes adjacent to a process in I is equal to the
number of the processes not in I. That is, the independent set
I is maximal if and only if it satisfies the following equality:

|N∗(I)| = |V − I|.
Now, we introduce the notion of ( f , g)-ALMIS, a

weaker variant of the standard MIS, by relaxing the two con-
ditions above.

Definition 1. Given a distributed system G and non-
decreasing functions f and g, the set I ⊆ V is called an
( f , g)-ALMIS of G if it satisfies the following two require-
ments.

• f -almost independence:

|{{p, q} ∈ E | p, q ∈ I}| ≤ f

⎛⎜⎜⎜⎜⎜⎜⎝
∑
p∈I

Δp

⎞⎟⎟⎟⎟⎟⎟⎠ (1)

• g-almost maximality:

|V − I − N∗(I)| ≤ g (|V − I|) (2)

Intuitively, f -almost independence relaxes the require-
ment of independence regarding MIS. It allows the cardinal-
ity of the edge boundary of I less than the summation of the
degree of processes in I with a restricted extent, which is
two times the function f of the summation of the degree of
processes in I:

∑
p∈I

Δp − 2 f

⎛⎜⎜⎜⎜⎜⎜⎝
∑
p∈I

Δp

⎞⎟⎟⎟⎟⎟⎟⎠ ≤ |∂(I)| .

The above inequality implies the existence of edges
connecting processes in I, and the number of such edges
is not larger than the function f of the summation of the
degree of processes in I:

|{{p, q} ∈ E | p, q ∈ I}| ≤ f

⎛⎜⎜⎜⎜⎜⎜⎝
∑
p∈I

Δp

⎞⎟⎟⎟⎟⎟⎟⎠ .
Similarly, g-almost maximality relaxes the requirement

of maximality regarding MIS. It allows the number of pro-
cesses adjacent to a process in I less than the number of pro-
cesses not in I with a restricted extent, which is the function
g of the number of processes not in I:

|V − I| − g (|V − I|) ≤ |N∗(I)| .
The above inequality implies the number of processes

that are not in I and not adjacent to I is not larger than the
function g of the number of processes that are not in I:

|V − I − N∗(I)| ≤ g (|V − I|) .
In this paper, we consider the case where f and g are

linear functions:

f (x) = k1x and g(x) = k2x,

where k1 and k2 are parameters, and 0 ≤ k1, k2 ≤ 1/γ where
γ is a sufficiently large constant. When k1 = k2 = 0, ALMIS
degenerates to MIS, which is the case we have analyzed in
detail in our previous work [3]. Therefore, we mainly con-
sider the case of k1 + k2 > 0 in this paper, unless stated
otherwise.

2.2 Loosely-Stabilizing Algorithm

Given an algorithmA, we define as the set of all possible
configurations of a distributed system G. For any ⊆ and
C ∈ , define ECTA(C, ) as the expected number of steps
until executions in EA(C) reach a configuration in under
the scheduler U and the error model M. For any configura-
tion C ∈ and a problem P, we define EHTA(C, S PP) as
the expected number of steps until the executions in EA(C)
deviate from the specification S PP of P for the first time
under the scheduler U and the error model M.

Definition 2. An algorithm A under the scheduler U and
the error model M is an (α, β)-loosely-stabilizing algorithm
for problem P with specification S PP if there exists a set
of configurations satisfying:

−max
C∈

ECTA(C, ) ≤ α
−min

C∈
EHTA(C, S PP) ≥ β

We call α and β the maximum expected convergence
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time and the minimum expected holding time of A, re-
spectively. A configuration in is called a safe configu-
ration. Intuitively, loose-stabilization requires that an exe-
cution starting from any configuration reaches a safe con-
figuration in a short time (α in Definition 2), and after that,
the execution satisfies the problem specification for a suffi-
ciently long time (β in Definition 2).

3. Redundant-State Algorithm

The redundant-state ( ) algorithm proposed in our pre-
vious work [3] is a loosely-stabilizing solution for the MIS
problem regarding unreliable communications, which can-
not be solved in a self-stabilizing manner. In this paper, we
adopt algorithm for the ALMIS problem with unreliable
communications.

The key idea of algorithm is to enlarge the do-
main of the process state by introducing a large amount of
redundancy (more specifically, let S = {0, 1, . . . , c} where
c = Θ(nd+1) and d is a sufficiently large constant) so that
even if some obtained state of a neighbor is corrupted by a
communication error, it becomes meaningless (i.e., the bit
sequence is invalid in the correct behavior of the algorithm)
with high probability. In other words, the erroneous state
can be detected and does not cause any incorrect effect on
the receiver with high probability. This mechanism allows
processes to greatly confine the influences from erroneous
communications.

Algorithm [3] is presented in Algorithm 1. Each
process pi has state si and sets it to value 0 or c so that the
set {pi ∈ V | si = c} forms the MIS or ALMIS after the
execution of the algorithm . State si takes a value from
S = {0, 1, . . . , c} and the values other than 0 and c are the
redundant values as explained above. In Algorithm 1, s′j
denotes the (possibly corrupted) state that pi obtains from
its neighbor p j. The algorithm works as follows. Each time
a process pi is activated, it reads the states of its neighbors.
Next, if its state si is maximal around its neighbors and si is
not c, it is set to c; if there exists a neighbor of pi such that
si is smaller than that of the neighbor, then si is set to 0; if
si is c and there exists a neighbor of pi such that the state of
the neighbor is also c, then si is set to 0.

Algorithm 1: [3] (Behavior of process pi)
Variables in pi:

si ∈ {0, 1, . . . , c} where c = Θ(nd+1) and d is a sufficiently
large constant

1 if ∀p j ∈ N(pi) : s′j ≤ si ∧ si � c then
2 si ← c

3 if ∃p j ∈ N(pi) : s′j > si then
4 si ← 0

5 if ∃p j ∈ N(pi) : s′j = c ∧ si = c then
6 si ← 0

Definition 3. We classify processes into four types.

• independent process: a process pi is an independent
process if si = c and ∀p j ∈ N(pi) : s j < c.

• dominated process: a process pi is a dominated pro-
cess if si = 0 and ∃p j ∈ N(pi) : p j is an independent
process.

• pseudo-dominated process: a process pi is a pseudo-
dominated process if si = 0, ∃p j ∈ N(pi) : s j = c,
but pi is not dominated (i.e., there is no independent
neighbor).

• illegal process: a process pi is illegal if pi is not inde-
pendent, dominated, or pseudo-dominated. That is, (i)
0 < si < c, (ii) si = 0 ∧ ∀p j ∈ N(pi) : s j < c, or (iii)
si = c ∧ ∃p j ∈ N(pi) : s j = c.

3.1 Specification and Safe Configurations

In this section, we define the specification S PAL of the
ALMIS problem and two sets of safe configurations AL and

MIS. For convenience, we denote the set of processes with
state c in a configuration C by I(C) = {pi ∈ V | C(si) = c}.
We omit C and write just I when no confusion occurs.

Definition 4. Given a distributed system G and non-
decreasing functions f and g, the specification S PAL( f , g)
of ALMIS problem is defined as

S PAL( f , g)
def
= (I is an ( f , g)-ALMIS of G) ∧ ∀pi � I : si = 0

Definition 5. Given a distributed system G and non-
decreasing functions f and g, define AL as the set of con-
figurations where the specification S PAL( f , g) is satisfied.

Define MIS as the set of configurations where for any
configuration in MIS, all processes in I are independent and
all processes not in I are dominated (or S PAL(0, 0) is satis-
fied).

From the definition, we have MIS ⊆ AL. The rea-
son for introducing two kinds of safe configurations is that,
it is intuitive to introduce AL since we are considering the
ALMIS problem. However, we will show that AL is not
a good choice since some configurations in AL are very
vulnerable regarding the almost maximality requirement,
which implies only a constant minimum expected holding
time. A smaller set of safe configurations is expected to
enable a longer holding time while possibly sacrificing the
convergence time. Therefore, we use MIS as the set of safe
configurations and succeed to achieve the loose-stabilization
with exponential holding time and logarithmic convergence
time.

4. Analysis of Time Complexity

In this section, we analyze the time complexity of algorithm
regarding the ALMIS problem. In Sect. 4.1, we give

an overview of the analysis, which shows the analysis for
the convergence time is trivial from our previous work, and
we cannot achieve loose-stabilization when considering AL
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as safe configurations. In Sect. 4.2, we show algorithm
is a loosely-stabilizing algorithm regarding ALMIS with an
exponentially long minimum expected holding time when
considering MIS as safe configurations.

4.1 Convergence Time and Impossibility Result

We can get the convergence time trivially by our previous
work [3]. When considering MIS as safe configurations,
we have the maximum expected convergence time for the
ALMIS problem directly by the following lemma.

Lemma 1 (Theorem 1 in [3]). max
C∈

ECT (C, MIS) =

O(log n) in terms of steps, where is the set of all possi-
ble configurations of .

Now we consider the case where AL is the set of safe
configurations. Since MIS ⊆ AL by Definition 5, ALMIS
can be regarded as an intermediate state of MIS. Thus, the
maximum expected convergence time regarding ALMIS is
upper-bounded by that regarding MIS, which is O(log n)
steps by Lemma 1.

Now we show that the above upper bound O(log n) is
tight. To lower-bound the maximum expected convergence
time regarding ALMIS, consider the case where initially all
processes have states neither 0 nor c. In this case, an ALMIS
can be achieved only after all n processes make moves, and
we can prove that such a case happens with high probability
in Θ(log n) steps by the following lemma.

Lemma 2 (Lemma 1 in [3]). By taking Θ(log n) steps from
an arbitrary initial configuration, all processes have state 0
or c with probability 1 − e−Θ(log n).

Therefore, the maximum expected convergence time
regarding ALMIS is lower-bounded by Θ(log n). Together
with Lemma 1, we have the following lemma.

Lemma 3. max
C∈

ECT (C, AL) = Θ(log n) in terms of

steps, where is the set of all possible configurations of
.

In the following, we analyze the minimum expected
holding time of the case where AL is the set of safe config-
urations, and show loose-stabilization cannot be achieved in
this case, as we mentioned in Sect. 3.1. First, we analyze the
bounds of |I| and |V−I|when I is an ALMIS in the following
lemma.

Lemma 4. If I is an ALMIS, then 1
2(1+Δ) · n ≤ |I| ≤ 2Δ

1+2Δ · n.

Proof. First, we have

n = |I| + |N∗(I)| + |V − I − N∗(I)|
≤ |I| +

∑
p∈I

Δp + k2|V − I|

≤ (1 + Δ)|I| + k2 · (n − |I|)
= (1 + Δ − k2)|I| + k2n.

We have the second line of inequality by the facts that
|N∗(I)| ≤ |∂(I)| and |∂(I)| ≤ ∑

p∈I Δp. The above inequali-
ties yields

|I| ≥ 1 − k2

1 + Δ − k2
· n ≥ 1

2(1 + Δ)
· n.

On the other hand, we have

|I| ≤
∑
p∈I

Δp

= 2 |{{p, q} ∈ E | p, q ∈ I}| + |∂(I)|
≤ 2 |{{p, q} ∈ E | p, q ∈ I}| + Δ|N∗(I)|
≤ 2k1

∑
p∈I

Δp + Δ|N∗(I)|

≤ 2k1Δ|I| + Δ|N∗(I)|,
which yields

|N∗(I)| ≥ 1 − 2k1Δ

Δ
|I| ≥ 1

2Δ
|I|.

Combine the above result and the fact that |I| + |N∗(I)| ≤ n,
we have

|I| ≤ 2Δ
1 + 2Δ

· n.
�

By Lemma 4, we can directly get

1
2Δ
· n ≤ |V − I| ≤ 1 + 2Δ

2 + 2Δ
· n.

After we bound |I| and |V − I|, we can also bound
the number of illegal processes in the graph when I is an
ALMIS in the following lemma. Denote t(ii) and t(iii) as the
number of illegal processes satisfying the conditions (ii) or
(iii) in the definition of illegal processes (cf. Definition 3)
in the graph, respectively. Notice that we do not consider
the illegal process satisfying (i) in the following because all
processes have state 0 or c in AL by Definition 5, and after
that, no processes change its state to values other than 0 or c
according to algorithm .

Lemma 5. If I is an ALMIS and equalities both hold in
inequalities (1) and (2), then the lower bounds of t(ii) and
t(iii) are 1

2Δ · k2n and 1
2Δ(1+Δ) · k1n, respectively.

Proof. The number t(ii) of illegal processes satisfying (ii) is

t(ii) = |V − I − N∗(I)|
= k2|V − I|
≥ 1

2Δ
· k2n.

The number t(iii) of illegal processes satisfying (iii) is

t(iii) ≥ 1
Δ
· |{{p, q} ∈ E | p, q ∈ I}|
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=
1
Δ
· k1

∑
p∈I

Δp

≥ 1
Δ
· k1|I|

≥ 1
2Δ(1 + Δ)

· k1n.

�

In the following two lemmas, we prove loose-
stabilization cannot be achieved when considering AL as
safe configurations.

Lemma 6 (Lemma 4 in [3]). If process pi is an illegal pro-
cess, then in any step, the probability that pi changes its
state is Θ(1).

Lemma 7. min
C∈ AL

EHT (C, S PAL) = Θ(1) in terms of steps.

Proof. Consider a configuration Ci ∈ AL where I is an
ALMIS and equalities hold in both inequalities (1) and (2).
By Lemma 5, we have

t(ii)
i ≥

1
2Δ
· k2n and t(iii)

i ≥ 1
2Δ(1 + Δ)

· k1n.

Denote ∂t(ii)
i and ∂t(iii)

i as the number of illegal pro-
cesses satisfying (ii) and (iii) that change state in Ci, respec-
tively. By Lemma 6, the probability that ∂t(ii)

i + ∂t
(iii)
i > 0 is

(remind Δ is a constant)

1 − (1 − Θ(1))t(ii)
i +t(iii)

i ≥ 1 − e−(k1+k2)Θ(n).

Note the fact that when illegal processes satisfying (ii)
change states, at most the same number of illegal processes
satisfying (iii) will be created (e.g., two adjacent illegal pro-
cesses satisfying (ii) change states and become illegal pro-
cesses satisfying (iii) simultaneously); when a single illegal
process p satisfying (iii) changes state, at most Δ − 1 illegal
processes satisfying (ii) will be created (e.g., Δ − 1 neigh-
bors of p has states 0 and p is the only neighbor of them that
had state c). Therefore, after ∂t(ii)

i (∂t(iii)
i , respectively) ille-

gal processes satisfying (ii) ((iii), respectively) change their
states, in the worst case we have

t(ii)
i+1 = t(ii)

i − ∂t(ii)
i + (Δ − 1)∂t(iii)

i

and

t(iii)
i+1 = t(iii)

i − ∂t(iii)
i + ∂t(ii)

i .

If ∂t(iii)
i ≥ ∂t(ii)

i , we have t(ii)
i+1 > t(ii)

i ; if ∂t(iii)
i < ∂t(ii)

i , we have

t(iii)
i+1 > t(iii)

i . If t(ii) increases by 1, the left side of inequality
(2) increases by 1 and the right side increases by k2, which
leads to the violation of inequality (2) (remind that equal-
ity holds in inequality (2) before t(ii) increases). Similarly,
if t(iii) increases by 1, inequality (1) is violated. Therefore,
we have Ci+1 � AL with probability at least 1 − e−(k1+k2)Θ(n),
which yields only constant steps of minimum expected hold-
ing time (remind k1 + k2 > 0). �

By Lemmas 3 and 7, the minimum expected hold-
ing time is much less than the maximum expected conver-
gence time, which yields that loose-stabilization cannot be
achieved when considering AL as safe configurations. In-
tuitively, the reason that causes the impossibility is the pos-
sible existence of pseudo-dominated processes that can po-
tentially become illegal processes, as we have shown in the
proof of Lemma 7. In the next section, we focus on the anal-
ysis of the holding time when considering MIS as safe con-
figurations, and loose-stabilization can be achieved in this
case.

4.2 Holding Time

In this section, we show that algorithm has an exponen-
tially long minimum expected holding time when consider-
ing MIS as safe configurations, which yields that can
achieve loose-stabilization for the ALMIS problem. In any
execution starting from a safe configuration in MIS, no pro-
cess changes its state to a value other than 0 or c. Thus, we
do not need to consider the illegal process satisfying (i) in
the following.

Denote PI as the total number of pseudo-dominated
and illegal processes. We analyze how the action of each
process affects the graph in the following two lemmas. More
specifically, in the following lemmas, we prove that if in-
dependent or dominated processes change states, PI will
increase; if pseudo-dominated or illegal processes change
states, PI does not increase.

Lemma 8. If an independent or dominated process change
its state, PI increases by at most Δ2 + 1.

Proof. Let p be the process that changes its state. When
p is an independent process and changes its state to 0, it
becomes an illegal process satisfying (ii). A neighbor q of
p also becomes an illegal process satisfying (ii) when p was
the only independent process adjacent to q. Therefore, PI
increases by at most Δ + 1.

When p is a dominated process and changes its state
to c, it becomes an illegal process satisfying (iii). A neigh-
bor q of p that was independent also becomes an illegal pro-
cess satisfying (iii), and all neighbors of q except p becomes
pseudo-dominated processes when q was the only indepen-
dent process adjacent to them. Therefore, PI increases by at
most Δ2 + 1. �

Lemma 9. If pseudo-dominated or illegal processes change
states, PI does not increase.

Proof. By Definition 3, independent processes are not ad-
jacent to any pseudo-dominated or illegal process (remind
that we do not consider illegal processes satisfying (i) here,
since no process changes its state to a value other than 0 or
c). Therefore, independent processes are not affected and re-
main independent when pseudo-dominated and illegal pro-
cesses change their states. On the other hand, dominated
processes may be adjacent to pseudo-dominated and illegal
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processes. However, since dominated processes are adjacent
to independent processes by Definition 3 and independent
processes remain independent when pseudo-dominated and
illegal processes change their states, dominated processes
also remain dominated when pseudo-dominated and illegal
processes change their states. Therefore, PI does not in-
crease. �

By Lemma 5, we know that violation of S PAL( f , g)
requires t(ii) > 1

2Δ · k2n or t(iii) > 1
2Δ(1+Δ) · k1n. Denote

kAL = min{ 1
2Δ(1+Δ) · k1,

1
2Δ · k2} for simplicity. In the follow-

ing, we analyze the case

PI > kALn

that is weaker than the previous one so that we can upper-
bound the probability that the previous case happens. To do
this, we use the results of the following lemmas from [3].

Lemma 10 (Lemma 2 in [3]). If process pi is an inde-
pendent, dominated or pseudo-dominated process, then in
any step, the probability that pi keeps the same state is
1 − O(1/c), where c = Θ(nd+1) and d is a sufficiently large
constant.

Lemma 11 (Lemma 5 in [3]). If process pi is an illegal
process, then in any step, the probability that pi becomes
independent is Ω(1).

Lemma 12 (Lemma 6 in [3]). If process pi is a pseudo-
dominated process, then in any step, the probability that pi

becomes dominated is Ω(1).

Denote Pl as the lower bound of the probabilities
that an illegal process becomes independent and a pseudo-
dominated process becomes dominated in any step. By
Lemmas 11 and 12, Pl is a constant greater than 0.

Lemma 13. Given an initial configuration C0 ∈ MIS and
an execution E ∈ E (C0). In any configuration Ci in E
where i ≥ 0, we have PIi ≤ kALn with probability at least
1 − e−Θ(kAL ·n), where PIi is the value of PI in Ci.

Proof. We prove the lemma by proving the following
claims.

Claim 1. If PIi = o(kALn), then PIi+1 ≤ kALn with probabil-
ity at least 1 − O(n−Θ(kAL·n)).

Proof. By Lemma 8, PIi increases by at most Δ2 + 1 if an
independent or dominated process changes its state. There-
fore, if at most 1

2(Δ2+1) · kALn independent and dominated
processes change states, we have

PIi+1 ≤ PIi + (Δ2 + 1) · 1
2(Δ2 + 1)

· kALn < kALn.

The probability such a case happens is (remind Δ is a con-
stant)

1 −
(

n − PIi
1

2(Δ2+1) · kALn

)
·O

(
1
c

) 1
2(Δ2+1)

·kALn

≥ 1 −O(n−Θ(kAL·n)).

�

Claim 2. If PIi = τ · kALn for some constant τ s.t. 0 < τ ≤ 1
in Ci, then PIi+1 < PIi with probability at least 1− e−Θ(kAL·n).

Proof. By Lemma 9, PIi does not increase if pseudo-
dominated or illegal processes change states. Moreover,
pseudo-dominated and illegal processes may become dom-
inated or independent with probability at least Pl (remind
Pl is a constant) by Lemmas 11 and 12. By Hoeffding’s
inequality [21], the probability that at least 1

2 Pl · PIi illegal
processes independent in one step is at least

1 − e
−2PIi·

⎛⎜⎜⎜⎜⎝Pl−
Pl
2 ·PIi
PIi

⎞⎟⎟⎟⎟⎠
2

= 1 − e−Θ(kALn).

By a similar analysis with Claim 1, the probability that
Pl

4 · PIi independent and dominated processes change states
in one step is at least 1−O(n−Θ(kAL·n)). Therefore, with prob-
ability

(1 − e−Θ(kALn)) · (1 − O(n−Θ(kAL ·n))) = 1 − e−Θ(kALn),

we have

PIi+1 ≤ PIi − 1
2

Pl · PIi +
1
4

Pl · PIi < PIi.

�

Initially, we have PI0 = 0 since C0 ∈ MIS. At each
configuration Ci (i > 0) after C0, if PIi−1 is o(kALn), e.g.,
PIi−1 = 0, we have PIi ≤ kALn with high probability by
Claim 1; if PIi−1 = τ·kALn for some constant τ s.t. 0 < τ ≤ 1,
e.g., PIi−1 =

1
2 · kALn or PIi−1 = kALn, we have PIi < PIi−1 ≤

kALn with high probability by Claim 2. Therefore, we have
the lemma. �

Combining the result of our previous work [3] and
Lemma 13, we can analyze the holding time in the following
lemma.

Lemma 14.

min
C∈ MIS

EHT (C, S PAL) = Ω
(
poly(n) + eΘ(kAL·n)

)

in terms of steps.

Proof. To deviate from the specification of ALMIS in exe-
cutions with initial configurations in MIS, the system should
deviate from MIS and also reach a configuration with PI >
kALn. By the result of [3], the minimum expected number of
steps to deviate from MIS is Ω(poly(n)).

By Lemma 13, we have PI ≤ kALn with probabil-
ity at least 1 − e−Θ(kALn) for any configuration in execu-
tion starting from an initial configuration in MIS. Hence,
the probability that PI > kALn is at most e−Θ(kALn), which
yields the minimum expected 1/e−Θ(kALn) = eΘ(kALn) steps up
to the first configuration satisfying PI > kALn, assuming
the execution starts from a configuration in MIS. There-
fore, we can obtain the minimum expected holding time of
Ω

(
max{poly(n), eΘ(kAL ·n)}

)
= Ω

(
poly(n) + eΘ(kAL·n)

)
. �
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Combining Lemmas 1 and 14, we have our main theo-
rem of the paper.

Theorem 1. Algorithm is a
(
O (log n),Ω

(
poly(n) +

eΘ(kAL ·n)))-loosely-stabilizing algorithm regarding the ALMIS
problem.

By choosing different kAL, we can leverage the quality
of ALMIS and its minimum expected holding time.

• When kAL = 1/γ where γ is a sufficiently large con-
stant, the minimum expected holding time is Ω(eΘ(n)).

• When kAL = 1/o(n), e.g., kAL = 1/ log n, the minimum
expected holding time is Ω(eΘ(n/ log n)), which is sub-
exponentially long.

• When kAL = Θ(1/n) or 0, the minimum expected hold-
ing time is Ω(poly(n)), which is polynomial long. Note
that when kAL = 0, the problem degenerates to the MIS
problem.

5. Conclusion

In this paper, we formulated the definition of almost MIS
(ALMIS) and applied the loosely-stabilizing redundant-
state algorithm regarding ALMIS. We showed that by con-
sidering ALMIS, the algorithm can keep the logarithmic
maximum expected convergence time while achieving at
most the exponential minimum expected holding time by
the choice of quality of ALMIS.
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