
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.1 JANUARY 2024
83

PAPER
Research on Lightweight Acoustic Scene Perception Method Based
on Drunkard Methodology

Wenkai LIU†, Lin ZHANG†, Nonmembers, Menglong WU†a), Member, Xichang CAI†,
and Hongxia DONG†, Nonmembers

SUMMARY The goal of Acoustic Scene Classification (ASC) is to
simulate human analysis of the surrounding environment and make accu-
rate decisions promptly. Extracting useful information from audio signals
in real-world scenarios is challenging and can lead to suboptimal perfor-
mance in acoustic scene classification, especially in environments with
relatively homogeneous backgrounds. To address this problem, we model
the sobering-up process of “drunkards” in real-life and the guiding behavior
of normal people, and construct a high-precision lightweight model im-
plementation methodology called the “drunkard methodology”. The core
idea includes three parts: (1) designing a special feature transformation
module based on the different mechanisms of information perception be-
tween drunkards and ordinary people, to simulate the process of gradually
sobering up and the changes in feature perception ability; (2) studying a
lightweight “drunken” model that matches the normal model’s perception
processing process. The model uses a multi-scale class residual block
structure and can obtain finer feature representations by fusing information
extracted at different scales; (3) introducing a guiding and fusion module of
the conventional model to the “drunken” model to speed up the sobering-
up process and achieve iterative optimization and accuracy improvement.
Evaluation results on the official dataset of DCASE2022 Task1 demonstrate
that our baseline system achieves 40.4% accuracy and 2.284 loss under the
condition of 442.67K parameters and 19.40M MAC (multiply-accumulate
operations). After adopting the “drunkard” mechanism, the accuracy is
improved to 45.2%, and the loss is reduced by 0.634 under the condition of
551.89K parameters and 23.6M MAC.
key words: acoustic scene classification, model compression, multi-scale
module, knowledge distillation

1. Introduction

Acoustic scene classification [1], as an important application
of deep convolutional neural networks [2] in the audio field,
simulates human perception of the external environment to
make correct classifications of the surrounding environment
and has been widely used in audio monitoring, intelligent
driving assistance, voiceprint recognition, and other fields.

Most acoustic scene classification tasks adopt a top-
down serial approach, directly inputting the extracted fea-
ture information into a neural network model for prediction.
However, this approach has some limitations. Currently, the
mainstream neural networks are still deep convolutional neu-
ral networks. In addition, some high-precision lightweight
models [3], [4] have also been proposed. For example,
Kim [5] used an efficient BC-ResNet architecture to extract
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two feature maps specific to the frequency and time dimen-
sions by two-dimensional convolution on the frequency and
one-dimensional convolution on the time, achieving excel-
lent performance. Lee proposed BC-Res2Net [7] by fusing
BC-ResNet and Res2Net [6] structures, which can effectively
obtain features in the frequency and time dimensions through
broadcast learning and can run at multiple scales with sig-
nificant performance improvement. In recent years, the Mo-
bileNet series models [8] and ShuffleNet [9] have achieved
lightweight and efficient networks by introducing deep con-
volution and shuffle operations.

However, the aforementioned networks are limited by
their structure and the computational cost increases as the
model deepens, which is not conducive to deployment on
resource-constrained devices. Moreover, using a single neu-
ral network model may not fully extract key audio fea-
tures [10], and there is currently no determined optimal
model architecture and hyperparameter combination, which
can lead to erroneous decisions on scene categories.

To address the aforementioned issues and inspired by
the idea that a drunkard may not accurately perceive their
environment like a sober person but can improve their judg-
ment with guidance, we propose a lightweight and robust
framework, the Drunkard Methodology. In the following,
we provide a detailed explanation of three aspects:

1. This concept stems from our observations of every-
day life. We have noticed that when it comes to perceiving
the external environment, despite factors like impaired hear-
ing and vision, the primary distinction lies in the working
state of the brain between a normal individual and an intox-
icated one. The brain of an intoxicated person, compared to
that of a normal individual, exhibits reduced sensitivity and
diminished information-processing capabilities. Inspired by
this, we constructed two analogous models: the Normal
Model and the Drunken Model, to simulate the perceptual
abilities of a sober person and an intoxicated person’s brain
in the external environment. Additionally, we designed a
Guide module to facilitate the transformation from the Nor-
mal Model to the Drunken Model. It’s worth mentioning
that the structural similarities between the two models are
due to the relatively coarse granularity of tasks related to
scene perception, where the differences in perceptual abili-
ties between intoxicated and sober individuals are relatively
minor.

2. Considering the numbing effect of alcohol on an
intoxicated person, their brain’s information reception ca-
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pabilities are impaired, leading to a reduced intake of in-
formation compared to a sober individual. To address this,
we made design adjustments in the feature extraction com-
ponent. Drawing an analogy to the broader spectrum of
information a sober individual receives, we constructed the
Normal Feature composed of three distinct features. Addi-
tionally, a Drunken Feature has been constructed, which has
lower complexity and contains more concise feature infor-
mation.

3. Furthermore, we hold the belief that the perceptual
and information-processing capabilities of an intoxicated
person can be enhanced through external guidance from a
sober individual [11]. Therefore, in the feature extraction
section, we designed a feature conversion module [12], serv-
ing as a guide from the Normal Feature to the Drunken
Feature. The inspiration for this module comes from the
Squeeze-and-Excitation (SE) attention mechanism [13], ca-
pable of removing redundant feature information from the
Normal Feature, thereby enabling the Drunken Feature to
focus more on crucial regions and become more lightweight.
Additionally, we formulated a Fusion module to simulate the
process of a sober individual guiding an intoxicated one. In
summary, the Inebriated Paradigm we have devised com-
prises two parallel branches representing strong and weak
environmental perception capabilities, incorporating several
modules that interconnect these two branches, symbolizing
the guidance provided by a sober individual to an intoxi-
cated one. This parallel framework, compared to traditional
serial structures, leverages the inherent connections between
the two states, ensuring lightweight design and robustness
while enhancing predictive accuracy and compensating for
deficiencies in a singular model structure. A detailed ex-
planation of the framework’s structure will be provided in
Sect. 2.1.

2. Proposed Method

This chapter presents the methodology of the current study in
three parts. Section 2.1 provides an overview of the overall
design architecture of the drunkard methodology, demon-
strating its underlying design principles and explaining the
interrelationships among its various components. Section

Fig. 1 The overall framework of the Drunkard Methodology

2.2 introduces the deep learning features employed in this
study, as well as the feature conversion module. Section
2.3 provides a detailed description of the structures of the
Drunken model, the Normal model, and the guidance and
fusion modules.

2.1 Overall Framework

The overall architecture is illustrated in Fig. 1, which in-
cludes two branches and the modules connecting them.

The uppermost branch delineates the modeling pro-
cess of normal behavior. Mapping to deep learning frame-
works,the input data undergoes a designated feature extrac-
tion procedure to yield the Normal Feature, mirroring the
scenario information reception that typifies the human ex-
perience. Following this, the Normal Feature is input into
the Normal Model for further feature extraction, training,
and subsequent scene prediction. In this context, the Nor-
mal Model simulates the perceptual and processing journey
through which a person receives, comprehends, and pro-
cesses information from their external environment.

Subsequently, the lowermost branch illustrates the mod-
eling process of intoxicated behavior. To emulate the com-
paratively reduced external information intake by an intoxi-
cated individual, the Normal Feature is subject to a feature
conversion module, resulting in a more concise Drunken
Feature. The Drunken Feature, in contrast to the Normal
Feature, discards redundant feature information, concentrat-
ing on salient feature information and achieving a more
lightweight representation. The ensuing step involves in-
putting the Drunken Feature into the Drunken Model for sub-
sequent feature extraction, training, and prediction. Analo-
gous to the prior case, this segment emulates the intoxicated
individual’s perception and processing of external scene in-
formation. The Drunken Model emerges from the trans-
formation of the Normal Model through the Guide mod-
ule, which primarily entails adding the Frequency Group-
ing Fusion Convolution layer to the Normal Model. This
layer partitions the frequency dimension and reuses different-
dimensional features, bolstering feature representation. Ad-
ditionally, for lightweight design, the width of the Drunken
Model is trimmed.
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The Fusion module’s role is to amalgamate the two
branches. In this paper, the conventional knowledge distil-
lation strategy is adopted. Knowledge distillation is a tech-
nique introduced by Hinton et al. [14] that transfers knowl-
edge from a complex model to a simpler one, thereby enhanc-
ing the performance of the latter. The philosophy behind
knowledge distillation aligns harmoniously with the overar-
ching architecture proposed in this study, making it suitable
as a transition module between normal and intoxicated be-
haviors. Furthermore, we reviewed literature about advance-
ments in knowledge distillation techniques [15], [16]. It is
undeniable that these improvements have yielded superior
results, yet we acknowledge that such enhancements are of-
ten tailored to specific tasks. Consequently, the applicability
of the enhanced knowledge distillation techniques might be
limited in terms of generality. We sought a more univer-
sally compatible technique that aligns well with our method.
Thus, we ultimately opted for the conventional knowledge
distillation method put forth by Hinton et al., which can
serve as a model compression approach, enhancing the per-
formance of a simple model without incurring significant
computational overhead.

2.2 Feature Extraction

2.2.1 Normal Feature

Although new advanced features are often designed for
audio-related fields such as speech recognition, sound event
detection, and information retrieval, we expect to choose
mature and perceptually meaningful feature representations.
Based on human auditory features, we are more sensitive to
the different information in the low-frequency range, and the
human ear cannot perceive frequency linearly. Therefore, we
first consider using the logarithmic Mel spectrogram feature.
The logarithmic Mel spectrogram is a commonly used audio
feature extraction method, which contains time-domain and
frequency-domain information as well as perceptually rele-
vant amplitude information. Its core is the Mel scale, which
better matches the auditory characteristics of the human ear.

In addition, since speech signals are temporally con-
tinuous, feature information extracted by frame-wise pro-
cessing only reflects the characteristics of the current frame
of the speech signal. To better capture the temporal conti-
nuity of the signal, the feature dimension can be increased
by adding the dimensions of the preceding and succeeding
frames, commonly achieved by first-order and second-order
differences. Therefore, we applied first-order and second-
order differences to the logarithmic Mel spectrogram and
cascaded them along the channel dimension. The final Nor-
mal Feature is a splice of log-Mel spectral features, first-order
difference features, and second-order difference features with
three-dimensional channel dimensions.

2.2.2 Drunken Feature

Considering that the Normal Feature is obtained by con-

catenating three types of features along the channel di-
mension, distinct feature extraction methods might capture
similar feature patterns, implying that the Normal Feature
could potentially encompass redundant feature information.
Moreover, intermediate feature maps generated during the
model training process are often characterized by redun-
dancy [17]. Originally devised to capture long-range de-
pendencies and salient information in natural language pro-
cessing tasks, attention mechanisms have found widespread
application across various domains. In light of the aforemen-
tioned issues, we contemplate the introduction of attention
mechanisms during the feature extraction phase, aiming to
suppress redundant information within the Normal Feature
while accentuating meaningful details. Drawing inspira-
tion from the SE attention module and incorporating certain
structural elements, we have formulated an attention-based
feature conversion module. As a consequence of processing
through this feature conversion module, the Normal Feature
is refined to yield a de-redundant counterpart referred to as
the Drunken Feature. In comparison to the Normal Feature,
the Drunken Feature demonstrates a more streamlined pro-
file, owing to the feature conversion module’s capability to
mitigate the presence of akin features.

As depicted in Fig. 2 below, the feature conversion mod-
ule commences by subjecting each channel to a global aver-
age pooling operation, thereby reducing the spatial dimen-
sions to scalar values, yielding the global average for each
channel. The intent behind this operation is to compress
each channel, capturing channel-wise global statistical infor-
mation while concurrently diminishing computational over-
head. Subsequently, channel-wise correlations are learned
through fully connected layers. Eventually, by employing the
sigmoid function, weights of different channel dimensions
are derived to ascertain the significance of features. These
weights are then multiplied with their corresponding orig-
inal features, culminating in the derivation of the Drunken
Feature.

Fig. 2 Feature conversion module
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2.3 Network Setup

2.3.1 Drunken Model

The datasets used in this study consist of 1-second audio files,
which contain limited information. To address this issue, a
multi-scale Drunken model is designed to capture more de-
tailed and richer feature information at different scales. The
model mainly consists of three modules, namely, Frequency
Grouping Fusion Convolution (FreGroupConv2d), Group-
Conv2d, and Improved Bottleneck Block (FCresnet_block).
We use the Drunken Model in Table 1 as the baseline model
for this paper, which is roughly divided into six stages. First,
the feature information is enriched through the FreGroup-
Conv2d. Then, convolution and pooling layers are used
for channel expansion and downsampling. The fourth stage
contains multiple stacked FCresnet_blocks, with different
channel numbers and step sizes, and Dropout is added to
prevent overfitting. Finally, the classification results are out-
put after global average pooling and fully connected layers.
Figure 3 is a more visual presentation of the model structure
in Table 1, with different colored blocks representing various
modules in Table 1.
A. Frequency Grouping Fusion Convolution

The information contained within sound signals in dif-
ferent urban scenes varies across distinct frequency ranges.

Table 1 Overall architecture of the Drunken Model (our baseline).
Stage Operator Out_channels Stride Output

Stage 1 3×3 FreGroupConv2d 3 1 128×43×3
Stage 2 3×3 Conv2d 32 1 128×43×32
Stage 3 2×2 MaxPooling 32 2 64×22×32

FCresnet_block×2 64 1 64×22×64
FCresnet_block×3 64 2 32×11×64

Stage 4 FCresnet_block×5 128 1 32×11×128
Dropout (0.3) - - 32×11×128

FCresnet_block×2 128 2 16×6×128
Stage 5 GlobalAveragePooling - - -
Stage 6 Dense 10 - -

Fig. 3 Drunken Model (our baseline).

For instance, in the case of sound signals in a city cen-
ter, the low-frequency component may encapsulate the base-
line noise such as low-frequency vibrations from traffic flow
and engine noises, while the high-frequency portion might
comprise sharp sounds like braking and car horn honks.
In contrast, sound signals within a park might encompass
low-frequency natural sounds like bird calls and distant wa-
ter flow, in the low-frequency range, and detailed sounds
like bird chirps and small animal noises within the high-
frequency range. Analyzing the auditory information across
these distinct frequency segments can offer enhanced in-
sights into activities within different scenes, rendering this
aspect crucial for scene classification tasks.

Drawing from the aforementioned notions and inspired
by the Res2Net model architecture, we partition the fre-
quency dimension of convolutional layers. This partition-
ing permits the low-frequency component to capture global
and coarse features, while the high-frequency component is
adept at capturing local and intricate details. Such parti-
tioning aids in augmenting the model’s generalization ca-
pacity towards input data. Furthermore, the application of
frequency-grouped convolutions enables the separate pro-
cessing of features within different frequency ranges, thus
enhancing the model’s noise resistance to a certain extent.

Figure 4 illustrates the schematic principle of the Fre-
quency Grouping Fusion Convolution. We uniformly parti-
tion the frequency dimension into four groups. Each group
undergoes a 3×3 convolution. Except the first pathway, each
subsequent pathway incorporates information from the pre-
ceding pathway. This progressive feature reuse mechanism,
transitioning from low to high-frequency features, mirrors
the stepwise feature extraction process observed in the hu-
man visual system from edges to textures, thereby enrich-
ing feature information to a certain extent. Ultimately, the
outputs are concatenated along the channel dimension and
forwarded to the subsequent stage. Given the subsequent
downsampling along the frequency axis, the incorporation
of this layer in the later stages of the model is disregarded.

Fig. 4 Frequency grouping fusion convolution
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Instead, the frequency-grouped fusion convolution is posi-
tioned solely at the first layer of the model.
B. FCresnet_block

This section constitutes the main body of the Drunken
Model, which is modified based on the bottleneck in
ResNet [18] and named FCresnet_block. The original bot-
tleneck block consists of three convolutional layers and a
shortcut connection that maps the input directly to the out-
put. The three convolutional layers have kernel sizes of 1×1,
3×3, and 1×1, respectively. The 1×1 convolution mainly
changes the number of channels and does not increase the
spatial dimension of the feature information. Only a 3×3
convolutional layer is used to extract spatial features. To fully
explore the deep information of audio features, we consider
using grouped convolution to replace the 3×3 convolution in
the bottleneck block. Grouped convolution evenly divides
the channel dimension into multiple groups, and each path
goes through a 3×3 convolutional layer. Finally, the outputs
of all paths are concatenated along the channel dimension,
ensuring that the output and input have the same number
of channels. The parameter “Groups” is used to indicate
the number of channel groups, and the baseline value for
“Groups” in this paper is 8.

2.3.2 Normal Model

The overall architecture of the Normal Model is akin to the
Drunken Model outlined in Table 1. The distinctions lie
in several aspects: 1) The Normal Model lacks the Fre-
quency Grouping Fusion Convolution, i.e., Stage 1 as de-
lineated in Table 1; 2) The Normal Model exhibits higher
complexity, primarily in terms of model width. Within the
FCresnet_block module of the Normal Model, the value of
“Groups” is set to 32, resulting in a channel count twice that
of the Drunken Model; 3) The Normal Model comprises
a depth of 37 layers, with a MAC (Multiply-Accumulate)
index of 23.5M, slightly higher than that of the Drunken
Model. It boasts approximately 1114.6k parameters, which
is roughly three times that of the Drunken Model. Experi-
mental outcomes reveal that the highest accuracy achieved
by the Normal Model reaches 46.4%, with a loss of 1.619.

2.3.3 Guide and Fusion Module

The role of the Guide module is to transform the Normal
Model into the Drunken Model through specific operations.
One of these operations involves channel reduction. We con-
ducted multiple experiments to fine-tune the channel count
of the model and retained the optimal configuration, as de-
tailed in Table 1. Additionally, we introduced Frequency
Grouping Fusion Convolution to the Normal Model and de-
creased the number of groups for grouped convolutions, all
building upon the foundation of the Normal Model.

The fusion module adopts the knowledge distilla-
tion strategy, the knowledge distillation strategy contains a
teacher model and a student model, which improves the per-
formance of the student model by teaching the knowledge in

the higher-performing teacher model to the lower-performing
student model. Combining the principle of knowledge dis-
tillation, we use the Normal Model in the Drunkard Method-
ology as the teacher model and the Drunken model as the
student model, and we use the original form of knowledge
distillation in this paper. First, the Normal model is trained
under different configurations, and the parameter setting with
the best performance is selected. Then, the soft label pre-
dictions of the Normal Model and the Drunken Model are
computed at the same temperature T, and the distillation
loss is calculated. The final loss is a weighted sum of the
distillation loss and the hard label loss, as shown in Eq. (1):

LTOT AL = αLDIST + (1 − α)LLABEL (1)

The distillation loss is based on matching predictions
using the soft targets given in Eq. (2) between the student and
teacher, where z is the logarithm, q is the soft target, and T is
the temperature that controls the softness of the probability
distribution.

qi =
exp(zi/T)∑
j exp(zi/T)

(2)

3. Experiments

3.1 Experimental Setup

3.1.1 Datasets and Evaluation Metrics

All experiments in this paper were conducted on the de-
velopment set [19] of DCASE (Detection and Classification
of Acoustic Scenes and Events) 2022 Task1, TAU Urban
Acoustic Scenes 2022 Mobile, the audio data in the dataset
is provided in monaural format at 44.1 kHz with 24-bit reso-
lution. This dataset comprises a total of 230,359 audio clips,
with a cumulative duration of 64 hours. We partitioned the
dataset into training and testing subsets, allocating 70% for
training and 30% for testing. Each audio clip has a dura-
tion of 1 second. The dataset comprises recordings from 10
cities and 9 devices: 3 real devices (A, B, C) and 6 simulated
devices (S1 S6). It encompasses 10 distinct scenes, namely
the airport, shopping mall, subway station, pedestrian street,
public square, traffic street, tram, bus, subway, and park. For
model evaluation, we employed the validation set provided
by DCASE2022 to assess the performance of the trained
model. The validation set comprises data from 12 cities, 10
acoustic scenes, and 11 devices, including five new devices
(unavailable in the development set): real device D and sim-
ulated devices S7-S11. The evaluation data encompasses
22 hours of audio recordings, recorded at different locations
compared to the development data.

We employed parameters and MAC count to measure
the system’s complexity. To validate the effectiveness of the
proposed method, we utilized loss and accuracy as metrics.
The cross-entropy loss function was employed to evaluate
the effectiveness of the proposed method.
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3.1.2 Training Settings

In terms of feature extraction, we use 128 Mel filters to pro-
cess audio signals and perform fast Fourier transform (FFT)
on them, with a Hamming window length and frame length
of 0.04 seconds and 0.02 seconds, respectively, resulting in a
128×43 spectrogram. First-order and second-order differen-
tial features are then extracted, and the three types of feature
spectrograms are concatenated along the channel dimension
to form a 128×43×3 input feature spectrogram.

During the training phase, the experiment sets the batch
size to 128 for both the Drunken model and the Normal
model, with 256 iterations for each model and 200 itera-
tions for the knowledge distillation experiment. In addition,
Mixup and SpecAugment data augmentation techniques are
introduced to optimize the training process, and an early
stopping mechanism is added to prevent overfitting. Multiple
ablation experiments are conducted to optimize the proposed
Drunken model and save the best settings. Based on these
settings, training for the Normal model and the knowledge
distillation experiments are performed.

The baseline system in our paper uses logarithmic Mel
spectra and first-order and second-order differential features
as input features. The model adopts an FC_ResNet with
a depth of 38 layers and Groups set to 8, training for 256
iterations on the entire dataset without data augmentation
or coordinate attention mechanism. The experiments are
conducted on an NVIDIA RTX2080 Ti using the Tensorflow
and Keras frameworks, with a Windows 10 operating system.

3.1.3 Optimization Method

In this paper, several optimization methods are employed
to effectively improve the model performance,which are de-
scribed in detail as follows.

Mixup [21] randomly selects two different sample-label
pairs from the same batch of data and generates a new
sample-label pair by adding them together in proportion.
By generating new samples, the generalization ability of the
model can be improved and the problem of imbalanced data
classes can be alleviated.

SpecAugment [22] involves random transformations in
the time-frequency domain of speech signals, including
masking in the time and frequency domain, time warping,
and frequency masking. This technique improves the robust-
ness and generalization ability of the model without requiring
additional parameters or computational costs.

The positional attention mechanism [23] adds relative
positional information to each position vector, enabling the
model to better understand the relationship between different
positions in a sequence. Compared to other position encod-
ing methods, the computational complexity of the positional
attention mechanism is relatively low, enabling efficient pro-
cessing of long sequences.

In Sect. 3.1.1, we allocated 70% of the development
dataset for training and 30% for testing, following the par-

titioning guidelines provided by the DCASE official doc-
umentation. However, we identified a potential drawback
in this partitioning approach, as it could result in a rela-
tively limited size of the training set, thereby affecting the
effectiveness of model training. To address this concern,
we introduced an optimization strategy by augmenting the
training dataset. As part of this optimization, we performed
a re-division of the development set, utilizing the entire de-
velopment dataset for training purposes, while keeping the
validation set unchanged.

3.2 Results and Analysis

3.2.1 Classification Results on the Drunken Model

Tables 2 and 3 investigate the impact of two hyperparam-
eters, namely depth, and Groups, on the Drunken Model’s
performance in the ASC task. Initially, we varied the val-
ues of these two hyperparameters, iteratively training on the
training set, and retained the Drunken Model with the best
training results. Subsequently, we evaluated the correspond-
ing best models saved under different hyperparameter set-
tings on the validation set, yielding the experimental results
presented in Tables 2 and 3.

To explore the optimal number of Groups, we main-
tained the Drunken Model’s depth at 38 while tuning the
Groups. With a stride of 2, we conducted multiple experi-
ments within the range of Groups [2, 38], selecting represen-
tative data points for Table 2. Results reveal that an increase
in Groups from 4 to 8 leads to a 1.9% accuracy improvement.
However, within the range of Groups [8, 28], accuracy ex-
hibited a gradual decline, with Groups set at 8 yielding the
best performance. Although a slight uptick is observed in
Group 32 compared to Group 28, this increase is within the
margin of potential error, and the accuracy remains below
the highest level by 1%. Furthermore, a substantial decrease
in accuracy occurs when Groups is increased to 36. This ob-
servation substantiates that an excessive number of channels
may lead to overfitting. Nevertheless, a judicious selection
of channel grouping can introduce rich feature information
and enhance predictive accuracy.

Turning to the exploration of the optimal model depth,

Table 2 Results with different numbers of groups.
Groups Accuracy Groups Accuracy

4 39.6% 24 40.2%
8 41.5% 28 40.0%
12 40.6% 32 40.5%
16 40.1% 36 38.5%

Table 3 Results with different depths.
Depth Accuracy Loss Parameters MACs

20 38.0% 2.195 255.02K 14.48M
28 39.6% 1.925 300.12K 16.52M
38 41.5% 1.86 442.67K 19.40M
50 38.6% 1.829 732.10K 25.6M
56 36.5% 2.625 1236.25K 30.5M
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we kept Groups fixed at 8 and conducted multiple exper-
iments within the Depth range [16, 38], with a stride of
4. Representative data points are presented in Table 3. As
model depth significantly influences complexity, we aimed
to obtain a relatively lightweight Drunken Model with high
accuracy. Consequently, we included model parameters and
MAC values in Table 3. The results in Table 3 demonstrate
that performance gradually improves with increasing model
depth, but further deepening the model beyond a certain point
yields diminishing returns, potentially due to overfitting. The
model attains an accuracy of 41.5% at a depth of 38 layers,
with a loss value of 1.86, parameter count of 442.67K, and
MACs of 19.40M. Based on the aforementioned outcomes,
we opt to proceed with experiments utilizing an FC_ResNet
with Groups set at 8 and a depth of 38 layers.

We also used a series of optimization methods, and to
verify their effectiveness, we conducted experiments under
the optimal hyperparameter settings of Tables 2 and 3.Table 4
presents the performance of the Drunken Model with differ-
ent optimization methods added, in the order from top to bot-
tom of the table. The results indicate that each optimization
method has improved the performance of the Drunken Model
to some extent. Expanding the training set appropriately is
the most direct way to improve the network performance,
as it can provide diverse feature information for subsequent
training. Mixup and Specaugment have been proven to be
effective optimization methods, with an accuracy increase
of 1% and a significant decrease in loss of 0.42 after data
augmentation. The Coordinate Attention mechanism has
performed well in improving accuracy, with an accuracy in-
crease of 1.6% and a loss decrease of 0.123. This is due
to the embedding of position information into the channel
attention, enabling the network to obtain information from a
larger range while avoiding significant overhead.

3.2.2 Feature Comparison Experiment

This section evaluates the effectiveness of the feature con-
version module on both the Drunken Model and the Normal
Model, with the results shown in Table 5. However, the
expected improvement was not observed, as the accuracy

Table 4 Optimization experiments on the Drunkard Model. The better
results are darker colors.

Optimization Method Accuracy Loss

Training set expansion Use
No use

40.4%(our baseline)
39.3%

2.284
2.236

+Mixup&Specaugment Use
No use

41.5%
40.4%

1.864
2.284

+Coordinate attention(CA) Use
No use

43.1%
41.5%

1.741
1.864

Table 5 Feature comparison experiment on the Drunkard Model and
Normal Model. The best results are darker colors.

Conversion Druken Model Normal Model
No use 41.5% 46.4%

use 40.2% 45.9%

decreased by approximately 1% after adding it. Considering
that it is unreasonable to use global average pooling, our ini-
tial intention is to remove the redundant feature information,
but GAP will greatly reduce the number of parameters, so
some important feature parameters are also lost in the pro-
cess of removing the redundant information. To address this
issue, we will further investigate it in future research.

3.2.3 Knowledge Distillation Ablation Experiments

This section presents ablation experiments on knowledge dis-
tillation to verify the effectiveness of the proposed method
and explore the optimal temperature and loss of weight. To
eliminate the influence of other factors, we used logarithmic
Mel spectrograms, first-order and second-order differences
as input features, trained on the entire dataset with 200 itera-
tions. The teacher model was the trained Normal Model with
an accuracy of 46.4%, and the student model was FC_ResNet
with 8 groups and 38 layers. We initially alter the values of
two hyperparameters, iteratively iterating on the training set,
and preserving the optimal configuration. Subsequently, an
evaluation is conducted on the validation set, yielding the
experimental outcomes presented in Tables 6 and 7.

We conducted several experiments both in the range of
T as [1,8] and as [0.1,1], and selected representative data
are reported in Tables 6 and 7.The best performance was
achieved when the temperature was set to 2, indicating that
appropriately softening the output of the label by the teacher
model can reduce the degree of polarization in the results
and provide more category information. The better the per-
formance of knowledge distillation. The best result was ob-
tained with a loss weight of 0.9, with an accuracy of 45.2%
and a loss of 1.650, indicating that Drunken Model benefits
significantly from the useful information obtained from the
Normal Model, which is crucial for improving the accuracy
of the Drunken Model.

Table 6 Accuracy and loss at different temperatures. Experimental setup
α = 0.9.

Temperature Accuracy Loss
1 43.5% 1.768
2 45.2% 1.650
3 43.9% 1.721
4 43.1% 1.801
5 42.8% 1.854

Table 7 Accuracy and loss at different loss weights.
α Accuracy Loss

0.3 41.9% 1.870
0.4 41.8% 1.877
0.5 42.1% 1.832
0.6 42.0% 1.842
0.7 42.5% 1.774
0.8 43.4% 1.731
0.9 45.2% 1.650
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Table 8 Accuracy on different devices.

Devices our
baseline

our baseline
+Mixup

+Specaugment

our baseline
+Mixup

+Specaugment
+CA

KD
T=2
α=0.9

A 58.2% 59.4% 59.1% 62.1%
B 46.2% 46.2% 46.3% 52.2%
C 49.3% 52.9% 54.2% 54.8%
S1 41.1% 42.9% 41.4% 45.7%
S2 37.5% 41.4% 39.1% 43.7%
S3 40.1% 40.4% 43.2% 44.3%
S4 30.4% 32.2% 35.6% 35.4%
S5 34.9% 33.3% 39.2% 40.1%
S6 26.4% 25.2% 30.0% 28.5%

3.2.4 Accuracy Results on Different Devices and Scenes

This section presents the evaluation results of different model
settings for nine devices and ten scenarios. Table 8 shows that
data augmentation and coordinate attention mechanism are
effective in improving model performance on most devices,
especially the coordinate attention mechanism, which can
further improve the accuracy of the model based on data
augmentation. Both coordinate attention mechanism and
Mixup can enhance the feature representation ability.

Furthermore, Table 8 shows that the effect of data aug-
mentation and attention mechanism is not good on a small
number of devices, such as the accuracy of S5 decreases by
1.6% after adding data augmentation, and the accuracy of
S1 decreases by 2.3% after adding CA. These experimental
results do not deny the effectiveness of CA and data aug-
mentation. Besides the randomness of the experiment, we
believe that this is closely related to the size of the dataset.
Device A accounts for 70% of the total dataset, while the
data of S1-S6 are transformed from the data of Device A and
account for a relatively small proportion. Therefore, insuffi-
cient data volume may lead to a decrease in performance.

Compared with the previous two methods, knowledge
distillation steadily improves the performance of each de-
vice, with an accuracy improvement of 2% 6.5% compared
to the baseline, indicating that knowledge distillation can sig-
nificantly improve the model’s robustness and generalization
ability, with a relatively low data requirement.

Table 9 reports the experimental accuracies under dif-
ferent scenarios for three configuration modes. There are
accuracy drops in some scenarios for each mode. Besides
the influence of experimental interference factors and insuf-
ficient data, we hypothesize that the short duration of audio
may also contribute to the decrease in accuracy. All audios
in the dataset used in this study are one second long, con-
taining relatively limited scene information, and there may
be similar sounds in different scenarios. We believe this is
one of the key factors affecting the experimental results.

3.2.5 Comparison Experiments between the Drunken
Model and Other Models

To validate the effectiveness of our designed Drunken

Table 9 Accuracy on different scenes.

Scenes our
baseline

our baseline
+Mixup

+Specaugment

our baseline
+Mixup

+Specaugment
+CA

KD
T=2
α=0.9

Airport 35.6% 39.1% 42.0% 43.6%
Bus 34.8% 34.5% 45.3% 42.9%
Metro 40.9% 40.4% 40.4% 40.5%
Metro_station 38.8% 39.1% 29.5% 40.2%
Park 61.9% 67.1% 71.2% 68.1%
Public square 21.7% 18.7% 23.0% 18.6%
Shopping mall 38.8% 41.5% 39.1% 48.7%
Street pedestrain 29.7% 26.9% 24.7% 28.8%
Street traffic 66.4% 70.9% 65.1% 76.1%
tram 35.7% 37.3% 51.0% 44.5%

Table 10 Accuracy on different networks.
Method+Citation Accuracy Parameters

GhostNet [17] 41.2% 462.75K

MobileNetV2 [24] 40.5% 460.51K

RseNet [18] 39.1% 450.10K

ShuffleNetV2 [9] 40.1% 440.21K

FC_ResNet 41.5% 442.67K

Model, we compared it with state-of-the-art models, namely
ShuffleNetV2 [9], ResNet [18], MobileNet [24], and Ghost-
Net [17]. To ensure a fair comparison, we controlled the pa-
rameter count of the four models within the range of [440k,
465k]. We selected the Drunken Model named FC_ResNet
with an accuracy of 41.5% from Table 4 and trained the re-
maining four models under the same training settings. The
experimental results are presented in Table 10. The results
indicate that our designed model achieves higher accuracy
compared to ShuffleNetV2 and ResNet with similar param-
eter quantities. This can be attributed to the rich feature
information extracted from various scales. In comparison to
MobileNetV2, our approach yields a mere 1% increase in
accuracy; however, it maintains a reduced parameter count.
We believe this aspect underscores the balance between ac-
curacy and parameter efficiency within our approach. Fur-
thermore, in contrast to GhostNet, while our method presents
a marginal accuracy improvement of 0.3%, it manages to re-
duce parameters by 5%. Thus, our approach demonstrates
competitive performance comparable to GhostNet.

4. Conclusion

In this paper, we first propose a lightweight Drunken Model,
which achieves a 2.7% accuracy improvement and 0.543 loss
reduction compared to the baseline system after tuning un-
der the constraint of a parameter count of 442.67K. This
meets the requirement of low complexity and demonstrates
the feasibility of the proposed approach. Then, based on the
optimal settings of the Drunken Model, a similar structured
Normal Model is used and achieves an accuracy of 46.4%.
Finally, we explore the idea of integrating knowledge distil-
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lation as the fusion module in architecture. The proposed
Drunkard Methodology achieves an accuracy of 45.2% on
the DCASE2022 Task1 development dataset, which is 4.8%
higher than the baseline system, demonstrating the effective-
ness of the proposed approach. Of course, this module can
also use other strategies such as multi-task learning and ad-
versarial learning. We will conduct further research based
on this methodology in the future.
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