
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024
525

PAPER
Boosting Spectrum-Based Fault Localization via Multi-Correct
Programs in Online Programming

Wei ZHENG† ,††, Hao HU† ,††a), Tengfei CHEN† ,††, Fengyu YANG† ,††, Xin FAN† ,††,
and Peng XIAO† ,††, Nonmembers

SUMMARY Providing students with useful feedback on faulty pro-
grams can effectively help students fix programs. Spectrum-Based Fault
Location (SBFL), which is a widely studied and lightweight technique, can
automatically generate a suspicious value of statement ranking to help users
find potential faults in a program. However, the performance of SBFL
on student programs is not satisfactory, to improve the accuracy of SBFL
in student programs, we propose a novel Multi-Correct Programs based
Fault Localization (MCPFL) approach. Specifically, We first collected the
correct programs submitted by students on the OJ system according to the
programming problem numbers and removed the highly similar correct
programs based on code similarity, and then stored them together with the
faulty program to be located to construct a set of programs. Afterward,
we analyzed the suspiciousness of the term in the faulty program through
the Term Frequency-Inverse Document Frequency (TF-IDF). Finally, we
designed a formula to calculate the weight of suspiciousness for program
statements based on the number of input variables in the statement and
weighted it to the spectrum-based fault localization formula. To evaluate
the effectiveness of MCPFL, we conducted empirical studies on six student
program datasets collected in our OJ system, and the results showed that
MCPFL can effectively improve the traditional SBFL methods. In particu-
lar, on the EXAM metric, our approach improves by an average of 27.51%
on the Dstar formula.
key words: fault localization, TF-IDF, assisted programming

1. Introduction

The Online Judge (OJ) system is widely used in univer-
sity programming courses to rigorously determine whether
student-submitted programs meet the requirements of pro-
gramming problems, such as test cases, time-consuming lim-
itations, and occupied memory space limitations [1]. OJ sys-
tems usually rely on test results to check the correctness of
program functionality. When a student submits a program,
the OJ system obtains the actual output of the program and
compares it with the expected output of the multiple test
cases pre-set by the programming problem, and then returns
the result of whether the test case passed to the student.

In programming practice, various errors occur in the
students’ programs. These errors can prevent the program
from passing all test cases under the corresponding program-
ming problem. However, the OJ system will simply return

Manuscript received August 15, 2023.
Manuscript revised October 29, 2023.
Manuscript publicized December 11, 2023.

†The authors are with the School of Software, Nanchang
Hangkong University, Nanchang, China.

††The authors are with the Software Testing and Evaluation
Center, Nanchang Hangkong University, Nanchang 330063, China.

a) E-mail: 1187413809@qq.com (Corresponding author)
DOI: 10.1587/transinf.2023EDP7164

the result of whether the test case passed or not for these
faulty programs, and does not suggest any changes or checks
for the failed program. To find bugs in a faulty program,
students need to spend a lot of time debugging the code.
Therefore, the Fault Localization (FL) of programs is a ma-
jor challenge for students [2].

The fault localization technique is a commonly used
method by developers to focus on specific parts of the pro-
gram. This technique usually generates a list of suspicious
entities, and the entities most likely contain faults are ranked
at the top of the list. Researchers have proposed a lot of meth-
ods for fault localization. Among them, Spectrum-Based
Fault Localization (SBFL) is a lightweight fault localization
method that can provide fast feedback. But traditional SBFL
techniques cannot obtain satisfactory accuracy in student
programs [3], as the SBFL cannot distinguish the suspicion
of statements in one function block. Therefore, it is nec-
essary to investigate a fault localization technique for the
student programs and thus help students find the faults in the
program quickly.

In this paper, we utilize correct programs in the OJ
system and the TF-IDF (Term Frequency-Inverse Document
Frequency) algorithm to improve the performance of SBFL.
The idea is inspired by the classification algorithms in the
field of machine learning [4]: for a programming problem,
we have a collection of programs consisting of faulty pro-
grams and correct programs. It means that we have the label
(i.e., pass or fail) and sample (i.e., programs), but we do not
know which feature (i.e., statement) caused the program to
fail. We would like to find such features [5] that cause the
program to fail, which is the process of fault localization of
the program. TF-IDF can analyze the importance of each
term in the faulty program. When a term is important to the
faulty program, it means that the term is less important to the
other correct programs in the collection, and also means that
the term is more likely to cause the faulty program to fail.
Therefore, TF-IDF can be well applied to fault localization of
student programs to improve the traditional spectrum-based
fault localization.

Therefore, we propose the Multi-Correct Programs
based Fault Localization (MCPFL) approach to localize the
faults for student programs. Specifically, we collect all the
corresponding correct programs based on the programming
problem number and go through the code similarity to con-
struct the Multi-Correct Program. In this way, the Multi-
Correct Programs and the faulty program to be located can

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

526
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

form a new collection of programs. Then we calculate the
importance of terms in the faulty program by the TF-IDF and
analyze the importance of statements. Finally, MCPFL uti-
lizes the importance of statements to improve the traditional
SBFL.

The contributions of this paper are summarized as fol-
lows:

(1) We propose a novel fault localization approach
MCPFL, which utilizes Multi-Correct Programs and TF-IDF
to improve the accuracy of traditional SBFL.

(2) We design a formula for calculating the weight of
the suspicious value of statements for MCPFL.

(3) We applied MCPFL to six real data sets in our
OJ system. The experimental results show that the method
outperforms the traditional SBFL in terms of EXAM and
TOP-N metrics.

The rest of the paper is organized as follows. Section 2
introduces the background of the research and the related
work in this paper. Section 3 describes in detail how our ap-
proach is implemented. Section 4 describes the experimental
setup. Section 5 shows the experimental results, and Sect. 6
presents the threats to validity. Finally, Sect. 7 summarizes
our study and discusses future work.

2. Background and Related Work

In this section, we will first briefly introduce the OJ sys-
tem and explain the importance of the OJ system in prac-
tical teaching. After that, we will introduce the concept of
spectrum-based fault localization and the related work of
SBFL applied to student programs. Finally, the basic con-
cept of the term frequency-inverse document frequency and
the reasons for using it will be introduced.

2.1 Online Judge System

Online Judge (OJ) originated from the ACM International
Collegiate Programming Competition (ACM-ICPC). It is
an online program evaluation system with B/S architecture,
which implements black-box testing [6]. Users log in to the
system and submit the source code of the relevant topic, and
the system will return the results of the evaluation instantly.
Typically, the OJ system administrator prepares multiple test
cases for each programming problem, which contain stan-
dard inputs and outputs. Once the OJ system receives the
user-submitted programs, it will execute the source code and
compare each of its outputs with the expected output. Fi-
nally, the OJ system will return the results of the execution
of each test case. Although the OJ system is widely used by
students, it lacks useful feedback to help students locate and
fix bugs.

In this paper, we focus on the utilization of fault lo-
calization techniques in student programs and enabling it to
assist students in online programming.

Fig. 1 Framework of traditional SBFL

Fig. 2 Coverage matrix

2.2 Spectrum-Based Fault Localization

Researchers have proposed various fault localization
techniques, such as Spectrum-based Fault Localization
(SBFL) [7], Program slice-based Fault Localization [8], and
Predicate-based Fault Localization [9]. Among them, SBFL
is an effective and lightweight method that is widely used.
The framework of traditional SBFL is illustrated in Fig. 1.
SBFL takes the source code and test suite as input and outputs
a ranked list of program statements, with the most suspicious
ones at the top of the list. SBFL has three main processes as
follows:
(1) Building a coverage matrix

The program executes all test cases and records the
execution of program statements under each test case, thus
constituting the program spectrum, which can be represented
by a matrix (i.e., coverage matrix). A coverage matrix con-
sisting of m statements and n test cases is shown in Fig. 2,
Xmn is 1 if the program statement is executed by a test case,
0 otherwise. The test results are usually stored in the last
row of the coverage matrix, Rn is 0 indicating that the test
case passed and 1 indicating that the test case failed.
(2) Counting execution and coverage information

After constructing the coverage matrix, it is necessary to
count the execution and coverage information of the program
statement, which contains the following four main elements.
It is crucial for calculating the suspicious value of statements.

ep: the number of passed test cases that cover the state-
ment;

ZHENG et al.: BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA MULTI-CORRECT PROGRAMS IN ONLINE PROGRAMMING
527

Table 1 The most commonly used suspicious formulas

ef: the number of failed test cases that cover the state-
ment;

np: the number of passed test cases that do not cover
the statement;

nf: the number of failed test cases that do not cover the
statement.

(3) Calculating suspicious values
Based on the information in (2), the SBFL formula can

be used to calculate the suspicious values of the program
statements. Finally, these statements can be sorted according
to the suspicious value. In this list of suspicions, the higher
the statement’s ranking on the list, the more likely it is to be
a faulty statement. As a result, SBFL can more easily assist
developers in debugging.

The suspicious values of program statements calculated
using different spectrum fault localization formulas vary, and
the most classical fault localization method based on pro-
gram spectrum is Tarantula [10]. In recent years, researchers
have successively proposed many similar fault localization
methods. Among them, Aberu et al. successively proposed
Jaccard [11] and Ochiai [12] and experimentally proved that
the approach of Ochiai is better than Tarantula and Jaccard.
The commonly used spectrum-based fault localization for-
mulas are shown in Table 1.

SBFL is a lightweight fault localization method that
provides fast feedback. Therefore, it is widely used in fault
localization in student programs. Eliane Araujo [15] and
Yuxing Liu [16] both applied SBFL to student programs and
conducted empirical studies, and the experiments showed
that SBFL was able to locate faults in student programs.
Researchers have proposed new approaches to further im-
prove the effectiveness of SBFL in student programs. Zheng
Li [17] proposes to use fault statement category frequencies
to improve the effectiveness of SBFL in student programs.
Qusay Idrees Sarhan [18] proposed to utilize code elements
to improve the performance of traditional SBFL methods. In
summary, existing research has focused only on faulty pro-
grams without considering the correct program. In contrast

to these studies, this paper analyzes the importance of the
term in the faulty program through the correct programs and
further analyzes the suspiciousness of the statements in the
faulty program to improve the SBFL methods.

2.3 TF-IDF

TF-IDF (Term Frequency-Inverse Document Frequency) is a
numerical statistical technique [19] that can be used to evalu-
ate the importance of a term in a document to that document
and is a common term weighting method used in information
retrieval and text mining [20]. The main idea of TF-IDF is
that for a document set in which a term in one document
occurs more often in that document and less often in other
documents in the set, it can be considered that the term can
be well distinguished between that document and other doc-
uments and can be well used to achieve classification [21].

For online programming, Programs in an OJ system can
be treated as documents, and a classified set of programs can
be constructed by combining multiple correct programs in
the system and a faulty program to be located. TFIDF can
analyze the importance of each term in the faulty program.
When the term is important for the faulty program, it means
that the term is less important for the other correct programs
in the program set, and it also means that the possibility that
the term causes the faulty program to fail. Therefore, in
this paper, we will utilize TF-IDF to improve the traditional
SBFL.

3. Proposed Approach

The framework of the Multi-Correct Programs based fault
localization (MCPFL) proposed in this paper is shown in
Fig. 3. First, the faulty program is executed by all the test
cases to get the coverage matrix of the program statements.
The initial suspicious value of the program statements is ob-
tained according to the traditional SBFL Next, we collect
correct programs based on programming problem numbers
and construct Multi-Correct Programs based on code sim-
ilarity, and the faulty programs are added to Multi-Correct
Programs to form a new set of programs. Finally, we ana-
lyze the composition of statements and utilize the TF-IDF
algorithm to obtain the importance of the term in the faulty
program, and then weight the initial statement suspicious val-
ues to generate the final ranked list of statement suspicious
values.

3.1 Constructing Multi-Correct Programs

Definition 1. Multi-Correct Programs: For a collection
of correct programs, the remaining correct programs after
removing highly similar correct programs using code simi-
larity are called Multi-Correct Programs.

First, we get all the correct programs from the OJ system
based on the programming problem number. Among all the
correct programs collected, there are a large number of pro-
grams with the same program structure, which can have an

528
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

Fig. 3 Framework of MCPFL

impact on the subsequent calculation of suspicious values of
the term. To filter such programs, we utilize AST-based code
similarity to calculate the similarity between codes [22], be-
cause AST can reflect both the structural information of the
programs and retain the attribute features in the programs.
The main process is to transform the program into an AST
and then use the Smith-waterman algorithm to solve for the
maximum set of matches between two sequences and calcu-
late the similarity between them [23]. When the similarity
is below a preset threshold, the correct program is retained.
Finally, we will get Multi-Correct Programs corresponding
to the programming problem. The algorithm is shown in
Algorithm 1.

3.2 Suspiciousness of Term

Adding a faulty program to a Multi-Correct Programs set
constitutes a new program set (i.e., containing a faulty pro-
gram and Multiple-Correct Programs). In this way, the tf-idf
values of the term in the faulty program obtained by the
TF-IDF algorithm are significant for fault localization. The
tf-idf value indicates the importance of a term in the text to
the text and can be used for text classification. Since the pro-
gram in our program sets already has the label (Pass or Fail).
Therefore, the tf-idf value of the term in the faulty program
can be considered as the probability that the term causes the
program to fail, which means the suspicious value.

The implementation of TF-IDF requires the computa-
tion of the value of tf and the value of idf. The tf is calculated
as shown in Eq. (1).

t f i, j = ni (1)

ZHENG et al.: BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA MULTI-CORRECT PROGRAMS IN ONLINE PROGRAMMING
529

The ni in the formula is the number of times term i
appears in program j. The reason for not dividing by the
total number of all terms in program j is to prevent the
calculation of some terms from being small when the term
count of the program is too large. For the idf is calculated
as shown below.

idf i = 1 +
(
log

Y + 1
Yi + 1

)
(2)

where Y is the total number of programs in the program set,
and Yi is the number of programs in which term i occurs.
Unlike the traditional idf formula, both the numerator and
denominator are smoothed. This has the advantage of pre-
venting zero splitting, but it may also result in an idf value
of 0. Therefore, an addition of 1 is also performed outside
of the formula to prevent the idf result from being 0. So the
tf-idf is calculated as shown in Eq. (3).

t f − idf i, j = ni ×
(
1 + log

Y + 1
Yi + 1

)
(3)

Finally, the original tf-idf values obtained are subjected
to L2-parametric normalization, as shown in Eq. (4).

t f − idf i, jnorm =
t f − idfi, j��|v |��2 =

t f − idf i, j√
v21 + v

2
2 + · · · v2n

(4)

where v is the vector mapped by the program j and t f − idf i, j
is the initial tf-idf value of term i in program j. After nor-
malization, we can map the tf-idf values of the term between
0 and 1. Then we can get the valid tf-idf values of the term.

3.3 The Allocation of Weights

As we all know, the result of fault localization is a sorted list
of statement suspicious values. It is not enough to analyze
the importance of the term, we need to combine the tf-
idf values of each term in the statement to represent the
importance of the statement. For each program, the branch
structure, the assignment of expressions, and the input and
output of statements are directly or indirectly related to the
input variables. Based on such characteristics, this paper
calculates the significance of the suspicious value for each
statement based on the number of different input variables
in the statement. For terms in statements, we divide them
into three main categories: (1) input variables; (2) data types,
other variables, keywords, and function names; (3) content in
formatted input and output (i.e., the term in double quotes).
Therefore, in this paper, for the number of different input
variables in the statement, a formula is designed to calculate
the weights of the statement’s suspicious values, as shown in
Eq. (5).

Weights(S) =

ymax +

∑i
1 xi

i + 1
1 ≤ i ≤ n

ymax i = 0
(5)

Table 2 TF-IDF values in the faulty program

where i is the number of different input variables in state-
ment S, n is the number of input variables required by the
programming problem, x is the tf-idf value of the input vari-
able, and ymax is the maximum tf-idf value of data type,
other variables, keywords, and function names in statement
S. The formula does not take into account the content in
formatted input and output, since the input variables will not
appear in them directly, only as placeholders. Otherwise, it’s
an illegal statement and won’t compile. Finally, we can get
the statement’s suspicious value weight.

In this way, we can recalculate the suspicious value of
the statement, as shown in Eq. (6).

Sus f inal (s) = Susinitial (s) × Weight (s) (6)

Where Susinitial (s) is the initial suspicious value
of statements calculated by the traditional SBFL method,
Weight(s) is the weight of suspicious value, and Sus f inal (s)
is the final statement’s suspicious value.

3.4 An Illustrative Example

In this subsection, the proposed approach is demonstrated by
a sample program. The programming problem is described
as follows: input three sides of a triangle a, b, c, and deter-
mine whether the triangle can be formed, and if so, output
the area of the triangle, otherwise output “These sides do
not correspond to a valid triangle”. A standardized input
and output format is given at the end of the programming
problem for students’ reference, sample input: 5 5 3, sample
output: area = 7.15. The question sets up six test cases,
which are (5 5 3), (1 4 1), (2 2 4), (4 2 2), (2 4 2), and (5 3
4).

The faulty program is shown in Fig. 4. Line 7 is the
fault statement, which causes the variable s to lose precision
and should be modified to s = (a + b + c)/2.0. For this
programming problem, we use two correct programs as the
Multi-Correct Program to explain our proposed approach,
the program as shown in Fig. 5. The final results are shown
in Table 3. The specific details are as follows.

We form a simple collection of programs from a faulty

530
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

Table 3 An illustrative example

Fig. 4 A faulty program

program (in Fig. 4) to be located and Multiple-Correct-
programs (in Fig. 5) corresponding to the programming
problem. At this point, what we need to analyze is the
importance of the term in the faulty program, which can be
thought of as the likelihood that the term causes the program
to fail. According to Eqs. (1)–(4), we can calculate the tf-idf
values corresponding to all the terms in the faulty program,
as shown in Table 2. We aim to analyze the likelihood of
a statement causing a program failure rather than the term.
therefore, we need to apply Eq. (5), which is based on the tf-
idf values in Table 2 to calculate the statement suspiciousness
weight, the results are shown in column 8 of Table 3.

In addition, we need to execute all the test cases on

Fig. 5 Multi-correct programs

the faulty program to get its coverage information, as shown
in columns 2–6 of Table 3, and then we calculate the four
metrics ep, ef, np, nf according to the method introduced
in Sect. 2.2, and the results are shown in columns 8–11 of
Table 3. We select the tarantula formula in Table 1 to cal-
culate the suspicious value of each statement, the results are
shown in column 13 of Table 3. Finally, we use formula (6)
to weigh the suspicious values of statements calculated by
the Tarantula method, and the results are shown in column
15 of Table 3.

In this case, the suspicious value of the faulty state-
ment calculated using the Tarantula formula is 0.5, which is

ZHENG et al.: BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA MULTI-CORRECT PROGRAMS IN ONLINE PROGRAMMING
531

Table 4 Information on the programming problem

ranked ninth in the ranked list of suspicious values, and the
suspicious value of the faulty statement obtained using the
MCPFL approach is 0.2175, which is ranked third. Com-
paring columns 14 and 16 in Table 3, it can be seen that our
approach can effectively solve the problem of a large number
of statements with the same suspicious value and improve
the accuracy of traditional SBFL.

4. Experiment Design

4.1 Subject Programs

In this paper, we selected 864 C programs submitted by 144
students in four classes for six programming problems in our
online programming system as the object of this experiment.
After the data object is obtained, the following steps need
to be done [24]. (1) We need to remove perfectly correct
programs, some faulty programs that failed to compile, and
those that failed at all test points (i.e., the spectrum-based
fault localization approach could not be applied) to obtain
valid experimental data. (2) We need to perform data cleans-
ing, including removing code annotation from the program,
splitting a line of code with multiple statements, and remov-
ing blank lines from the program. (3) The last and most
critical step is to hand over the cleaned data to experienced
professors who will review the faulty procedures and mark
the locations of errors. The information on the dataset is
shown in Table 4 Where the first column is the problem
ID, the second column is the number of faulty programs
collected, the third column corresponds to the number of
faults for each question, the fourth column corresponds to
the Multi-Correct Program for each question, the fifth col-
umn is the number of test case, and the last column is a brief
description of the programming problem. There are 106 pro-
grams from problems A to F. These programs, test cases,
and spectrum information have been opened on GitHub. The
access link is https://github.com/2304624469/dataSet.

4.2 Evaluation Metrics

In this experiment, we use the metrics Exam and TOP-N to

evaluate the effectiveness of the proposed approach on the
student program dataset. They are defined as follows:

(1) EXAM Score: The EXAM value indicates the per-
centage of statements that need to be checked when locating
all faulty statements [25] and is calculated as shown in the
formula (7):

EXAM =
n
N

× 100% (7)

where n denotes the number of statements to check when
locating a bug and N denotes the total number of statements
in the program. Therefore, when the EXAM value is smaller,
it means that the developer needs to check fewer statements,
which means that the fault in the program can be located
faster and the fault localization approach is more effective.

However, a faulty program may include multiple error
statements, and each faulty statement will have an EXAM
value. To solve this problem, we evaluate the effect of fault
localization by selecting only the EXAM value of the first
faulty statement in the sorted list of statement suspicious
values. This is also a widely adopted strategy now [26].

(2) TOP-N: The TOP-N metric describes the number
of programs in which errors can be found by checking only
the first N (N = 1,2,3 . . .) statements of the ranked list of
suspiciousness [27]. Therefore, the higher the value of TOP-
N, the more effective the fault localization is for a certain
number of check statements. For the TOP-N metric, a faulty
statement is generally considered to be excellent if it ranks
first in the ranking list, good if it ranks in the top 5, acceptable
if it ranks in the top ten, and ineffective if it ranks outside
the top 10.

For the evaluation of TOP-N on multi-fault programs.
We consider this fault localization as successful if a faulty
statement is found among the TOP-N suspicious statements.
For statements with the same suspicious value, we still take
the average rank as the final rank. For example, for a program
containing two faulty statements, there are M statements with
the same suspicious value as faulty statement 1, and there
are K statements with the same suspicious value as faulty
statement 2 and a higher suspicious value than statement
1. At this point, we consider that checking out two faulty

532
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

statements requires checking K+M/2 statements on average.
Thus for a program with two faulty statements, its TOP-N
metric becomes TOP-(K +M/2).

4.3 Evaluation Methods

To evaluate the effectiveness of the proposed approach,
five traditional spectrum-based fault localization approaches,
Tarantula, Jaccard, Dstar, Ochiai, and Op2, were selected as
the baseline methods for the experiments.

4.4 Research Question

To evaluate the effectiveness of MCPFL on student pro-
grams’ fault localization, we conducted a series of experi-
ments, and the following research questions are defined and
investigated:

RQ1: Does MCPFL improve the effectiveness of tradi-
tional SBFL technical?

RQ2: How well does the MCPFL technique place fault
statements at low ranks?

RQ3: Is the MCPFL technique effective for every fault?
RQ4: How does MCPFL improve traditional SBFL

technical?

5. Result Analysis

5.1 RQ1: Does MCPFL Improve the Effectiveness of Tra-
ditional SBFL Methods?

To answer RQ1, we compared the fault localization accuracy
of MCPFL with the traditional SBFL on five suspiciousness
formulas. Furthermore, we also used EXAM metrics to eval-
uate the effectiveness of our approach and show the detailed
results in Table 5 and Fig. 6.

Table 5 lists the EXAM values of the traditional SBFL
method and MCPFL for the six problems, with the last col-
umn shows the improvement effect of our approach. and

Fig. 6 MCPFL comparison between different techniques in terms of
EXAM metric

the bottom five rows indicate the average EXAM value of
all questions. As shown in Table 5, the MCPFL reduced
the average EXAM by approximately half for all questions
on the five suspiciousness formulas, and the improvement of
MCPFL ranges from 8.54% to 42.86% in terms of EXAM.
Overall, MCPFL improves the most on question F, because
SBFL is not effective on question F, the EXAM value is
about 70%, and MCPFL can reduce it to about 30%. Fig-
ure 6 further intuitively illustrates the results in Table 5.

Table 5 Fault localization performance comparison with different tech-
nical

ZHENG et al.: BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA MULTI-CORRECT PROGRAMS IN ONLINE PROGRAMMING
533

Table 6 Comparison of successfully localized faults with only the Top N for SBFL and MCPFL

5.2 RQ2: How Well Does the MCPFL Technique Place
Fault Statements at Low Ranks?

To answer RQ2, we compare the performance of the MCPFL
technique with that of the SBFL technique using only the Top
N entries of the generated ranked lists. The SBFL and the
MCPFL columns indicate the number of faults found within
the Top 1, 3, and 5 lines. Detailed results are shown in
Table 6.

As shown in Table 6, in some cases, the number of
faults found within the Top N is smaller than or equal to
the SBFL techniques. Overall, however, the performance of

the MCPFL technique improves dramatically in our student
program dataset. For example, in Tarantula, the MCPFL
technique localized 32 out of 151 faults in Top 1, while the
Tarantula technique localized only 13 faults. the MCPFL
technique include 91and 133 faults in the Top-3 and Top-5
respectively. The rates of increase of Top-1, Top-3 and Top-5
were 146%, 57%, 33%. In addition, MCPFL included 1 less
fault in the Top-1 compared with Jaccard and Dstar for C
problems, and the same number of faults in Top-1 compared
with Op2. Compared with Ochiai, MCPFL was improved in
Top-1, Top-3, and Top-5.

On average, the MCPFL technique outperforms the five

534
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

Fig. 7 Change of rank between SBFL and MCPFL

SBFL techniques. The MCPFL extends the number of faults
included in the Top-1 from 15 to 29 (about 93%). In addition,
the faults included in Top-3 were expanded by about 74%
from 47 to 82. the faults included in Top-5 were expanded
by about 29% from 93 to 120.

5.3 RQ3: Is the MCPFL Technique Effective for Every
Fault?

To answer RQ3, we compare the SBFL and the MCPFL
ranks of actual fault locations by applying the SBFL and the
MCPFL techniques to 106 programs. Figure 7 indicates the
results for 106 student programs. the x-axis is five SBFL
technical, and the Y-axis is the number of programs corre-
sponding to the application of MCPFL to different SBFL
technologies. Better defines the number of programs whose
rank of faults found by the MCPFL technique is lower than
the rank of faults found by the SBFL technique. Same means
that the number of programs whose rank of faults found by
the SBFL technique and the number of programs whose rank
of faults found by the MCPFL technique are the same. Worse
defines the number of programs whose rank of faults found
by the MCPFL technique is higher than the rank of faults
found by the SBFL technique. N/A defines the number of
programs that cannot be found by the MCPFL technique.

For example, in Tarantula, the MCPFL technique out-
performs it in 93 of 106 programs (about 88%). In addition,
the accuracy is the same or worse in 10 (about 9%) and 3
(3%) of the programs, respectively.

The accuracy depends on the SBFL technical. However,
The MCPFL technique indicates a higher accuracy than the
SBFL technique in an average of 91 programs (about 86%).
Also, the number of programs with the same and worse
accuracy is 10 (9%) and 2 (2%), respectively. the number
of Programs with N/A accuracy is 13 (about 12%). It only
appears on Dstar because when Dstar deals with real student
programs, it has a situation where it can’t locate the fault, so
MCPFL weighting to Dstar still cannot localize the fault.

Fig. 8 The tf-idf value for the term in the faulty program under the Multi-
Correct Programs

Fig. 9 Comparison of Tarantula and MCPFL on 106 programs in terms
of EXAM metrics

5.4 RQ4: How Does MCPFL Improve Traditional SBFL
Technical?

In RQ1 and RQ2, we know that the MCPFL improves the
SBFL. In RQ4, we aim to explain how the MCPFL improves
the SBFL. After introducing the Multi-Correct Programs,
we can analyze the importance of the term in the faulty pro-
gram, which is important for fault localization. To show the
experimental results clearly, we have analyzed the term of all
106 fault programs, as shown in Fig. 8. The input variable
represents the tf-idf value of the input variable. Other term
is the range of tf-idf values for all terms in the fault program
except for the input variable. We can observe that regardless
of whether the faulty program contains one input variable,
two input variables, or three input variables, the input vari-
ables in the program all have high tf-idf values. Therefore,
in Sect. 3.3, we treated the input variables as key terms and
defined a weighting rule. We utilized the weighting rule to
assign weights to traditional SBFL methods, which resulted
in the final fault localization outcomes. To provide a more
intuitive presentation of the results, we compared the Taran-
tula method with our approach on 106 programs using the

ZHENG et al.: BOOSTING SPECTRUM-BASED FAULT LOCALIZATION VIA MULTI-CORRECT PROGRAMS IN ONLINE PROGRAMMING
535

exam metric. The experimental results are shown in Fig. 9.
Among the 106 programs, there were three programs where
the effectiveness of MCPFL was worse than Tarantula. These
programs are Program 19 in Problem D, and Programs 6 and
12 in Problem E. This is because even though the tf-idf
values of input variables are important, we still need to take
into account the importance of the other terms when weight-
ing them as statement suspiciousness, which may result in a
decrease in the final fault localization effect.

6. Threats to Validity

Threats to External Validity: The threat of external va-
lidity is related to the dataset of this paper. The dataset
was initially unlabeled for faulty statements. Therefore, we
had to manually validate the program for bugs and mark
the locations of faulty statements. To avoid possible errors,
we invited several experienced programming students and
teachers (including the authors of this paper) to check the
marked bugs.
Threats to Internal Validity: The threat to internal valid-
ity is related to the implementation details of our proposed
MCPFL, which requires Multi-Correct Programs. In gen-
eral, the programming exercises for freshmen are mostly the
same as in previous years, but there are very few problems
that are different, and for such programming problems, the
absence of functionally identical Multi-Correct Programs in
the OJ system can lead to the failure of the MCPFL. The
programming problems selected in this experiment are all
without limitations, but in practice, the lack of Multi-Correct
Programs could make our approach ineffective.
Threats to Construct Validity: The threat of construct va-
lidity is related to our experimental metrics. To mitigate this
threat, we use two metrics, EXAM, and TOP-N, in our exper-
iments to evaluate the execution results of fault localization.
They were widely used in earlier studies [28].

7. Conclusion and Future Work

In this paper, we propose a lightweight fault localization ap-
proach MCPFL to localize student programs. We collected
all the failed programs in the six programming problems in
our university’s OJ system as the dataset for this experiment
and evaluated the effectiveness of our proposed approach on
the dataset. The results show that our proposed approach
is effective in improving the accuracy of traditional fault
localization methods.

In the future, we implement additional methods to fur-
ther improve the effectiveness of fault localization in student
programs. In future work, we will do more research to further
improve the fault localization accuracy of student programs,
which includes but is not limited to: (1) using interpretable
machine learning methods for fault localization [29]. (2) us-
ing causal inference to improve fault localization, and (3)
using students’ historical version program information for
fault localization.

References

[1] S. Wasik, M. Antczak, J. Badura, A. Laskowski, and T. Sternal,
“A survey on online judge systems and their applications,” ACM
Computing Surveys (CSUR), vol.51, no.1, pp.1–34, 2018.

[2] W.E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Trans. Softw. Eng., vol.42, no.8,
pp.707–740, 2016.

[3] E. Araujo, M. Gaudencio, D. Serey, and J. Figueiredo, “Applying
spectrum-based fault localization on novice’s programs,” 2016 IEEE
Frontiers in Education Conference (FIE), IEEE, 2016, pp.1–8.

[4] Z.-H. Zhou, “Machine learning,” Springer Nature, 2021.
[5] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature selection in machine

learning: A new perspective,” Neurocomputing, vol.300, pp.70–79,
2018.

[6] W. Zhou, Y. Pan, Y. Zhou, and G. Sun, “The framework of a new
online judge system for programming education,” Proc. ACM turing
celebration conference-China, pp.9–14, 2018.

[7] R. Abreu, P. Zoeteweij, R. Golsteijn, and A.J.C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” Journal of
Systems and Software, vol.82, no.11, pp.1780–1792, 2009.

[8] E. Soremekun, L. Kirschner, M. Böhme, and A. Zeller, “Locating
faults with program slicing: an empirical analysis,” Empirical Soft-
ware Engineering, vol.26, no.3, 2021.

[9] Y. Küçük, T.A.D. Henderson, and A. Podgurski, “Improving fault
localization by integrating value and predicate based causal infer-
ence techniques,” 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), pp.649–660, 2021.

[10] J.A. Jones, M.J. Harrold, and J. Stasko, “Visualization of test infor-
mation to assist fault localization,” Proc. 24th international confer-
ence on Software engineering, pp.467–477, 2002.

[11] R. Abreu, P. Zoeteweij, and A.J.c. Van Gemund, “An evaluation
of similarity coefficients for software fault localization,” 2006 12th
Pacific Rim International Symposium on Dependable Computing
(PRDC’06), pp.39–46, 2006.

[12] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, “On the accuracy
of spectrum-based fault localization,” Testing: Academic and in-
dustrial conference practice and research techniques-MUTA TION
(TAICPART-MUTA TION 2007), pp.89–98, 2007.

[13] W.E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar method for
effective software fault localization,” IEEE Trans. Rel., vol.63, no.1,
pp.290–308, 2013.

[14] L. Naish, H.J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Transactions on software engineer-
ing and methodology (TOSEM), vol.20, no.3, pp.1–32, 2011.

[15] E. Araujo, M. Gaudencio, D. Serey, and J. Figueiredo, “Applying
spectrum-based fault localization on novice’s programs,” 2016 IEEE
Frontiers in Education Conference (FIE), pp.1–8, 2016.

[16] Y. Liu, Z. Zhang, X. Zhou, and W. Liu, “An Empirical Study on
Spectrum-Based Fault Localization for Student Programs,” 2023 3rd
International Symposium on Computer Technology and Information
Science (ISCTIS), pp.547–551, 2023.

[17] Z. Li, J. Shen, Y. Wu, Y. Liu, and Z. Sun, “VSBFL: Variable Value
Sequence Based Fault Localization for Novice Programs,” 2021 IEEE
21st International Conference on Software Quality, Reliability and
Security Companion (QRS-C), pp.494–505, 2021.

[18] Q.I. Sarhan and Á Beszédes, “Poster: Improving Spectrum Based
Fault Localization For Python Programs Using Weighted Code El-
ements,” 2023 IEEE Conference on Software Testing, Verification
and Validation (ICST), pp.478–481, 2023.

[19] J. Leskovec, A. Rajaraman, and J.D. Ullman, Mining of Massive
Datasets, Cambridge University Press, 2020.

[20] S.M. Weiss, N. Indurkhya, and T. Zhang, “Information retrieval and
text mining,” Fundamentals of Predictive Text Mining, pp, 75–90,
2010.

[21] K. Kowsari, K.J. Meimandi, M. Heidarysafa, S. Mendu, L. Barnes,

http://dx.doi.org/10.1145/3143560
http://dx.doi.org/10.1145/3143560
http://dx.doi.org/10.1145/3143560
http://dx.doi.org/10.1109/tse.2016.2521368
http://dx.doi.org/10.1109/tse.2016.2521368
http://dx.doi.org/10.1109/tse.2016.2521368
http://dx.doi.org/10.1109/fie.2016.7757727
http://dx.doi.org/10.1109/fie.2016.7757727
http://dx.doi.org/10.1109/fie.2016.7757727
http://dx.doi.org/10.1007/978-981-15-1967-3
http://dx.doi.org/10.1016/j.neucom.2017.11.077
http://dx.doi.org/10.1016/j.neucom.2017.11.077
http://dx.doi.org/10.1016/j.neucom.2017.11.077
http://dx.doi.org/10.1145/3210713.3210721
http://dx.doi.org/10.1145/3210713.3210721
http://dx.doi.org/10.1145/3210713.3210721
http://dx.doi.org/10.1016/j.jss.2009.06.035
http://dx.doi.org/10.1016/j.jss.2009.06.035
http://dx.doi.org/10.1016/j.jss.2009.06.035
http://dx.doi.org/10.1007/s10664-020-09931-7
http://dx.doi.org/10.1007/s10664-020-09931-7
http://dx.doi.org/10.1007/s10664-020-09931-7
http://dx.doi.org/10.1109/icse43902.2021.00066
http://dx.doi.org/10.1109/icse43902.2021.00066
http://dx.doi.org/10.1109/icse43902.2021.00066
http://dx.doi.org/10.1109/icse43902.2021.00066
http://dx.doi.org/10.1109/icse.2002.1007991
http://dx.doi.org/10.1109/icse.2002.1007991
http://dx.doi.org/10.1109/icse.2002.1007991
http://dx.doi.org/10.1109/prdc.2006.18
http://dx.doi.org/10.1109/prdc.2006.18
http://dx.doi.org/10.1109/prdc.2006.18
http://dx.doi.org/10.1109/prdc.2006.18
http://dx.doi.org/10.1109/taic.part.2007.13
http://dx.doi.org/10.1109/taic.part.2007.13
http://dx.doi.org/10.1109/taic.part.2007.13
http://dx.doi.org/10.1109/taic.part.2007.13
http://dx.doi.org/10.1109/tr.2013.2285319
http://dx.doi.org/10.1109/tr.2013.2285319
http://dx.doi.org/10.1109/tr.2013.2285319
http://dx.doi.org/10.1145/2000791.2000795
http://dx.doi.org/10.1145/2000791.2000795
http://dx.doi.org/10.1145/2000791.2000795
http://dx.doi.org/10.1109/fie.2016.7757727
http://dx.doi.org/10.1109/fie.2016.7757727
http://dx.doi.org/10.1109/fie.2016.7757727
http://dx.doi.org/10.1109/isctis58954.2023.10213072
http://dx.doi.org/10.1109/isctis58954.2023.10213072
http://dx.doi.org/10.1109/isctis58954.2023.10213072
http://dx.doi.org/10.1109/isctis58954.2023.10213072
http://dx.doi.org/10.1109/qrs-c55045.2021.00078
http://dx.doi.org/10.1109/qrs-c55045.2021.00078
http://dx.doi.org/10.1109/qrs-c55045.2021.00078
http://dx.doi.org/10.1109/qrs-c55045.2021.00078
http://dx.doi.org/10.1109/icst57152.2023.00055
http://dx.doi.org/10.1109/icst57152.2023.00055
http://dx.doi.org/10.1109/icst57152.2023.00055
http://dx.doi.org/10.1109/icst57152.2023.00055
http://dx.doi.org/10.1007/978-1-84996-226-1_4
http://dx.doi.org/10.1007/978-1-84996-226-1_4
http://dx.doi.org/10.1007/978-1-84996-226-1_4
http://dx.doi.org/10.3390/info10040150

536
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

and D. Brown, “Text classification algorithms: A survey,” Informa-
tion, vol.10, no.4, 2019.

[22] J. Zhao, K. Xia, Y. Fu, and B. Cui, “An AST-based code plagia-
rism detection algorithm,” 2015 10th International conference on
broadband and wireless computing, communication and applications
(BWCCA), pp.178–182, 2015.

[23] A. Jerlin and J. Chinnappan, “ESAA: Efficient Sequence Alignment
Algorithm for Dynamic Malware Analysis in Windows Executable
Using API Call Sequence,” DNA sequence, pp.290–298, 2017.

[24] B. Malley, D. Ramazzotti, and J.T.-Y. Wu, “Data pre-processing,”
Secondary Analysis of Electronic Health Records, pp.115–141,
2016.

[25] X. Xie, T.Y. Chen, F.-C. Kuo, and B. Xu, “A theoretical analysis of the
risk evaluation formulas for spectrum-based fault localization,” ACM
Transactions on software engineering and methodology (TOSEM),
vol.22, no.4, pp.1–40, 2013.

[26] D. Zou, J. Liang, Y. Xiong, M.D. Ernst, and L. Zhang, “An empirical
study of fault localization families and their combinations,” IEEE
Trans. Softw. Eng., vol.47, no.2, pp.332–347, 2019.

[27] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M.D. Ernst,
D. Pang, and B. Keller, “Evaluating and improving fault localiza-
tion,” 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pp.609–620, 2017.

[28] A. Moffat and J. Zobel, “Rank-biased precision for measurement of
retrieval effectiveness,” ACM Transactions on Information Systems
(TOIS), vol.27, no.1, pp.1–27, 2008.

[29] R. Widyasari, G.A.A. Prana, S.A. Haryono, Y. Tian, H.N. Zachiary,
and D. Lo, “XAI4FL: enhancing spectrum-based fault localization
with explainable artificial intelligence,” Proc. 30th IEEE/ACM In-
ternational Conference on Program Comprehension, pp.499–510,
2022.

Wei Zheng received the Ph.D. degree
in Computer Application Technology from the
School of Computer Science, Xi’an University
of Electronic Science and Technology in 2010.
He has been teaching and conducting research at
the School of Software of Nanchang Hangkong
University since 2010 and is now the Dean of
the School of Software. His research interests
focused on software reliability analysis, airborne
software testing and software engineering tech-
niques.

Hao Hu received a bachelor’s degree
in engineering from Nanchang Hangkong Uni-
versity in 2020 and is currently a second
year graduate school student in the School
of Software, Nanchang Hangkong University,
Nanchang, Chian. His research interests focused
on software reliability analysis, fault localization
and software defect prediction.

Tengfei Chen received a bachelor’s degree in
engineering from Xinyu University in 2021 and
is currently a second year graduate school student
in the School of Software, Nanchang Hangkong
University, Nanchang, Chian. His research inter-
ests focused on software reliability analysis and
software defect prediction.

Fengyu Yang received the Masters de-
gree in Computer Science and Applications from
Zhejiang University of Technology in 2006. He
has been teaching and researching in the School
of Software of Nanchang Hangkong University
since 2006. His research interests focus on
big data mining, airborne software testing, and
aerospace system simulation techniques.

Xin Fan received his Masters degree from
Nanchang Hangkong University. Currently, he
is the head of the Department of Software Engi-
neering at Nanchang Hangkong University. His
research interests focused on software engineer-
ing techniques and software reliability.

Peng Xiao received the Ph.D. in Systems
Engineering from Beihang University, Chian, in
2018. His research interests are focused on soft-
ware testing and verification, software security
and reliability, and software defect prediction
techniques.

http://dx.doi.org/10.3390/info10040150
http://dx.doi.org/10.3390/info10040150
http://dx.doi.org/10.3390/info10040150
http://dx.doi.org/10.1109/bwcca.2015.52
http://dx.doi.org/10.1109/bwcca.2015.52
http://dx.doi.org/10.1109/bwcca.2015.52
http://dx.doi.org/10.1109/bwcca.2015.52
http://dx.doi.org/10.22266/ijies2017.0630.33
http://dx.doi.org/10.22266/ijies2017.0630.33
http://dx.doi.org/10.22266/ijies2017.0630.33
http://dx.doi.org/10.1007/978-3-319-43742-2_12
http://dx.doi.org/10.1007/978-3-319-43742-2_12
http://dx.doi.org/10.1007/978-3-319-43742-2_12
http://dx.doi.org/10.1145/2522920.2522924
http://dx.doi.org/10.1145/2522920.2522924
http://dx.doi.org/10.1145/2522920.2522924
http://dx.doi.org/10.1145/2522920.2522924
http://dx.doi.org/10.1109/tse.2019.2892102
http://dx.doi.org/10.1109/tse.2019.2892102
http://dx.doi.org/10.1109/tse.2019.2892102
http://dx.doi.org/10.1109/icse.2017.62
http://dx.doi.org/10.1109/icse.2017.62
http://dx.doi.org/10.1109/icse.2017.62
http://dx.doi.org/10.1109/icse.2017.62
http://dx.doi.org/10.1145/1416950.1416952
http://dx.doi.org/10.1145/1416950.1416952
http://dx.doi.org/10.1145/1416950.1416952
http://dx.doi.org/10.1145/3524610.3527902
http://dx.doi.org/10.1145/3524610.3527902
http://dx.doi.org/10.1145/3524610.3527902
http://dx.doi.org/10.1145/3524610.3527902
http://dx.doi.org/10.1145/3524610.3527902

