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Learning from Repeated Trials without Feedback: Can Collective
Intelligence Outperform the Best Members?
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SUMMARY Both group process studies and collective intelligence stud-
ies are concerned with “which of the crowds and the best members perform
better.” This can be seen as a matter of democracy versus dictatorship. Hav-
ing evidence of the growth potential of crowds and experts can be useful
in making correct predictions and can benefit humanity. In the collec-
tive intelligence experimental paradigm, experts’ or best members ability
is compared with the accuracy of the crowd average. In this research (n =
620), using repeated trials of simple tasks, we compare the correct answer
of a class average (index of collective intelligence) and the best member (the
one whose answer was closest to the correct answer). The results indicated
that, for the cognition task, collective intelligence improved to the level
of the best member through repeated trials without feedback; however, it
depended on the ability of the best members for the prediction task. The
present study suggested that best members’ superiority over crowds for the
prediction task on the premise of being free from social influence. However,
machine learning results suggests that the best members among us cannot
be easily found beforehand because they appear through repeated trials.
key words: collective intelligence, crowd-within effect, cognition task,
prediction task, repeated trials

1. Introduction

Humanity has a long history of learning from and over-
coming the adverse effects of war, poverty, or dictatorships
through long struggles. However, history is repeating itself,
and the same tragedies are occurring again. In predicting
events that rarely occur, we seem to repeatedly fail by mak-
ing naive predictions as if we have forgotten our past experi-
ences. Based on the sad premise that we are not capable of
learning from feedback, we examine how far we can go to
become smarter.

This study addresses iterative learning without feed-
back.

The mental models formed by repeated learning may
not necessarily lead to correct answers, but they will form an
understanding of the framework (familiarity with the prob-
lem format and procedures). Under these conditions, the
extent to which collective intelligence (average of a cloud)
can become smarter will be examined in a comparison be-
tween collective intelligence (average) and the best members
(highest score). Hereafter in this manuscript, Collective In-
telligence will be abbreviated as CI.

In recent years, the concept of CI has attracted attention
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in various fields, including computer science, psychology,
and social sciences. This concept revolves around the idea
that problem solving by a group or crowd can result in deci-
sions that are better than those made by experts. For example,
in the case of internet searches, mechanical computation of
human choices yields better answers than the creation of an
expert system. CI is a promising approach to tackling com-
plex problems and has the potential to contribute to society
in many ways.

The development of a group intelligence test by an MIT
research team was the first step in this research [1], [2]. A
general intelligence factor for the group was identified and
referred to as “C-factor” in the factor analysis of group per-
formance on tasks. Although reanalysis with hierarchical
linear models clarified that the explanatory power of the C-
factor was inferior to the expected result [3], some evidence
showed that the C-factor predicts CI performance better than
individuals’ G (general) intelligence scores. The tasks in the
MIT team’s study were similar to an IQ test with correct
answers.

The most expected task for CI would be a future pre-
diction. In fact, the stock market and social networking
sites themselves are examples of CI. As far as the bubbles
and flames they bring about, they are more closely tied to
the madness of crowds than the wisdom of crowds. As
long as CI is an accumulation of human judgment, it will
be difficult to learn from rare events. On the other hand,
crowds have been found to be more accurate in predicting
stock prices [4] or reputations as measured by the number
of “likes” on Facebook [5]. Therefore, CI might learn some
aspects from repeated experiences.

Several studies have shown that the best member pre-
dictions were superior to crowd predictions. At NASA, re-
searchers utilized a tournament-type experiment to improve
the efficiency of space station photovoltaic panels. In this
study, better solutions than those of the NASA experts were
obtained from the best member of the public [6]. Moreover,
DARPA has applied CI to future predictions, with partici-
pants receiving information first and then discussing fore-
casts of what was likely to happen within a year [7], [8].
Analysis of the data over four years showed that in predict-
ing specific events, the best members, called “super forecast-
ers,” were superior to the crowd. This type of task involved
predicting “unexpected events” in the future, for which it is
difficult to obtain feedback; on the other hand, the prediction
of stock price or a number of “likes” are repeated tasks with
delayed feedback.
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The above-mentioned empirical research related to CI
is carried out in various research contexts in response to
requests from various organizations. Therefore, it is impos-
sible to compare the performance of CI with that of the best
members.

[9] compared the CI (average of a cloud) with the best
members (the highest-performing individuals) and expert
groups. The expert group was selected from past history
in the order of their performance, and five members were
considered sufficient. Their simulation results showed that
the expert group had the widest adaptability range. To vali-
date the simulation results, an analysis was conducted using
40 sets of psychological research data and 50 sets of eco-
nomic forecast data. “The results showed that, in 53% of the
psychological research data, the expert group performed the
best, followed by CI in 35% of the cases. The best members
performed best in only 13% of the cases. In the economists’
data, the group of experts performed best in 68% of the cases,
followed by CI in 30%, and the best member in 2%. In all
cases, the herd average was superior to relying on a single
expert, and relying on the top five was the best result. This
result indicates that CI performs poorly on problems that we
realistically encounter because of response distribution bias,
but the best members perform even worse. The reason why
the best members perform worse than average is that there
is a repetition factor in the form of history. Even for tasks
that involve some degree of competence, the best members’
performance does not last for long.

However, the mental models of real-world expert groups
are similar, and high competence often comes with the dis-
advantage of a lack of diversity. The diversity prediction
theorem [10] proves that the collective error (squared error
of the arithmetic mean of the crowd) is equal to the in-
dividual error (average of squared individual error) minus
diversity (average squared distance from the individual to
the mean). This theorem implies that improving the abil-
ity of individuals and increasing the diversity of a crowd
contribute equally to the predictive accuracy of the crowd.
A trade-off is likely to occur between the average and the
diversity of CI [11] because diversity, including lower per-
formance groups, decreases their average performance. If
the shared mental models become distorted due to changing
times, etc., the correction by CI will not work. Then, what
about the best members who are not under the influence of
conformity repeating their answers?

1.1 Collective Intelligence within and Between Effects

[12] regarded the CI obtained from repeated trials by one
person as a “crowd within effect” and concluded that it was
ineffective as CI. In contrast, [13] found that a “crowd within
effect” can be obtained through repeated trials. [14] com-
pared the effect of knowing others’ answers with that of re-
peating for themselves and found that the superiority of the
crowd-between effect depends on the content of knowledge
required for the tasks. If the task was roughly predictable, the
correct answer rate improved through individual repetition.

The crowd-within effect offsets sampling variation in
one’s mental models, but does not derive different mental
models. In other words, a crowd between effects would
show superiority for tasks requiring various mental models.
Therefore, it can be concluded that whether the CI improves
through repeated trials depends on the task.

1.2 Task Factor

Since CI research has been conducted in various fields of
study, the tasks and indicators are not identical and are thus
difficult to compare. Tasks in CI research should be distin-
guished by error distribution. One has a statistically inde-
pendent error, which is expected to be offset by the effects of
CI (e.g., [15]). The other type of error has distribution bias.

[16] conducted experiments using two types of tasks:
perceptual tasks that involved distinguishing figures from a
background of white noise and cognitive tasks that involved
predicting the weather from environmental measurements.
In the present study, we divided tasks into two categories.
A “cognitive task” refers to the perception for ambiguous
figures which have a correct answer. The other task is the
“prediction task,” which does not have a straightforward
correct answer, but a correct answer that will be revealed
in the near future.

In the present research, we use a simple task, counting
numbers of dots, as a measure of cognition and a predic-
tion task of predicting the largest number of a class on the
cognition task [17]. This task can control the ambiguity of
stimulus with the number of dots. Uncountable trials were
arranged to occur more frequently in the second half of the
trials. This manipulation examines how the participants be-
come accustomed to rare and unpredictable events. We did
not introduce feedback to avoid social influence during the
tasks.

1.3 Research Question

The failures in relation to rare events, about which it is
challenging to learn from feedback, have been repeated by
humanity. How about CI and best members? The purpose
of this research is to discover which factors will contribute
to improving the learning of crowds through repeated trials
without feedback.

Two questions are relevant to this research:

1) Does CI improve performance through repeated trials
without feedback?

2) If CI improves through repeated tasks, is there any dif-
ference between the improvement in cognition tasks and
prediction tasks?

2. Method

2.1 Participants

A total of 633 participants (mean age was 19.38; 376 males,
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145 females, 29 unknown) participated in this study as stu-
dents in experiment classes in a psychology course. The
number of participants in each class was 8 to 37, and the
total number of classes was 32. After deleting missing cases
or classes containing different procedures, 27 classes (620
participants) remained.

2.2 Procedure

Ten random dot diagrams were presented to the participants
via power point slide projection in the classroom. The num-
ber of dots presented varied from 27 to 226, which manipu-
lated the difficulty of this task. Each diagram was presented
for 10 seconds. The 27 dots are easy to count in 10 seconds;
however, the dot diagrams become ambiguous stimuli over
100 dots. After presenting each diagram for 10 seconds,
instructions were given on the slide to ask the participants
to individually answer four questions on a printed form dis-
tributed on each participant’s desk. In this research, one
class was one case. Considering the small number of cases,
the sequence of 10 slides was not randomized but presented
in a fixed order. The number of dots on each slide was 115,
27, 61, 134, 48, 99, 183, 35, 226, and 157, respectively.

After 10 trials were completed, the participants were
asked to form four-person groups and make group decisions
for each of the 10 trials of the cognition task. After all
discussion groups made their decisions, the experimenter
gave feedback on correct answers and explained the purpose
of this experiment.

2.3 Dependent Variables

1) Q1. Cognition of the number of dots on each slide
(Cognition task)

2) Q2. Confidence in the Q1 answer
3) Q3. Prediction of the smallest number of Q1 in their

class
4) Q4. Prediction of the largest number of Q1 in their class

(Prediction task)

Because the smallest number was limited by the answer
given for Question 1, in this study, Question 4, the predic-
tion of the largest number, was analyzed as an open-end
prediction task.

3. Results

3.1 Means and Deviations of Each Answer in Each Trial

As shown in Fig. 1, the larger the number of dots is, the wider
the range of smallest to largest number predictions. Figure 2
also shows that the SDs increase as the number of dots on
each slide increases. The range of predictions of the largest
number tended to be larger for the more difficult tasks (slides
with more than 100 dots) in the second half of the trials.
Accuracy for the easy tasks (slides with fewer than 50 dots)
did not change over 10 trials.

Fig. 1 Mean of answer on each trial
Note. Figure 1 represents the mean of the answers of the four questions
on each trial. The X-axis shows the number of dots on each slide (correct
answer of cognition task) in the bracket at each trial. Each line represents
the mean values of dependent variables as below.

Fig. 2 SD of answer on each trial

3.2 Cognition Task Learning Through Repeated Trials

The error score was calculated using the root square of each
answer minus the correct answer. For the cognition task,
the correct answer is the number of dots presented on each
slide. For the prediction task, the correct answer is the largest
number of each cognition trial in each class.

There are four indices for the cognition task.

1) The “individual” index was the mean error score of each
individual.

2) The “group decision” index was the mean error score
between the group decision and the correct answer.

3) The “CI” index was obtained by calculating the average
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Fig. 3 Mean squared error per dot on the cognition task
Note. The Y-axis represents the cumulative error score divided by the cu-
mulative number of dots.

answer of a class and then calculating the mean error
from the correct answer.

4) The “best member” index was the lowest error score
until the trial, which was not always the score of the
same person across the 10 trials. Fixing the best mem-
ber at the first selection would increase the error due to
iterations and thus the possibility that CI will prevail,
but in this study, the best performance at that point is
always used as the best member indicator.

For the purpose of representing the learning rate
through repeated trials, the error scores were summed up
until each trial and divided by the cumulative dot numbers.

3.2.1 Cognition Task

Figure 3 depicts the cumulative error score (sum of error
score until the trial) divided by the cumulative dot number,
showing that the individual index improved from Trial 1 to
Trial 6, and after that, the error score increased.

The increase in error scores, indicating a decline in per-
formance, is consistent with the increase in SD after the 7th
trial, as shown in Fig. 2. However, CI improved in perfor-
mance through the whole sequence of 10 trials; likewise,
the best members’ performance improved across the 10 tri-
als. This superiority of CI was caused by the distribution of
answers, which was symmetrical around the correct answer.
Group decisions that were conducted after 10 trials showed a
similar pattern of CI but a lower level of accuracy than the CI

Fig. 4 Mean squared error per dot on the prediction task
Note. The Y-axis represents the cumulative error score divided by the cu-
mulative number of dots.

of a class. The group decision procedure was not conducted
for all classes; therefore, the next ANOVA was conducted
for the three indices: individual, CI, and the best member for
the averaged data of each class (n = 27).

Repeated measure (3 indices X 10 trials) ANOVA
yielded the main effect of index, f (1.09,17.46∗) = 34.30 p <
.001 partial η2 = .68, and the main effect of trial,
f (1.18,18.84) = 5.93 p = .021 partial η2 = .27.

3.2.2 Prediction Task

The group decision procedure was only used for the cognition
task, so there were three indices, “individual,” “CI,” and “best
member” for the prediction task.

Figure 4 represents the cumulative error scores of the
prediction tasks per cumulative dot number.

On the prediction task, the performance of all three
indices did not improve after the 5th trial. Repeated measure
(3 indices X 10 trials) ANOVA yielded the main effect of
index, f (1.13,28.35) = 18.25 p < .001 partial η2 = .42,
and interaction of index X trial, f (1.28,32.03) = 7.04 p =
.008 partial η2 = .22.

Adding task factor (Cognition or Prediction) to this
analysis, repeated measure (2 tasks X 3 indices X 10 trials)
ANOVA yielded the main effect of task (1,26) = 20.39,
p < .001, partial η2 = .44, interaction of task X index,
f(1.17,30.36) = 7.99, p = .006, partial η2 = .24, and three-
way interaction of task X index X trial, f(1.36,35.36) = 4.95,
p = .023, partial η2 = .16, in addition to other effects found
in the above analysis. There is a difference in performance
between cognitive and predictive tasks, where index and trial
factors had interactions.

Compared with the cognition task, CI for the prediction
task could not be learned through repeated trials. Perfor-
mance drops off in the second half of the trials where trials
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became difficult.

3.3 Machine Learning Analysis

To investigate the crucial factor in the learning of CI, ex-
ploratory analysis with random forest was conducted for the
individual (620 participants) dataset. Random forest is a
machine learning technique suitable for time-series predic-
tion, which is often used in machine learning competitions.
[18] compared the performance of machine learning compe-
titions using prediction accuracy as an indicator and found
that Random Forest had the highest accuracy among the ma-
chine learning methods. In this analysis, the error score of
each trial was not cumulated. One of the goals of machine
learning analysis was to determine when the best members
contributing to the final collective knowledge occur (are they
competent from the beginning, do they learn, or are they un-
stable until the end)? As the cumulative value would cancel
out the performance of different best members, the value for
each trial was used as the feature value. We also decided
that using cumulative values was inappropriate because it
would lead to autocorrelation among the features. There-
fore, the best member calculated here is a different person
chosen for each trial, and, in principle, collective intelligence
cannot reach above the best member. To normalize the vari-
ables, the error score was the root squared percentage error,
which means that the difference between each answer and the
correct answer was divided by the correct answer and then
root squared. The 620 datasets were divided into a training
dataset (332 participants, 14 classes) and a test dataset (288
participants, 13 classes). The target of the machine learn-
ing was the error score of CI on the cognition or prediction
task on the 10th trial. The features (variables) were individ-
ual, CI, and best member’s cognition and prediction error
scores on each of the 1st to 9th trials and group size (n of
each class). Although features had correlations among them,
multilinearity can be avoided with forest tree analysis. The
decision tree regressor and random forest regressor in the
scikit-learn library of Python were adapted for model fitting.
The number of estimators was 100, the depth of the tree
was 3, and the model fitness criteria were RMSE (root mean
squared error) and r2 (R-square). Using the decision-tree
regressor, training data were used to select ten 10 important
features for the target. Using these selected features in a ran-
dom forest, the model parameters were cross-validated using
a grid search. A total of 100 decision trees were computed
and the decision tree with the best RMSE was selected. To
validate the last decision tree, different data from those used
for training and validation were used as test data to verify
prediction accuracy.

3.3.1 Forest Tree for the Cognition Task

Figure 5 shows the result of the forest tree targeted at the CI
score of the 10th trial on the cognition task. The most recent
(9th) error score of CI on the cognition task was crucial.
The second factor was the same score as the second trial;

Fig. 5 Forest tree for the cognition task
Note. The target was the error score of CI at the 10th trial.

C9e: The 9th trial’s CI error score for cognition
C2e: the 2nd trial’s CI error score for cognition
Mse: mean squared error of the model

Fig. 6 Fitness of model for the test data of the cognition task
Note. X-axis: Actual error score of the CI at the 10th trial of test data.

Y-axis: Model prediction yielded from the 1st to 9th trial errors of the
training data.

however, the 9th trial of the features was the most important
(.70), and the importance of the following features was under
.09.

This result suggests that CI for the cognition task could
learn through repeated trials. When this model was adapted
to the test data, the RMSE score of this model was 0.2558.
There was not much improvement after grid search CV.

Figure 6 represents the model prediction (Y-axis) and
the actual score of the test data (X-axis). One dot represents
one class. The forest tree model made by the 1st to 9th trial
scores of the training dataset yielded an approximation of
the 10th error score of the test dataset. The R2 between the
actual value of the training dataset and the predicted value
of the training dataset was .9702. The R2 between the actual
value of the test dataset and the predicted value of the training
dataset was .7321. Excluding the outlier (The right upper
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Fig. 7 Forest tree for the prediction task.
Note. The target was the error score of CI at the 10th trial.

B3: The 3rd trial’s best member error score for cognition
Bl5: The 5th trial’s best member error score for prediction
Cle9: The 9th trial’s CI for prediction
Bl3: The 3rd trial’s best member error score for prediction
Bl1: The first trial’s best member error score for prediction
N: number of each class

dot in the Fig. 6), the r2 was = −.83 and RMSE was .109.

3.3.2 Forest Tree for the Prediction Task

Figure 7 shows the result of the forest tree targeted at the
CI score of the 10th trial on the prediction task. The best
member’s error score of the 3rd trial on the cognition task was
the crucial factor for the CI of the 10th trial. If the first factor
was under .082, the second factor was the best member’s
prediction score of the 5th trial. If the crucial factor was over
.082, the CI prediction score of the 9th trial had an effect.
The cognitive performance of the best member of the third
trial of the features was the most important (.66), and the
importance of the following features was under .09.

This result suggests that for the half of the crowds (the
better half), who had the best members of better cognitive
competence, the CI for the prediction task depends on the
ability of the best members. For the half of the crowds (the
worse half), where did not have the best members, the recent
(9th) error score of CI on the prediction task determined the
10th performance. At the third level of the worse half, the
group size (n of each class) affected the performance of the
prediction task.

Figure 8 shows the model prediction (Y-axis) and the
actual score of the test data (X-axis). One dot represents
one class. The random forest model made by the 1st to 9th

trial scores of the training data yielded an approximation of
the 10th error score of the test data. When this model was
adapted to the test data, the RMSE score of this model was
0.1989. There was not much improvement after grid search
CV. The R2 between the actual value of the training dataset
and the predicted value of the training dataset was .9659.
The R2 between the actual value of the test dataset and the
predicted value of the training dataset was −.0821. The
negative values are due to scikit-learn specifications caused
by problems with outliers, multicollinearity, nonlinearity,
etc.

Fig. 8 Fitness of model for the test data of the prediction task
Note. X-Axis: Actual error score of the CI of the 10th prediction task of test
data.

Y-Axis: Model prediction yielded from the 1st to 9th trial errors of
the training data.

4. Discussion

For the cognition task, the individual errors increased in
the second half of the trials; nonetheless, CI could improve
performance. Individuals lose performance in the second
half of the trials when the task becomes more difficult, but
CI (group mean error) maintains good performance in the
second half. Individual mental models improve up to the
sixth trial, but after that, the distribution becomes symmetric,
suggesting that CI improves. The best members are good in
the first three trials, and in the second half, the results are
comparable to the CI. For the cognition task, the individual
errors increased in the second half of trials; nonetheless, CI
could improve performance. Not because of a rise in average
ability, the improvement of CI is caused by a symmetrical
smoothing of the distribution.

For the prediction task, neither CI nor the best member
showed improvement in performance during the second half
of the trials. Individuals perform poorly in the first trial but
learn rapidly. However, they lose performance in the second
half of the trials. CI moved along with individuals. The best
members perform best in the first half and gradually lose
performance.

For the random forest of regression, the performance of
CI for the cognition task was determined by the performance
of CI in the previous trials. On the other hand, the model
for the prediction task was determined by the best member’s
abilities. The best member’s ability was shown in the 3rd
trial. In this experiment, the stimuli of the second trial
were so easy that the 1st and 2nd trials seemed to function
as practice for the best members. The effect of the best
members continued to the last trial for the better half, but it
did not influence the worse half. However, because of the
poor R2 between the predicted and actual values, the dataset
should be reconsidered.

Roughly speaking, if the distribution of answers is sym-
metrical, such as those of the cognition task, CI will improve
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performance through repeated trials without feedback. In
this case, CI will eventually reach the best member’s per-
formance. However, for the prediction task, CI needs the
abilities of its best members in the crowd better than aver-
age, who can learn rapidly through trials.

4.1 Limitations of This Study

The difference in machine learning models between the cog-
nition and prediction tasks was apparent; however, this anal-
ysis has some limitations. The random forest model for
cognition tasks yielded fairly good results, predicting ap-
proximately 70% of the test data. For the remaining 30%,
this model should be improved by the interaction of variables
or other features. The model fitness of the prediction task
was worse than the model fitness of prediction; however, the
RMSE of the prediction model was better than that of the
cognition model.

The task in this research was free from social influ-
ence. Many topics of CI contain social values. Sharing
cognitive schema affects the weighting and evaluation of in-
formation, further strengthening bias [19], [20]. This bias is
also inevitable in machine learning through crowds as well
as expert groups consisting of the best members.

There are concerns that machine learning from big data
contains cognitive bias [21]. CI is now being implemented
as machine learning. If the correct answer is simple enough
to be derived by an algorithm, there is no need for CI. CI is
needed for things that require human judgments to determine
the correct answer. As long as the feedback of the correct
answer is human judgment, recursive machine learning can
be distorted.

4.2 Conclusion

CI can improve performance through repeated trials without
feedback, especially for cognitive tasks up to the same level
of ability as that of the best members. This was not because
the average ability of individuals increased but because the
distribution became symmetrical. What allows this type of
CI to excel is the absence of feedback.

For the prediction task, the conclusions are inconclu-
sive because of the poor R2 between the predicted and actual
values. With this premise, this study indicated that the best
members have an advantage over the crowd. The best mem-
bers of the better half of the crowd contributed to the CI’s
performance. The ability of CI to make predictions may rely
on the ability of the best member, the super-forecaster, to
learn rapidly.

However, it should be noted that the best members were
not the best in the first three trials. In other words, our study
suggests that the best members among us cannot be found
beforehand.

How can we use our CI to avoid the tragedy of history
repeating itself? A direct answer could not be found in this
research, but we have a hint for it. We need to assess the
experts by their most recent performance, not their reputa-

tion. [22] demonstrated that expert groups tend to highly
evaluate authorities who had high performance in the past,
even if the authority’s answers were wrong. Being careful
about the unconscious bias hidden in our minds and learning
from the best anonymous members will make us wiser and
better people.
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