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SUMMARY In Natural Language Understanding, intent detection and
slot filling have been widely used to understand user queries. However,
current methods tend to rely on single words and sentences to understand
complex semantic concepts, and can only consider local information within
the sentence. Therefore, they usually cannot capture long-distance de-
pendencies well and are prone to problems where complex intentions in
sentences are difficult to recognize. In order to solve the problem of long-
distance dependency of the model, this paper uses ConceptNet as an ex-
ternal knowledge source and introduces its extensive semantic information
into the multi-intent detection and slot filling model. Specifically, for a
certain sentence, based on confidence scores and semantic relationships,
the most relevant conceptual knowledge is selected to equip the sentence,
and a concept context map with rich information is constructed. Then,
the multi-head graph attention mechanism is used to strengthen context
correlation and improve the semantic understanding ability of the model.
The experimental results indicate that the model has significantly improved
performance compared to other models on the MixATIS and MixSNIPS
multi-intent datasets.
key words: knowledge enhancement, multi-intent detection, semantic slot
filling, joint model

1. Introduction

With the advent of the information age, the application of
human-machine dialogue is increasing, such as intelligent
speakers and Siri voice assistants. Therefore, Natural Lan-
guage Understanding (NLU) technology in dialogue systems
is becoming increasingly important. In order to accurately
answer users’ questions using knowledge and contexts, the
system must first accurately understand the user’s question,
which relies on the two important parts of NLU: intent de-
tection and slot filling.

People’s conversations and human-machine dialogues
often express multiple intents and needs in daily life. Gan-
gadharaiah et al. found that users’ speech expressions in the
Amazon dataset often have more than one intent [1], and each
intent may contain multiple slot information. Therefore, the
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accuracy and efficiency of multi-intent detection and slot
filling technology can greatly affect the intelligence of dia-
logue systems and are particularly important in evaluating
the overall quality of a dialogue system.

However, there are still two major problems and short-
comings in current multi-intent detection and slot filling
tasks. The first one is the problem of data sparsity. The
data sources for multi-intent detection are scarce [25], the
amount of data is insufficient, and the cost of annotating data
is very high [2], [23], making it difficult to obtain annotated
data. Additionally, the occurrence frequency of some in-
tents or slots is relatively low, which leads to poor detection
performance of certain intents or slots. The second issue is
the problem of long-distance dependence. Traditional multi-
intent detection and slot filling technology often only con-
siders local information in the sentence. For example, the
Bi-Model based RNN semantic framework model is more
inclined to focus on short-term memory [3], which makes it
difficult to handle the long-distance dependence problem in
long sentences, resulting in the model can’t capture the re-
lationship between different parts of the sentence well, thus
affecting the accuracy and robustness of the system. Espe-
cially in some sentences containing complex intents or slots
or vocabulary containing deep and complex concepts, it is
necessary to consider the relationship between multiple parts
of the sentence.

In the absence of external knowledge, relying only on a
limited word sequence may ignore the deep semantic infor-
mation in the dialogue. At present, there has been significant
progress in knowledge-based dialogue generation [4], which
uses relevant literature or knowledge bases to assist models
in understanding semantics, and uses denoising or filtering
techniques [4] to refine knowledge to better understand se-
mantics.

Table 1 lists some related concepts and knowledge
triples in the external knowledge base based on a conver-
sation, which is related to specific keywords in the conversa-
tion. If this related knowledge can be introduced, the model’s
understanding ability will be greatly improved, which is an
effective method to solve the above problem. In this article,
we introduce conceptual knowledge for multi-intent detec-
tion and slot filling models. Conceptual knowledge refers to
a group of related concepts and their semantic relationships.
It can be used to describe the relationship between different
entities, entity attributes, entity categories, and other infor-
mation. It is a common external knowledge that can provide
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Table 1 External knowledge triplets and concepts.

richer semantic information for multi-intent detection and
slot filling tasks [5].

We propose a Conceptual Knowledge Enhanced Model
for multi-intent detection and slot filling, named CKEM.
This method utilizes a pre-trained language model and a con-
ceptual knowledge base, ConceptNet, to enhance the model’s
ability to understand and express semantic relationships be-
tween different parts of a sentence. At the same time, the
performance of the model can be further improved by in-
troducing a graph attention mechanism [6] in NLU tasks,
enhancing the model’s ability to pay attention to important
information. Our main contributions are as follows:

• We propose CKEM, which combines external knowl-
edge ConceptNet with dialogue text for joint multi-
intent detection and slot filling tasks.

• We validated the effectiveness of concept context
graphs and the graph attention mechanism in under-
standing semantics, understanding user intentions, and
slot filling.

• The experimental results indicate that the model has
achieved good performance on multiple competitive
baselines.

2. Related Work

Intent detection and slot filling are two important tasks in nat-
ural language processing, which have received a great deal
of attention in recent years. Intent detection can be viewed
as a classification problem, which aims to identify the user’s
initial intention expressed in the sentence. Multi-intent de-
tection belongs to the multi-label classification problem [7],
which needs to identify multiple intentions of the user. Many
classification methods have been used for multi-intent detec-
tion tasks, such as Naive Bayesian Model (NBM), Support
Vector Machine [8], etc. Slot filling can be viewed as a se-
quence labeling task, which aims to obtain semantic slots
and their corresponding values in the user’s speech. Popular
methods include Hidden Markov Model (HMM), Condi-
tional Random Fields (CRF), etc.

With the development of deep learning and neural net-
works, it has been found that methods based on deep learning
can achieve better results in these tasks. For example, Hai et
al. [9] used RNN and Long Short-Term Memory (LSTM) to
process intent detection tasks, which showed that sequence
features are helpful for intent detection tasks. Liu et al. [10]

used RNN language models to predict semantic slot labels.
Zheng et al. [11] proposed using capsule-based neural net-
works to solve intent detection classification problems. Ni
et al. [12] used token-level information from the encoder to
improve the performance of semantic slot filling tasks. Liu
et al. [26] utilized structure consolidation networks (SCN) to
continuously learn new ideas that arise in daily life.

For intent detection and slot filling tasks, traditional
techniques usually separate the two tasks into two indepen-
dent sub-tasks and process them separately. Recently, more
academic approaches have been to jointly process intent de-
tection and slot filling tasks, while capturing and learning
the semantic dependencies between intent detection and slot
filling tasks to achieve better performance. For example, the
joint model proposed by Qin et al. [13] can perform both
intent detection and slot filling tasks at the same time.

However, the above models mainly focus on single-
intent scenarios and cannot handle complex multi-intent
scenarios. Gangadharaiah et al. [14] first focused on multi-
intent scenarios and proposed the first multi-intent detection
model Joint Multiple ID-SF. The AGIF model proposed by
Qin et al. [15] introduced an intent-slot graph interaction
layer, using multi-intent information to guide slot filling,
but these models heavily rely on autoregressive methods.
Based on this problem, Qin et al. constructed the GL-GIN
model based on the graph attention network [16] and used
non-autoregressive methods to alleviate the problem of in-
consistent slots. Bai et al. [23] proposed a memory based
method to incrementally learn emerging intentions in order
to address the high computational cost of storing new data
and intentions each time and retraining the entire data. Jiang
et al. [28] proposed a method of separation parsing, which
divides a sentence into multiple clauses containing a single
intention, performs loop parsing on each clause, and finally
integrates the parsing results. However, there are still prob-
lems with difficult-to-handle complex semantic concepts and
long-range dependencies.

To solve these problems, the use of external knowledge
is an effective solution, and introducing external knowledge
can improve the model’s understanding ability. Yu et al. [24]
need to acquire a large amount of common sense knowl-
edge in order to understand users’ intentions on e-commerce
platforms. Therefore, they utilize the generation ability of
large language models and human-in-the-loop annotations
to semi-automatically construct knowledge graphs. In this
paper, the knowledge source we use is ConceptNet [7], a
large-scale knowledge graph that describes general human
knowledge using natural language, and plays an effective role
in dialogue-related tasks [17], mainly including tuples, con-
cepts, and relationships. Each tuple includes four parts: head
concept, relationship, tail concept, and confidence score.
This knowledge source has been introduced and applied to
many NLP tasks, such as dialogue, question answering, text
classification, and sentiment analysis.

Currently, graph neural networks have been success-
fully applied to various NLP tasks. It can directly manip-
ulate the graph structure and build models based on graph
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Fig. 1 CKEM model architecture.

structure information. Lin et al. [18] used the Graph Atten-
tion Network (GAT) for text classification tasks to merge
the dependency information of parsers. Liu et al. [19] used
graph neural networks to model non-local contextual infor-
mation in sequence labeling tasks. Feng et al. [20] applied
graph neural networks to text generation tasks and success-
fully generated abstract information for text. These studies
have shown that the effectiveness of graph neural networks
in the field of dialogue. For better consideration of the in-
herent intra-class and inter-class relations, Zhang et al. [27]
constructed an instance-level and a class-level graph neu-
ral network, which not only propagate label information but
also propagate feature structure. Through the model based
on graph attention networks proposed by Qin et al. [16], it
can also be seen that graph neural networks and attention
mechanisms play a significant role in multi-intent detection
and slot filling tasks. Therefore, this article will use the
multi-head graph attention mechanism to construct a model
based on the constructed concept context graph, in order to
strengthen the correlation between concepts and contexts and
improve the semantic understanding ability of the model.

3. Models

The conceptual knowledge enhanced multi-intent detection
and slot filling model proposed in this article is shown in
Fig. 1, which consists of three parts: concept context graph,
encoder, and classifier. First, one utterance, i.e., a word
sequence X, is taken as input based on a given set of ut-
terances D = [X1, · · · ,XM]. In the concept context graph
part, we introduce external knowledge to enrich the utter-
ance X and construct a concept context graph G. Secondly,
the concept-enhanced concept context graph is transformed
into word embeddings, and the utterance is encoded using a
multi-head attention mechanism and BERT encoding layer.
Finally, the two results of the BERT encoder are input into the
classifier, the averaged pooling result is input into the Intent
classifier to obtain the multi-intent detection result, and the
sequence hidden state result is input into the Slot classifier

for the slot filling task. The Intent-Slot classifier with intent
constraint attention mechanism is used to complete the joint
task of multi-intent detection and slot filling.

3.1 Conceptual Context Graph

We construct a conceptual context graph G by introducing
the external knowledge source ConceptNet, which is a large-
scale knowledge graph that describes human knowledge in
natural language and plays an important role in related tasks
of dialogue systems. It includes 5.9 million tuples, 3.1 mil-
lion concepts, and 38 types of relationships. Each tuple con-
sists of four parts, namely, the head concept, relationship,
tail concept, and confidence score, denoted as τ = (x, r,c, s),
for example, (birthday, RelatedTo, happy, 0.19).

Take one utterance X from the given utterance set
D as input, such as the i-th utterance Xi = [xi0, . . . , x

i
m]

containing a sequence of m words, can be represented as
X = [x1, . . . ,xm]. Firstly, insert a CLS token at the beginning
of the sentence sequence to obtain X = [CLS,x1, . . . ,xm].
Then, for each non-stopword xi ∈ X, we introduce its cor-
responding conceptual knowledge. We need to retrieve a
set of related tuples Ti = {τki = (xi,rki , cki , ski )}k=1,...,K from
ConceptNet.

Then, we use three heuristic steps to refine the relevant
knowledge: (1) Filter out irrelevant tuples based on confi-
dence score (i.e., ski > 0.1) and related relationship, and then
extract a subset T̂i of Ti, which includes the most relevant
concept knowledge tuples with the word xi; (2) Rank the
candidate concept tuples based on the confidence score of
retrieved concepts {cki }k=1,...,K . For each word xi, we select
the top-k tuples and form a concept subgraph with them; (3)
Construct the conceptual context graph G, where each word
xi ∈ X and its corresponding concept cki form the vertices
V = {vi}i=1,...,m (m is the number of vertices), and the graph
G contains three types of directed edges: temporary edges
between two consecutive words, edges between the word xi
and its corresponding concept cki , and global edges between
the CLS token and other vertices. Finally, utterance X is
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enriched with introduced conceptual knowledge and repre-
sented as the conceptual context graph G.

3.2 Multi-Head Graph Attention Network

This article first uses a custom shared word embedding layer
and a position embedding layer to convert each vertex vi ∈ G
into a vector, resulting in Ew (vi) and Ep (vi); Vertices need
to be distinguished between those in discourse and those
in external knowledge. Therefore, we have set up a state
embedding layer to obtain the vector Es (vi) to distinguish
between the two types of vertices. From this, we can obtain
the embedded representation of the vector of vi , as shown in
Formula 1.

vi = Ew (vi) + Ep (vi) + Es (vi) (1)

Then, the multi-head graph attention mechanism in the
graph attention network is used to update the node repre-
sentation vi, and external knowledge vectors are more ac-
curately and effectively introduced into the model. Graph
Attention Network is a graph neural network that utilizes a
self-attention mechanism. This network calculates the atten-
tion of each node in a graph relative to each adjacent node in
a manner similar to the self-attention mechanism in a trans-
former, and connects the features of the node itself with the
attention features as the features of the node. Based on this,
it performs tasks such as node classification.

For node i, the first step is to strengthen context associ-
ation by focusing on all its direct neighbors j and calculate
the attention score of the node and its adjacent nodes, which
is the attention feature of the node. The method for calcu-
lating the attention score between the two nodes is shown in
Formula 2.

ei j = a(vi,vj) (2)

Among them, the attention score eij represents the impor-
tance of node j to node i, and a represents the self-attention
mechanism, which is a single-layer feedforward neural net-
work.

To make it easier to calculate and compare attention
scores, softmax is introduced to regularization of all adjacent
nodes j of node i, as shown in Formula 3.

αi j = softmax(ei j) =
exp(ei j)∑

z∈Ai
exp(eiz)

(3)

Among them, Ai represents the set of neighboring nodes
of node i, α is the coefficient used for weighted summation
during each convolution. The specific calculation process is
shown in Formula 4. The result of concatenating node i and
its adjacent node j is multiplied by attention mechanism a,
followed by a nonlinear mapping and finally normalized to
use the obtained result as the attention feature of the current
node.

αi j =
exp(LeakyReLU(a[vi ∥vj]))∑

z∈Ai
exp(LeakyReLU(a[vi ∥vz]))

(4)

In order to make the learning process of self-attention
more stable, we use a multi-head attention mechanism in
graph attention networks. We use H independent attention
mechanisms and connect their features to obtain the follow-
ing feature representations:

v̂i = ∥Hn=1

∑
j∈Ai

αnijW
n
vvj (5)

Where ∥ represents the concatenation of multi-head attention
mechanisms, n represents the self-attention mechanism of
the n-th head, H is the number of self-attention mechanisms,
where Wn

v is a linear transformation.
Finally, the final node feature representation Vi is ob-

tained by connecting the features of the node itself with the
attention features.

Vi = v̂i + vi (6)

3.3 BERT Encoder

Due to the previous operation only targeting local context
(i.e. direct neighbors), we also need to update the vertex
representation using global context information (i.e. all other
vertices) for global interaction. We used BERT’s Encoder
layer and pooling layer [21] to inject global information into
all vertices. The output of the BERT encoder mainly consists
of two parts, one is the pooler_ output which is the hidden
state of the first token and the last layer of the sequence. It
is the global representation of hcls in the concept graph. It is
further processed by the linear layer and the Tanh activation
function. The output hcls is a good summary of the semantic
content of the input. Alternatively, by performing an average
pooling operation on the hidden state sequence of the entire
input sequence, the resulting average pooling result can better
represent a sentence. Therefore, we input hcls and the results
of average pooling into the intention classifier to complete the
multi-intent detection task. The other is sequence_ output
which is represented as h = (hcls,h1, . . . ,hm,hsep). This is
the output result of the sequence of the last hidden layer in
the BERT model. It is usually used for tasks such as naming
entity recognition and sequence labeling. Therefore, we will
use the result sequence_ output and input them into the slot
classifier to handle the slot filling task.

3.4 Classifier

3.4.1 Intent Classifier and Slot Classifier

The multi-intent detection task is accomplished by the Intent
Classifier. The Intent Classifier receives the global represen-
tation of the concept graph hcls obtained from the encoder
output, and uses the sigmoid activation function to classify
the intent, obtaining the probability of each intent label, as
follows:

yi = Sigmoid(W ihcls + bi) (7)
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In the slot-filling task, to predict the slot at position
k, we input the sequence_output representation h, which is
the output of the encoder, into a separate slot classifier and
normalize it to obtain a probability distribution over the slots,
using the following method:

ysk = Softmax(W shk + bs) (8)

3.4.2 Slot-Intent Classifier

To clearly capture the relationship between slots and intents,
we predict the intent of each slot sm at the token level. After
calculating the representation rm of slot sm, we vectorially
connect the global discourse representation hcls with rm to
obtain the slot-intent detection result ylm, as follows:

ylm = Softmax(W l[hcls |rm] + bl) (9)

To better align the above slot-intent detection results
with the intent predicted by the intent classifier, we use
intent-constrained attention to combine the intention clas-
sifier result yi and the slot-intent detection result ylm yields
the final result of the slot intention classifier as yp

m.

3.5 Training Objective

The training objective of the CKEM model is to maximize P.
In the Eq. (10), the first two terms are the objectives of intent
detection and slot filling, and the last term is the objective
of slot-intent classification. The multi-intent detection task
is trained using binary cross-entropy loss, and the other two
tasks are trained using conventional cross-entropy loss. The
loss of the entire CKEM model is the weighted sum of the
losses of these three classifiers.

P = p(yi |x)
n∏

k=1
p(ysk |x)

∏
m

p(ypm |yi, yssm , x) (10)

4. Experiments

4.1 Datasets

In this experiment, we use the multi-intent datasets MixS-
NIPS and MixATIS constructed by Qin et al. [15]. The
MixSNIPS dataset is based on the SNIPS dataset, which
comes from the Snips personal voice assistant. The MixS-
NIPS dataset uses some connecting words such as “and” to
connect sentences with different intents, and finally obtains
45,000 utterances for training, 2,500 for validation, and 2,500
for testing. Similarly, another multi-intent dataset MixATIS
is based on the ATIS dataset. The ATIS dataset mainly con-
sists of audio recordings of flight booking users, with 18,000
utterances in the training set, 1,000 in the validation set, and
1,000 in the test set. The proportion of utterances with 1, 2,
and 3 intents in the two datasets is 3 : 5 : 2, and the data set
division is detailed in Table 2.

Table 2 Distribution of user utterances.

Table 3 Hyperparameters setting.

4.2 Experiment Setup

In this experiment, we used the English uncased BERT-Base
model, which contains 12 layers, 768 hidden states, and 12
heads. The maximum sequence length was set to 45, and
the maximum concept length was set to 10. The training
batch size was set to 32. We used random search to adjust
the hyperparameters based on the semantic frame accuracy
on the validation set. The dropout rate for the output layer
of all three classifiers was 0.2. The hyperparameters of the
experimental setup are shown in Table 3.

4.3 Equations

In this paper, Intent Accuracy (Intent Acc) is used to evaluate
the performance of multi-intent detection tasks, Slot F1 is
used as the performance metric for semantic slot filling tasks,
and Semantic Frame Accuracy (SeFr Acc) is used to measure
the overall performance of the joint model. When both
the slot and intent are accurate, “SeFr Acc” considers the
prediction of the utterance to be correct. The formulas for
calculating these metrics are as follows:

Acc =
TP + T N

TP + FN + FP + T N
(11)

F1 =
2Precision ∗ Recall
Precision + Recall

(12)

4.4 Experiment Results and Analysis

4.4.1 Experiment Design

To verify the effectiveness of the proposed concept
knowledge-enhanced method for intent detection and slot
filling tasks, we compared our model with several other joint
models, including:

(1) Stack-Propagation [22]: A Stack-Propagation joint
model to capture intent semantic knowledge and per-
form token-level intent detection to alleviate error prop-
agation.
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Table 4 Comparison of experimental results.

Table 5 Results of ablation experiment.

(2) Joint-Multiple ID-SF [14]: A multitask framework that
uses attention-based models to identify intent and gen-
erate slot labels at the token level.

(3) AGIF [15]: An adaptive Graph-Interactive framework
for joint multi-intent detection and semantic slot filling,
extracting intent information for token-level slot filling.

(4) GL-GIN [16]: A global-local graph interaction network
that accelerates model decoding time and uses non-
autoregressive methods to address incoherent semantic
slot issues.

Table 4 summarizes the performance of different models on
MixATIS and MixSNIPS. We observed that our model out-
performs other models on all three metrics. For the intent
detection accuracy metric (Intent_Acc), our model exceeded
GL-GIN by 0.8% and 0.6%, respectively. For the Slot-
F1 metric, our model has brought significant improvements
(1.4% and 1.8%), which proves that the concept knowledge
augmentation module, after improving the performance of
multi-intent detection, guides the slot filling task together
with the results of intention detection. Our model has a
strong ability to recognize intentions and fill slots, and ef-
fectively improves the accuracy of the joint task of intention
recognition and slot filling. In addition, our model has im-
proved by 3.1% and 4.3% compared to GL-GIN in terms
of more stringent metrics, namely semantic accuracy. This
indicates that the model has a strong ability to understand
semantics, verifying the effectiveness of understanding in-
tention and utilizing the relationship between intent-slots.

4.4.2 Results of the Ablation Experiment

In order to verify the contributions of the proposed improve-
ment factors in the model to the multi-intent detection and
slot filling tasks, we conducted ablation experiments again,

mainly considering two improvement factors, namely the
concept context graph and the multi-head graph attention
mechanism. The experimental results are shown in Table 5.

We compared our model with versions that removed
two enhancement components separately (-CCG and -multi-
head GAT) to analyze the impact of these components on
the model’s performance. From Table 5, we can see that
removing these two components lowered the performance of
our model. If external conceptual knowledge is not intro-
duced and only the original textual input is used for model
training, the decrease in Intent Acc score is even greater,
indicating that external knowledge has a greater impact on
the intent detection task, and injecting external knowledge is
crucial for understanding intent. After replacing our model’s
encoder with a BERT encoder (-multi-head GAT) in the en-
coder part, both the Slot F1 score and the overall semantic
accuracy significantly deteriorated, demonstrating the effec-
tiveness of the multi-head graph attention mechanism in the
entire multi-intent detection and slot filling task.

4.4.3 Effect of the Sequence Length on the Experiment

Since the sequence length of each sentence in the MixATIS
and MixSNIPS experimental data sets is different, accord-
ing to statistics, the sentence length ranges from about 7 to
100. Therefore, the above multi-intent detection and slot
filling models will unify the sequence length during the ex-
periment. We set the sequence length max_seq_len from 40
to 52 in MixATIS and MixSNIPS for experiments, and the
experimental results (only SeFr_Acc experimental data are
listed) are shown in Fig. 2.

By observing the line chart, it is found that when the
sequence length increases from small to large, the result of
SeFrAcc rises first and then decreases. It can be seen that the
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Table 6 Utterance example.

Table 7 The weight of some conceptual knowledge.

Fig. 2 Effect of the sequence length on the experiment.

experimental effect is not good when the sequence length is
shorter (less than 45). But it’s not as if the longer the better.
When the sequence length exceeds 45, the result of SeFr Acc
will decrease with the increase of the length. The possible
reason for this line chart is that the information contained in
the sentence is not rich enough when the sequence length is
short, the introduction of knowledge is more effective for the
experiment. When the sequence length is long, we speculate
that the model may introduce some noise during the zero-
filling operation in the short sentences, which may result in
low-performance improvement. Therefore, we chose 45 as
the optimal sequence length value.

4.4.4 Effect of the Number of Concepts on the Experiment

We set the number of introduced concepts max_con_len to 5,
10, and 15 for experiments in MixATIS and MixSNIPS, and
the experimental results (only the SeFr_Acc experimental
data are listed) are shown in Fig. 3. It can be found that when
we introduce a maximum of 5 concepts, the SeFr_Acc score
is the lowest. Therefore, we speculate that the introduction

Fig. 3 Effect of the number of concepts on the experiment.

of a maximum of 5 concepts has little effect on enriching
knowledge, and more conceptual knowledge needs to be
introduced; However, when a maximum of 15 concepts are
introduced, the score is higher than 5, but not as good as
when the number is 10. The possible reason is that some
of the introduced 15 concepts have a low correlation with
the present words, which will mislead the model and lead to
poor results.

4.5 Case Study

In order to better illustrate this model, we use sentences
from the dataset for case analysis, as shown in Table 6. We
will visualize the introduced conceptual knowledge and its
weight. In this case, we will analyze the three keywords that
have the greatest impact on the semantics of the dialogue: 1,
cheap, tomorrow, and Seattle.

Firstly, it can be observed that the model without the
incorporation of our proposed method predicts “1” as the
label “O”. This is because, without the knowledge enhance-
ment and graph attention mechanism, it is challenging to



HE et al.: CONCEPTUAL KNOWLEDGE ENHANCED MODEL FOR MULTI-INTENT DETECTION AND SLOT FILLING
475

predict that “1” represents a time entity. In contrast, our
approach accurately predicts its slot label as “B-starttime”.
We believe that this is because the knowledge enhancement
and graph attention mechanisms we proposed can assist the
model in acquiring abundant knowledge and contextual in-
formation. Additionally, our method leverages knowledge
related to “pm” to correctly predict the label “I-starttime”
for the entity “pm”.

Secondly, it can be seen that in the GL-GIN model,
“cheap” is predicted as the label “O”, and our model cor-
rectly predicts that the slot label “cheap” is “B-pricing”.
This correct prediction carries detailed information of the
discourse. In the discourse example, the word “cheap” has a
strong correlation and close relationship with the knowledge
“affordable” we have introduced, which helps to determine
the intention and mark the correct slot label. Our model also
utilizes the fact of “later on” and “day” to determine the slot
of “tomorrow” is “B-date”, and uses knowledge related to
“Seattle” to help identify its slot as “B-city”.

5. Conclusion

This article proposes a conceptual knowledge enhanced
multi-intent detection and slot filling model. We introduce
external knowledge and construct a concept context graph G.
Then, we encode the discourse using the multi-head graph
attention mechanism and BERT encoding layer. Finally, the
results of the BERT encoder are inputted into the classifier
to obtain the results of intent detection and slot filling. The
experimental results show that the model achieves the best
results on two multi-intent datasets, and its understanding
ability is greatly improved. In addition, we also validated
the effectiveness of two components, the conceptual context
graph and the multi-head graph attention mechanism.
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