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PSDSpell: Pre-Training with Self-Distillation Learning for Chinese
Spelling Correction

Li HE† ,††a), Xiaowu ZHANG† ,††b), Nonmembers, Jianyong DUAN† ,††c), Member, Hao WANG† ,††d), Xin LI† ,††e),
and Liang ZHAO††† ,††††f), Nonmembers

SUMMARY Chinese spelling correction (CSC) models detect and cor-
rect a text typo based on the misspelled character and its context. Recently,
Bert-based models have dominated the research of Chinese spelling correc-
tion . However, these methods only focus on the semantic information of
the text during the pretraining stage, neglecting the learning of correcting
spelling errors. Moreover, when multiple incorrect characters are in the text,
the context introduces noisy information, making it difficult for the model
to accurately detect the positions of the incorrect characters, leading to false
corrections. To address these limitations, we apply the multimodal pre-
trained language model ChineseBert to the task of spelling correction. We
propose a self-distillation learning-based pretraining strategy, where a con-
fusion set is used to construct text containing erroneous characters, allowing
the model to jointly learns how to understand language and correct spelling
errors. Additionally, we introduce a single-channel masking mechanism
to mitigate the noise caused by the incorrect characters. This mechanism
masks the semantic encoding channel while preserving the phonetic and
glyph encoding channels, reducing the noise introduced by incorrect char-
acters during the prediction process. Finally, experiments are conducted on
widely used benchmarks. Our model achieves superior performance against
state-of-the-art methods by a remarkable gain.
key words: spelling correction, ChineseBert, self-distillation, multimodal
information

1. Introduction

Chinese Spelling Check, an essential task in Chinese natural
language processing, focuses on identifying and rectifying
spelling errors in Chinese texts. With the advancement of
technology, the trend towards paperless office practices has
grown, making it worthwhile to explore methods for correct-
ing erroneous characters present in text input via keyboards.
Chinese input methods commonly include Pinyin and Wubi
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input methods. Consequently, during keyboard input, two
types of errors are prone to occur: phonologically similar
errors and visually similar errors, resulting from the misuse
of Chinese characters with similar pronunciations or visual
appearances. According to the study mentioned in the [1],
about 83% of errors are related to phonological similarity,
and 48% are related to visual similarity. Unlike English, Chi-
nese is a logographic writing system, and it does not have
misspelled words that are not present in the Chinese character
dictionary; instead, it has homophonic characters. Chinese
characters do not have clear word boundaries, and the mean-
ing of each character can undergo significant changes when
the context changes. Therefore, it is challenging to deter-
mine whether there are word-level errors in a sentence [2].
Table 1 illustrates two examples of Chinese spelling correc-
tion errors. Recently, pre-trained language models such as
BERT (Devlin et al. [3]) have been successfully applied to
Chinese spelling correction tasks. However, since BERT is
trained based on the masked token recovering task, it can
only treat all characters as potentially erroneous during the
error detection phase, leading to lower efficiency and accu-
racy. When multiple errors exist in the text, BERT relies
solely on contextual semantics for prediction, and erroneous
context introduces noise to the model. As a result, the model
may struggle to determine the positions of errors accurately
and may lead to false corrections.

Texts typically contain multiple errors, as evi-
denced by our analysis of multi-error samples from the
SIGHAN datasets. Specifically, in the SIGHAN2013 [4],
SIGHAN2014 [5], and SIGHAN2015 [6] datasets, the per-
centage of multi-error samples reached 21%, 29%, and 22%,
respectively. We observed that the performance of existing
spelling correction models on multi-error samples is inferior
to their performance on the entire dataset. This discrepancy
can be attributed to the noise introduced by the contextual
information containing erroneous characters in multi-error
samples.

To enable the model to learn spelling error knowledge
during the pre-training phase and improve its robustness to

Table 1 Examples of Chinese spelling errors. Misspelling characters are
marked in red, and the corresponding phonics are given in brackets.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers



496
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

Table 2 The correction performance of various Chinese Spelling Check
(CSC) models on the SIGHAN15 test set and a multi-error test set (con-
sisting of 242 test instances extracted from SIGHAN15). We evaluated the
models using character-level evaluation metrics.

the noise introduced by spelling error context, we utilize a
Chinese character confusion set [4] to replace 15% of ran-
domly masked characters with characters from the confu-
sion set, ensuring that each sentence contains multiple er-
rors. We employ self-distillation learning to guide the model
in jointly learning semantics and spelling error knowledge
during pre-training. Our proposed pre-training strategy is
model-agnostic and can be applied to different models.

Furthermore, we have observed that incorporating pho-
netic and character shape information is beneficial for Chi-
nese spelling correction tasks (PLOME [7], REALIZE [8],
MLM-phonetics [9]). However, these models often fuse in-
formation from all channels and mask the information of
erroneous characters, thereby preventing the model from
utilizing the valuable information carried by the erroneous
characters. To address this issue, we use Chinesebert [10],
which combines Chinese character shape and phonetic fea-
tures, to construct our correction network. Unlike other
models that mask all channels, we retained the phonetic and
visual features that are most beneficial to the model’s final
predictions. Subsequently, the denoised fused features are
fed into the correction model. Since the correction model
already masks the semantic features of erroneous charac-
ters during input, coupled with the constraints imposed by
the visual and phonetic aspects of the model’s predictions,
PSDSpell is better equipped to handle Chinese spelling cor-
rection tasks.

In summary, our contributions are as follows: 1. We
propose a pre-training strategy based on self-distillation
learning, allowing the model to jointly learn semantics
and spelling error knowledge during the pre-training phase.
2. We introduce a single-channel masking mechanism that
improves the utilization of phonetic and character shape in-
formation in existing models. This approach retains the pho-
netic and character shape features that help predict the output.
Experimental results demonstrate that our model achieves
improvements in error detection and correction compared to
baseline models. It also performs well on multi-error sam-
ples. Overall, our contributions enhance the understanding
and utilization of spelling error knowledge in pre-training
and improve the performance of Chinese spelling correction
models.

2. Related Work

Chinese spelling correction has received widespread atten-
tion over the past few decades. In the early stages, the

focus was mainly on rule-based and statistical methods. Y.
Jiang [11] proposed a new grammar rule system for address-
ing spelling and grammar errors. However, these rules are
challenging to cover all types of spelling errors, and rule-
based methods struggle to handle all Chinese spelling errors
comprehensively. Wang [12] employed word embeddings
and a conditional random field (CRF)-based error detector
to identify potential spelling errors and provide correction
suggestions. Huang [13] used an N-gram model based on
word segmentation for error detection and combined it with
heuristic rules for error correction. Statistical approaches of-
ten follow a pipeline correction pattern, which can lead to er-
ror propagation. Moreover, they typically rely on threshold-
based criteria to judge sentence fluency, limiting the explo-
ration of semantic information and potentially weakening the
model’s performance.

In recent years, pre-training models based on mask-
ing mechanisms have achieved significant success in various
natural language processing tasks. Liu [4] fused semantic,
phonetic, and character shape information at the embedding
layer and predicted Chinese characters and phonetic outputs,
combining their outputs during prediction. Xu [8] employed
a multimodal approach that integrates semantic, phonetic,
and character shape representations to enhance the error de-
tection and correction performance of the model. Zhu [14]
proposed a multitasking framework for Chinese spelling cor-
rection, using a late fusion strategy to combine the hidden
states of the correction and detection modules, minimiz-
ing the misleading impact of spelling errors on character
correction. Liu [15] constructed a noisy sample for each
training sample, training the model to output outputs more
similar to the original training data and the noisy sample.
While these methods have improved the performance of the
models to some extent, they essentially involve sorting and
filtering the model’s correction results, and the noisy in-
formation is still input to the model, causing certain in-
terference in the model’s predictions. In contrast, using a
single-channel masking strategy, our approach reduces the
interference caused by erroneous characters during the pre-
diction process.

3. Approach

The Chinese spelling correction task aims to detect spelling
errors at the character level in a given sentence X =

{x1, x2, x3, · · · , xn} and generate the corrected sentence Y =
{y1, y2, y3, · · · , yn}. Existing methods based on pre-training
models directly generate the target sentence based on the in-
put sentence information. Although this simplifies the cor-
rection process, these methods often utilize the semantics of
one erroneous character to predict another erroneous char-
acter, resulting in poor performance on texts with multiple
errors. To address this issue, we utilize a confusion set to con-
struct texts with multiple errors and employ self-distillation
learning to pre-train the correction network. This allows the
model to simultaneously learn both semantic knowledge and
more spelling error knowledge.
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Fig. 1 The framework of the proposed PSDSpell, where the incorrect characters are marked in red,
and the corrected characters are marked in blue. Left: the detection network detects potentially incorrect
characters. Middle: based on the results of the detection network, potential erroneous characters (
(forge), 抛 (throw), (move)) in the input sentence are identified. The semantic encoding channel
of potentially incorrect characters is masked, while preserving the visual glyph encoding and pinyin
encoding channels representing these potential errors. Subsequently, the denoised fused features are
input into a correction model for refinement. Right: the correction network utilizes the iterative correction
strategy to perform corrections and outputs the corrected results.

As shown in Fig. 1, the proposed spelling correction
model (PSDSpell) consists of two main components: the de-
tection network and the correction network. The detection
network predicts the error probability for each character, re-
sulting in a probability sequence P = {P1,P2,P3, · · · ,Pn},
which identifies potentially erroneous characters in the text.
We then employ a single-channel masking mechanism to
mask the semantic information of these characters while
preserving the phonetic and character shape features that
are helpful for the final model predictions. This allows us
to effectively reduce the noise introduced by the erroneous
characters during the correction process. Furthermore, we
adopt a simple yet effective iterative correction strategy to
avoid erroneous corrections. We progressively refine the
correction results through two rounds of iteration, ensuring
more accurate corrections. Ultimately, we obtain the cor-
rected sentence Y, which represents the final output of our
model.

3.1 Pre-Training Strategy Based on Self-Distillation Learn-
ing

We employed a substitution strategy guided by a Chinese
character confusion set (including phonetically similar and
visually similar errors) introduced by Wu [4] to construct
sentence pairs for self-distillation learning. We replaced the

Table 3 Examples of different masking strategies. The chosen token is
marked in red, and the corresponding phonics is given in brackets.

fixed mask token “[MASK]” that does not exist in down-
stream tasks with characters from the confusion set. We
abandoned the Next Sentence Prediction (NSP) task, which
is irrelevant to Chinese spelling correction. We utilized a dy-
namic masking strategy, randomly masking 15% of different
characters during each training iteration. Unlike the masking
strategy of other Chinese spelling correction models, con-
sidering a higher proportion of phonetically similar errors,
our masking strategy replaced 70% of characters with pho-
netically similar ones and 30% with visually similar ones,
without retaining randomly generated characters. Therefore,
we constructed an adequate amount of multi-error text for
pre-training. The details are shown in Table 3.

In recent years, self-distillation learning has achieved
impressive results in the fields of computer vision (CV) and
natural language processing (NLP) (Gao [16], Zhang [17],
Lee [18]). Through self-distillation, knowledge from deeper
parts of the network can be distilled into shallower parts,



498
IEICE TRANS. INF. & SYST., VOL.E107–D, NO.4 APRIL 2024

Fig. 2 Using the self-distillation pre-training strategy, we input sentences
containing typos and their corresponding correct versions separately into
the two sides of ChineseBert.

which significantly helps with data augmentation and im-
proves model performance. By combining the substitution
strategy using a confusion set, we further exploit the advan-
tages of the pre-training-fine-tuning paradigm using self-
distillation learning. We use ChineseBert to encode sen-
tences with spelling errors and their corresponding correct
sentences. Inspired by contrastive learning, we perform ef-
fective knowledge transfer using Wang’s approach [19]. By
using contrastive loss, we regularize the hidden states of sen-
tences with errors to make them closer to the hidden states
of correct sentences. The process is illustrated in Fig. 2.

We use an additional distillation loss to help Chinese-
Bert establish a connection between incorrect characters and
their correct counterparts. We aim to use this loss to make
the hidden layer representations of sentences with misspelled
characters and their corresponding correct sentences closer
in output. We employ a self-distillation method using shared
ChineseBert weights to construct positive and negative sam-
ples for contrastive learning. The specific loss calculation is
as follows:

Lkc = −∑n
i=1θ(x̃i) log

exp(sim(h̃i, hi)/τ)∑n
j=1 exp(sim(h̃i, hj)/τ)

(1)

Suppose xi is an incorrect character, then θ(x̃i) = 1.
Otherwise, θ(x̃i) = 0. h̃i represents the hidden state from
the teacher model with the correct input. τ is the distil-
lation temperature hyperparameter, and sim(h̃i, hi)/τ repre-
sents the cosine similarity between these two vectors. The
objective of minimizing Lkc is to make the hidden state of the
student model, which contains erroneous characters, similar
to the corresponding correct state of the teacher model. We
use stop gradient (sg) to decouple the gradient backpropa-
gation to h̃i , ensuring stability during training. Pretraining
is performed in conjunction with the cross-entropy loss be-
tween the student and teacher models. The specific loss is as

follows:

Ls = −∑n
i=1 log

(
P
(
Ŷi = yi |X

))
(2)

Lt = −∑n
i=1 log

(
P
(
Ȳi = yi |Y ′) ) (3)

Lp = Ls + αLt + βLkc (4)

Where α and β are hyperparameters, our model initializes
using the parameters of ChineseBert†.

3.2 Detection Network

We use the Discriminator part of ELECTRA (Base) (Clark
et al.) [20] as our detection network. The input to the
detection network is a sequence of embeddings E =

{e1, e2, e3, · · · , en}, where ei represents the feature vector
of character xi , which is the sum of word embeddings, po-
sition embeddings, and sentence embeddings. The output
is a label sequence Ep =

{
ep1, ep2, ep3, · · · , epn

}
, where epi

represents the label of the i character. We use 1 to indicate
that the character is incorrect and 0 to indicate correctness.
We use the sigmoid function for each character to obtain the
error probability Pi , where a higher error probability indi-
cates a higher likelihood of the character being incorrect. It
is defined as follows:

Pi = Pd

(
epi = 1 | X

)
= σ (WdHdi + bd) (5)

Where Hdi represents the output of the last layer after the
character has been processed by the detection network, and
Wd and bd are learnable parameters for binary classification.

To recall more incorrect characters, we set the threshold
to 0.1. That is if Pi ≥ 0.1, the character is classified as
incorrect, and if Pi < 0.1, it is classified as correct. Finally,
for the detection model, we optimize the detection network
using the binary cross-entropy loss function.

Ld = − 1
N
∑N

i=1
[
epi · log (Pi) + (1 − yi) · log (1 − Pi)

]
(6)

3.3 Correction Network

The correction network is built based on ChineseBert, a Chi-
nese pretraining language model that integrates phonetic and
visual information about Chinese characters. Since Chinese
is an ideographic writing system, both visual and phonetic
features contain crucial information that is highly important
for language comprehension. ChineseBert takes each Chi-
nese character and concatenates its semantic, visual, and
phonetic features. These features are then mapped to the
same dimensionality through a fully connected layer, form-
ing fused features. Finally, the fused feature vectors are
combined with position encoding vectors and used as input
to the Bert model. Considering the characteristics of Chinese
spelling errors, incorporating ChineseBert as the correction

†https://github.com/ShannonAI/ChineseBert
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network is highly suitable.
The encoder first generates character embeddings, pho-

netic embeddings, and visual embeddings, all of which have
a size of D. These three embeddings are then concatenated
and mapped to a fused embedding of size D through a fully
connected layer. Similar to other pretraining language mod-
els, the fused embedding is added to the position embedding
and passed through a stack of consecutive transformer layers.
This process generates the contextual representation hi ∈ RD
for the input character xi . We denote the resulting charac-
ter representations as H = {h1, h2, h3, · · · , hn}. To project
hi into a specific feature space, we use learnable parame-
ters W (c) ∈ RD×D and b(c) ∈ RD for the character-specific
feature projection layer.

h(c)i = GeLU
(
W (c)hi + b(c)

)
(7)

Then, based on the projected output, we predict the
corresponding correct character yi . Here, W (y) ∈ RV×D

and b(y) ∈ RV are the learnable parameters of the character
prediction layer, where V represents the vocabulary size.

P (ŷi | X) = so f tmax
(
W (y)h(c)i + b(y)

)
(8)

We optimize the correction model using cross-entropy
loss.

Lc (ŷi, y) = −∑N
i=1yi log (ŷi) (9)

Single-channel masking mechanism: After obtain-
ing the position information of potentially incorrect charac-
ters from the detection network, we adopt a single-channel
masking mechanism to reduce the noise impact of incorrect
characters. By preserving the phonetic and morphological
encoding channels through masking, we impose constraints
on the model predictions using phonetic and morphologi-
cal information. This allows the model to effectively utilize
the denoised information and better handle texts with multi-
ple errors. For example, although the characters “困 (tired)”
and “因 (reason)” have significant semantic differences, their
morphological information extracted through CNN is simi-
lar. Similarly, although “ (county)” and “ (fresh)” have
significant differences in morphological information and se-
mantics, they share similar phonetic encodings. Therefore,
by leveraging the related information of the incorrect char-
acters’ morphology and phonetics, we enhance the model’s
performance on texts with multiple errors.

After obtaining the error position information from the
detection network, we only mask the semantic information at
the corresponding positions, while preserving the channels
for phonetic and morphological information modeling. This
ensures that we provide the model with more plausible infor-
mation without introducing additional noise. Specifically,
when the detection network identifies an incorrect character,
our masking strategy transitions from Eq. (10) to Eq. (11).

e f i = WF

[
ewi ⊗ egi ⊗ esi

]
(10)

e f i = WF

[
emi ⊗ egi ⊗ esi

]
(11)

Where ewi represents the semantic encoding, egi represents
the glyph encoding, esi represents the phonetic encoding,
and emi denotes the semantic mask.

Iterative Correction Strategy: SCOPE [21] employs
a simple yet effective constrained iterative correction strat-
egy to address the tendency of Chinese spelling correction
models to rectify accurate expressions into more frequent
ones. Similarly, in PSDSPell, a similar approach is adopted,
correcting erroneous positions through two rounds of itera-
tive correction. We progressively correct the errors within a
specified window around the previously corrected positions.
Considering the characteristics of error samples, we set the
window size to 3, which means one position on the left and
one on the right of the current position. We set the number
of iterations to 2 to ensure sufficient error correction while
avoiding over correction. After one round of iteration, if a
position has been modified in each iteration round, we restore
it to the original character, making no further modifications.

3.4 Learning

The training process of PSDSpell is driven by two objectives,
namely the loss function of the detection network and the loss
function of the correction network. We combine these two
loss functions linearly to form the overall training objective.

L = λ · Lc + (1 − λ) · Ld (12)

Here, Ld and Lc represent the loss functions of the detection
network and correction network, respectively. L represents
the joint training loss function of the entire model, and λ ∈
[0,1] is the parameter for linear combination.

4. Experimental Results

4.1 Pre-Training

Dataset: During the pre-training phase, to enhance the ef-
fectiveness of the training strategy based on self-distillation
learning, we utilize the wiki2019zh† corpus as the foun-
dation. This corpus encompasses one million pages from
Chinese Wikipedia††. Additionally, it incorporates a pre-
training corpus of three million news articles collected by
PLOME [7]. These pages and articles are segmented into
sentences, resulting in a total of 162.1 million sentences.
Then we concatenate consecutive sentences to obtain text
fragments with at most 510 characters, which are used as the
training instances.
Parameter Settings: We set the distillation temperature
τ = 0.9, α = 1, and β = 0.05. The learning rate is set to
5e-5. The batch size is set to 32, and the number of epochs
is set to 30. The learning rate warmup steps are set to 5000,
and the Adam optimization algorithm is used.

†https://github.com/suzhoushr/nlp_chinese_corpus
††https://zh.wikipedia.org/wiki/
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4.2 Fine-Tuning

Training Data: This paper uses the SIGHAN dataset (Wu et
al. [4]; Yu et al. [5]; Tseng et al. [6]) and 271K training data
collected from Wang et al. [22]. The test sets from SIGHAN
13, SIGHAN 14, and SIGHAN 15 are used. The training
samples are converted to simplified Chinese characters using
OpenCC†. Additionally, we extracted multiple error samples
from the SIGHAN 2015 and SIGHAN 2014 test sets, which
include 552 sentences with multiple errors.
Parameter Settings: In the specific fine-tuning process, all
feature vectors are set to have a dimension of 768. The
learning rate is set to 5e-5 with linear decay. Dropout is set
to 0.1. The batch size is set to 32, and the number of epochs
is set to 30. The learning rate warm-up steps are set to 5000,
and the Adam optimization algorithm is used.

4.3 Baseline Model and Evaluation Metrics

We use widely adopted sentence-level accuracy, recall, and
F1 score as our main evaluation metrics. Compared to
character-level evaluation metrics, sentence-level metrics are
more stringent. To demonstrate the effectiveness of PSD-
Spell approach, this paper selects the following models as
baseline models for comparison:

(1) SpellGCN (Cheng et al.) [23]: This method learns the
pronunciation/shape relationships between characters by
applying graph convolutional networks on two similar-
ity graphs. It combines graph representations with se-
mantic representations from BERT to predict correction
candidates.

(2) MLM-phonetics (Zhang et al.) [9]: This method com-
bines a language model with phonetic features for pre-
training. It further fine-tunes the model with a joint
detection module and correction module.

(3) REALIZE (Xu et al.) [8]: This method models the se-
mantic, phonetic, and visual (glyph) information of input
characters and selectively combines information from
these modalities for the final correction task.

(4) PLOME (Liu et al.) [7]: This method utilizes GRU net-
works to extract phonetic and visual (glyph) features
of characters. It combines semantic information, pho-
netic information, and glyph information through direct
summation and predicts the pronunciation of the target
character in a coarse-grained manner.

(5) MDCSpell (Zhu et al.) [14]: This method utilizes BERT
to capture the visual and phonetic features of each char-
acter in the original sentence. It employs a post-fusion
strategy to combine the hidden states of the corrector
with the hidden states of the detector, reducing the im-
pact of misspelled characters.

†https://github.com/BYVoid/OpenCC

4.4 Main Results

Table 4 presents the evaluation results of PSDSpell and base-
line methods in terms of detection and correction perfor-
mance on three test sets. The boldface font in the table
represents the best results. Table 5 shows the results of the
model on our extracted multi-error test set.

Table 4 shows the performance of PSDSpell and the
baseline models on the test sets. In most cases, our im-
provements have yielded promising results. The F1 scores
for detection and correction on the SIGHAN15 dataset have
improved by 3.4/3.1, respectively. On the SIGHAN2014
dataset, the F1 scores for detection and correction have im-
proved by 0.8/1.1, respectively. PSDSpell also performs
competitively with the previous best model, REALIZE, on
the SIGHAN2014 dataset. Compared to previous models,
we have employed a more refined self-distillation learning
pre-training strategy, enabling PSDSpell to jointly learn se-
mantic and spelling error knowledge during pre-training and
better adapt to multi-error text correction.

In addition, we also evaluated the performance of our
model on a multi-error test set. The bold font in Table 5
represents the best results. Compared to the state-of-the-
art methods, PSDSpell performs significantly better on the
multi-error test set. While both PLOME and REALIZE
achieved good F1 scores at the detection level, their F1 scores
dropped noticeably at the correction level, indicating that
although these models can identify errors in noisy text, they
struggle to correct them accurately. Our approach achieves
an improvement of 1.9/0.7 in terms of F1 scores for detection
and correction, respectively, compared to the optimal results
of the baseline.

4.5 Effects of Pre-Training Strategy

To verify the effectiveness of our self-distillation-based pre-
training strategy, we adopt cBert [7], a Bert model pre-
trained using a confusion set-guided approach. In this ap-
proach, 15% of the characters are masked, of which 60%
are replaced using a phonetic substitution strategy, 15% are
replaced using a shape substitution strategy, 15% are kept
unchanged, and 10% are randomly replaced. We directly
evaluate the model on the constructed multi-error test data.
The results are shown in Table 6.

The results show that cBert, which utilizes confu-
sion set-guided pre-training, shows an overall improvement
compared to Bert’s direct error correction. However, our
self-distillation strategy, where semantic and spelling error
knowledge is jointly learned during pre-training, achieves a
higher F1 score improvement of 3.1/4.3 compared to cBert.
This demonstrates the effectiveness of our pre-training strat-
egy.
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Table 4 Sentence-level performance on the test sets of SIGHAN13, SIGHAN14, and SIGHAN15,
where precision (Pre), recall (Rec), F1 (F1) for detection, and correction are reported (%). The “*”
symbol indicates that we applied post-processing (following the same preprocessing steps as REALIZE).
Before evaluation, we eliminated all instances of the characters “的 (de)”, “得 (de)”, and “地 (de)” in
both the detection and correction tasks. This was done to the model outputs for the SIGHAN13 dataset.
The experimental results for other baselines are sourced from their respective literature.

Table 5 Results on the multi-error test set, extracted from SIGHAN2014
and SIGHAN2015, consisting of 552 test instances. We evaluated the
baseline model and PSDSpell using sentence-level evaluation metrics.

Table 6 A comparison between self-distillation pre-training and confu-
sion set-guided pre-training, with the pre-training and fine-tuning datasets
kept consistent. The evaluation is performed using sentence-level evaluation
metrics.

4.6 Effects of the Threshold Value “Err” on the Model
Performance

We evaluated the impact of different thresholds (0.5, 0.4,
0.3, 0.2, 0.1, 0.01) on the detection network and the cor-
rection network separately, as shown in Fig. 3. The experi-
ments were conducted on the SIGHAN13, SIGHAN14, and
SIGHAN15 datasets.

As shown in Figs. 3 (a)–(c), with the decrease of the
threshold, the precision (DN-P) value of the detection net-
work decreases, while the recall rate of erroneous characters
improves. However, since the recall rate (DN-R) has already
approached its maximum value, the reduction in Err has a
diminishing effect on the improvement of recall rate (DN-R)

gain, while the precision (DN-P) decreases rapidly. This
results in a continuous decline in the overall performance F1
(DN-F1) value. Therefore, in the experiment, we select a
relatively optimal Err, namely 0.1.

As shown in Fig. 3 (d), To further investigate the impact
of the hyperparameter “Err” on the correction model, we
delve into the variations in model performance under dif-
ferent hyperparameter settings. Based on the experimental
results, it can be observed that as the threshold value “Err”
decreases, the F1 score of the model tends to increase. The
highest F1 score is achieved when Err = 0.1, followed by
a decreasing trend. Setting the threshold value too low can
introduce more noise to the correction model. Through the
preceding experiments, it can be observed that: Although
lowering Err can improve the recall of the model, the de-
crease in precision becomes more significant. Therefore,
when Err = 0.1, the performance of the model starts to de-
cline. Consequently, we choose Err = 0.1 as the threshold
value for the detection model.

4.7 The Impact of the Loss Function Hyperparameter λ on
the Model Performance

As shown in Fig. 4, when we set λ to 0.85, we achieve the best
F1 score. This setting is reasonable because the convergence
of the correction task is more challenging than the detection
task, requiring higher weight during learning. However,
setting λ too high would reduce the learning of the detection
network and diminish its contribution. Therefore, selecting
a relatively higher λ can achieve a better balance between
the two tasks and achieve optimal results.
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Fig. 3 The threshold value “Err” impacts model performance. There are four images in total, labeled
from left to right as Figs. (a), (b), (c), and (d). Figures (a)–(c) illustrate the impact of different thresholds
on the detection network, using character-level evaluation metrics (DN-R for recall, DN-P for preci-
sion, DN-F1 for F1 score). Figure (d) presents the influence of various thresholds on the correction
network, utilizing sentence-level evaluation metrics. The experiments were conducted on the test sets of
SIGHAN13, SIGHAN14, and SIGHAN15.

Fig. 4 Impact of the loss function hyperparameter on model performance.

4.8 Ablation Study

We conducted a series of ablation study to evaluate the effec-
tiveness of each method in PSDSpell. The experiments were
performed on the SIGHAN15 dataset, and the parameters for
all ablation experiments were kept the same. The specific
experiments are as follows:

(1) Removal of single-channel masking mechanism: After
obtaining the positions of potential errors detected by
the detection network, the information from all channels
is masked.

(2) Removal of iterative correction strategy: The proposed
step-by-step correction strategy is not utilized during
the correction process. Instead, the correction network
directly performs the correction.

(3) Removal of pretraining strategy: The proposed pretrain-
ing strategy is not applied, and instead, the original task
of Bert is used for pretraining.

As shown in Table 7, (1) Removing the single-channel
masking mechanism prevents the correction model from
utilizing the phonetic and glyph information of erroneous
characters during the spelling correction task. Due to the
influence of erroneous context, the model introduces addi-
tional noise, decreasing the correction performance. (2) If

Table 7 Results of the ablation study.

Table 8 Case study analysis on dataset examples.

the iterative correction strategy is removed, with the low
threshold of the detection network, many initially correct
characters are mistakenly identified as errors. Without the
step-by-step iteration, the model is easily influenced by these
erroneous positions, resulting in erroneous or excessive cor-
rections and decreased overall performance. (3) By remov-
ing the pretraining strategy, we can observe that utilizing
self-distillation learning for pretraining is beneficial for the
error correction task, allowing the model to learn Chinese
spelling correction knowledge during the pretraining phase.

4.9 Case Study

We show several correction results to demonstrate the prop-
erties of PSDSpell. Several prediction results are given in
Table 8.

The results show that PSDSpell performs well in avoid-
ing interference when the context contains erroneous charac-
ters, effectively correcting them to the correct characters. As
shown in Example 1, PSDSpell avoids mistakenly changing
the correct character “哪里” (where) to the more common
character “那里” (there), while the baseline model tends to
make this substitution, resulting in incorrect correction. In
Example 2, the baseline model is more inclined not to make
any changes, but “ 子” (man) and “ 字” (Chinese charac-
ter) are homophones, and “ 字” (Chinese character) is more
consistent with the context. Therefore, PSDSpell modifies
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Table 9 Some special cases that the model is unable to correct include
instances such as errors in proper nouns and errors related to common sense.

the erroneous character, demonstrating a higher sensitivity to
erroneous characters. In Example 3, there are three consec-
utive erroneous chracters, and PSDSpell successfully avoids
the influence of the erroneous character context, changing the
sequence of incorrect characters “姓青号” (name Qinghao)
to “心情好” (a good mood), maintaining a smooth semantic
context. This is also attributed to our pretraining strategy
and the single-channel masking mechanism.

PSDSpell achieved promising results on the SIGHAN
test dataset. However, as shown in Table 9, we observed that
in certain specialized domains, such as “耳室 (shi, room)症”
(Otolithiasis, correct spelling: “耳石 (shi, stone)症”, a med-
ical condition), and “氨基已 (yi, already)酸” (Aminocaproic
Acid, correct spelling: “氨基己 (ji, oneself)酸”, an organic
compound), neither PSDSpell nor the baseline were able to
correct the erroneous characters. Furthermore, both PSD-
Spell and the baseline also struggled with addressing com-
mon knowledge, for example: “中国的首都是上海” (which
means “The capital of China is Shanghai”, the correct ex-
pression: “The capital of China is Beijing”). How to enable
the model to acquire knowledge in specialized domains re-
mains an intriguing question worthy of exploration.

5. Conclusions

This paper proposes a Chinese spelling correction model
called PSDSpell. We employ the self-distillation learning
strategy to learn the contextual distribution from a teacher
model, enabling the model to encounter a more significant
number of multi-error samples during pretraining. We uti-
lize a single-channel masking mechanism and an iterative
correction strategy to enhance the model’s performance on
multi-error samples. The model employs a detection net-
work to identify potential erroneous characters’ positions
and iteratively corrects them using a correction network.
Experimental results on the SIGHAN dataset demonstrate
that PSDSpell outperforms the baseline model. In the fu-
ture, we plan to explore integrating external knowledge to
enable the model to handle errors in specialized domains.
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