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SUMMARY Despite recent advancements in utilizing meta-learning for
addressing the generalization challenges of graph neural networks (GNN),
their performance in argumentation mining tasks, such as argument clas-
sifications, remains relatively limited. This is primarily due to the under-
utilization of potential pattern knowledge intrinsic to argumentation struc-
tures. To address this issue, our study proposes a two-stage, pattern-based
meta-GNN method in contrast to conventional pattern-free meta-GNN ap-
proaches. Initially, our method focuses on learning a high-level pattern
representation to effectively capture the pattern knowledge within an argu-
mentation structure and then predicts edge types. It then utilizes a meta-
learning framework in the second stage, designed to train a meta-learner
based on the predicted edge types. This feature allows for rapid generaliza-
tion to novel argumentation graphs. Through experiments on real English
discussion datasets spanning diverse topics, our results demonstrate that our
proposed method substantially outperforms conventional pattern-free GNN
approaches, signifying a significant stride forward in this domain.
key words: argument mining, argument classification, graph neural net-
works, meta learning

1. Introduction

Argument classification is a fundamental task in the field of
argumentation mining (AM) that involves the automatic clas-
sification of argument labels [1]–[4]. Given that argumen-
tation elements exhibit a strong relational inductive bias [5],
graph neural networks (GNN) are often used in argument
classification tasks as they are adept at learning the latent
graphical information inherent in argumentation structures.

However, a significant challenge arises when employ-
ing GNN in argumentation tasks—adapting trained GNN
models to new argumentation graphs, a situation referred to
as the ‘generalization problem’. This arises because each ar-
gumentation data set corresponds to a unique argumentation
graph, and even minor alterations on the graph can cause
trained GNN models to fail when applied to the new ar-
gumentation graph. Meta-learning, a method that strives to
establish a model that can adapt the learned model to various
tasks, is an efficient solution to this generalization problem.
Meta-learning based GNN methods like Meta-GNN [6], G-
META [7], and Sub-Meta [8] have been proposed to address
the GNN models’ generalization problem. However, their
effectiveness is usually limited when directly applied to ar-
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gumentation mining tasks. This limitation is primarily due to
the inherent predefined patterns within argumentation struc-
tures (such as the relationships of argumentation elements
with specific labels), a factor that these methods neglect. For
instance, the argumentation structures in platforms like D-
Agree [9] often follow a topic-comment-reply pattern. Thus,
acknowledging and utilizing such pattern knowledge could
enhance GNN’s performance in AM tasks.

In contrast to the pattern-free GNN methods, we in-
troduce a two-stage, pattern-based meta-GNN method for
argument classification. In the first stage, we propose a pat-
tern representation algorithm to capture the pattern knowl-
edge which is subsequently used to predict edge types in
argumentation graphs. In the second stage, based on the pre-
dicted labels for all edges, a relational-GCN (RGCN) [10]
is employed to efficiently identify different edge relation-
ships for the prediction of argument labels. Additionally,
we implement a meta-learning framework, model-agnostic
meta-learning (MAML), that comprises an inner and an outer
loop. Within the inner loop, each topic maintains a topic-
specific GNN that is trained using the data from that par-
ticular topic. In the outer loop, a meta-learner that updates
its parameters by considering the update directions of all
topic-specific GNN models from the inner loop. Finally, we
introduce a pattern-based Weisfeiler-Lehman (PWL) test to
ascertain whether two graphs share a common pattern and
analyze our proposed method’s computational complexity.
Finally, we evaluate our method on two cross-topic discus-
sion data sets. The experimental results clearly indicate that
our proposed method significantly outperforms traditional
pattern-free GNN methods.

2. Related Work

2.1 Meta-Learning for GNN

Graph convolutional networks (GCN), as a prominent GNN
model, have demonstrated remarkable capabilities in classic
GNN tasks such as node classification and link prediction.
The Relational-GCN (RGCN) [10] further extends the capa-
bilities of GCN for accommodating multiple link relation-
ships. It incorporates the information of link type into the
convolution layer using a weight, effectively dealing with
graphical data that possesses heterogeneous relationships.

Many research has been carried out to address the gen-
eralization problem inherent in GNN models by applying
meta-learning techniques. For instance, Meta-GNN [6] ef-
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fectively handles node classification problems across a range
of graphs. It views the learning process on each graph as
a separate task, with each graph corresponding to a distinct
GNN model. Following a model-agnostic meta-learning
(MAML) approach for graph meta-learning, the Meta-GNN
incorporates the update directions of all graphs within its
meta-learner. Similarly, G-META [7] tackles the issue of
scalability in GNN models, particularly when the graph is
too extensive to be inputted into the GNN entirely. Instead,
it uses sub-graphs for meta-learning. However, these meta-
learning-based GNN models often fail to consider the spe-
cific characteristics of argumentation structures, resulting in
diminished efficiency when implemented in AM tasks.

2.2 Argumentation Mining (AM)

The field of argumentation mining (AM) focuses on the auto-
matic extraction of structured arguments from unstructured
textual documents [4], with learning-based methods gain-
ing significant traction in recent years. For instance, Stab
et al. employed the support vector machine method to con-
duct argument classification tasks using a persuasive essay
data set. They classified arguments into one of three types:
Major Claim, Claim, and Premise [11]. Similarly, Suzuki
et al. [12] investigated an argument classification task on a
persuasive essay data set using the Issue-Based Information
System (IBIS) structure, a traditional argumentation-based
approach for addressing complex problems [13]. In IBIS,
there are four types of arguments: Topic, Issue, Idea, Pros,
and Cons. They used a graph attention network (GAT) to
achieve high accuracy. However, these studies primarily
focus on persuasive essay data, overlooking discussion data.

Besides argument classification, GNN-based models
can be effectively applied to other AM tasks. For in-
stance, Kuhlmann et al. [14] worked on abstract argumen-
tation semantics tasks, which involve finding a mapping
that accepts an abstract argumentation framework as input
and outputs a binary label representing the acceptability of
all arguments under a specific semantic. They employed a
GCN-based classifier to approximate acceptance under pre-
ferred semantics with an average class accuracy of approxi-
mately 0.61. Subsequently, Craandijk et al. [15] proposed a
recurrent-GCN based learning algorithm for prediction tasks
that achieved higher accuracy. However, these algorithms
primarily focus on graph-level tasks, which aim to predict
whether a graph is true or false and computation complex-
ity corresponds to O(1). In contrast, our work focuses on
predicting the label of each argument, corresponding to a
computational complexity of O(|V |), which is considerably
more complicated.

There are also some pattern-based GNN methods. [16]
delved into the development of a tree kernel that emphasizes
common substructures, or fragments. While they introduced
a novel GNN architecture, their focus wasn’t on the overar-
ching generalization issues inherent to GNNs. In the case of
[17], their research proposed the meta-path concept aiming
to encapsulate broader abstract ideas. They introduced a het-

erogeneous graph neural network called MeGnn. However,
their primary objective was the optimization of heteroge-
neous graph neural networks, which is a departure from our
central focus on homogeneous graphs. Lastly, [18] made
strides in generating GNN models that cater to subgroups
rather than individual nodes. Yet, their work did not delve
into GNN generalization challenges, specifically, they didn’t
explore areas such as zero-shot and one-shot learning, which
are pivotal in our research.

3. Problem

In this section, we state the generalization problem (meta-
graph learning tasks) of argument classification. First, we
recall the definition of Dung’s abstract argumentation frame-
works as follows [19].

Definition 1. An abstract argumentation framework (AF) is
a pair Gi =< V i,E i > where i is the index of AF, V i =

{vi1, v
i
2, . . . , v

i
|V i |} is a (finite) set of arguments and E i ⊆

V i × V i is the attack relation. The pair (vij, vik) ∈ E i means
that vij attacks vi

k
. A set V i

s ⊆ V i attacks vi
k

if there is an
vij ∈ V i

s , such that (vij, vik) ∈ V i . An argument vij ∈ V i

is defended by V i
s ⊆ V i iff, for each vij ∈ V i such that

(vi
k
, vij) ∈ E i,V i

s attacks vi
k
.

Although only attack relations are considered in Dung’s AF,
the types of relations can be extended further. Also, each
argument is assigned a label and we denote Li as a set of
all labels in Gi , i.e., labij ∈ Li . Moreover, we define a
function Labi : V i → Li to identify a label for each node,
i.e., Labi(vij) = labij .
Graph Set We regard each AF Gi =< V i,E i > as a di-
rected graph. As for edge (vij, vik), v

i
j is called the source

node and vi
k

is called the target node. We consider there
is a set G = {G1, . . . ,G |G |} including multiple graphs.
In meta-graph learning tasks of argument classification,
G is divided into train set Gtrain and test set Gtest , i.e.,
G = Gtrain ∪ Gtest , and also each task Gi can be divided
into a support set and a query set as follows.

Gi
sup =< V i

sup,E
i
sup >

Gi
que =< V i

que,E
i
que >

(1)

Take argument classification as an instance shown in
Fig. 1, the nodes with labels are support set used for training
and the other nodes without labels are query set used for
testing.

Based on this, the goal is to find a Meta-GNN model
trained on Gtrain which is expected to perform well on query
set {Gi

que |Gi
que ∈ Gtest } after training few steps on support

set {Gi
sup |Gi

sup ∈ Gtest } of test set Gtest .
Specifically, in the argument classification task, given

the graph Gi =< V i,E i > without label information, the
goal is to predict each node’s label. It means to find an
approximate function ˆLab of Lab that outputs each node’s
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Fig. 1 An example of meta argument classification task.

label accurately, i.e., ˆLab(vij |θ) = labij , and the object is to
minimize the following loss defined by

loss(Gtest )
=

∑
Gi
que ∈Gt est

∑
vij ∈G

i
que

entropy( ˆLab(vij |θ) − labij) (2)

As for meta-learning tasks we consider its three classic tasks:

• Few-shot learning It divides each graph in the testing
set into support set and query set, it makes the meta-
model learn a few epochs on support set and test on
query set.

• One-shot learning It is similar to few-shot learning
besides that only one epoch is trained on the support set
rather than a few shots.

• Zero-shot learning It takes the whole set of graph as
a query set and tests the trained model without training.

4. Algorithm

In this section, we introduce the two-stage, pattern-based
meta-GNN methods. In stage 1, we focus on learning a high-
level pattern representation to effectively capture the pattern
knowledge within an argumentation structure, followed by
predicting the edge type. It then utilizes a meta-learning
framework in the second stage, designed to train a meta-
learner based on the predicted edge types.

4.1 Stage 1: Pattern Representation

In argumentation mining, the pattern of an argumentation
structure is usually predefined. For instance, in IBIS the
node with the Issue label can only be linked with the node
with label of the Idea. Then, utilizing such kind of pattern
knowledge would benefit AM tasks. Before defining the
pattern of an argumentation structure, we first define meta-
link label as follows, where one node with a specific type
label should link with some nodes with other specific type

labels.

Definition 2 (Meta-Link Label). we define the label of
a link < vj, vk > is determined by its end nodes’ labels
< Lab(vj), Lab(vk) >

Based on the definition of the meta-link label, the definition
pattern is given by

Definition 3 (Pattern). A pattern can be defined as follows.
AS =< L,EL > where L is the label set and EL denotes the
set of meta-link labels < labj, labk > with labj, labk ∈ L

For instance of IBIS, L = {Topic, Issue, Idea,Pros,Cons}
and EL = {(Topic, Issue), (Issue, Idea), (Idea,Pros), (Idea,
Cons)}

Pattern Representation Algorithm Since we have
defined how to represent a pattern of an argumentation struc-
ture, the corresponding algorithm is stated as follows. Our
idea is to update each node’s label by its one-hop neigh-
borhood node labels iteratively. Then, through k-iterations
updating, each node would include its k-hop neighborhood
node information, which is a unique representation of the
graph.

Specifically, a pattern representation algorithm is de-
fined on the meta-link label where each label is assigned a
corresponding node and its source nodes and target nodes
are given. Then, the node labels from source nodes and tar-
get nodes are updated separately, according to the following
algorithm.

• Iterative update of label Given an argumentation
structure AS =< L,EL >, assign a node vl for each
label l ∈ L and the set of nodes is denoted as VL .
Then, the label updating starts from iteration 0, i.e.,
Lab(vl)ite |ite=0 = {l0}, where each node vl receives
its source node labels and target node labels separately,
with the iteration number ite at each iteration. For all
nodes vl ∈ VL , each label is updated as follows.

LabNei(vl)ite+1 = LabNei(vl)ite∪
v j ∈Nei(vl )

(
LabNei(vl)ite ∩ LabNei(v j)ite

)
(3)

where Nei(vl) can be Sou(vl), the set of all source
nodes of vl , or Tar(vl), the set of all target nodes of vl .
Since LabNei(vl)ite is a set, it only adds the labels that
currently do not exist during each iteration.

• Termination of update The above update of node
labels will terminate until the set of all node labels does
not change after iteration, i.e.,

LabNei(vl)ite = LabNei(vl)ite+1, ∀vl ∈ VL

(4)

We denote the label of node vl at final iteration as com-
pressed labels LabNei(vl) f in, i.e., LabNei(vl)ite |ite= f in =
LabNei(vl) f in and LAS = {L(vl) = {LabSou(vl) f in,
LabTar (vl) f in}|vl ∈ VL} where the first element is the set of
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Fig. 2 An example of pattern representation.

Fig. 3 An example of pattern representation without label information.

compressed labels updated by source nodes, and the second
element is the set of compressed labels from target nodes. As
shown in Fig. 2, the structure has nodes a, b, c, d, e and edges
(a, b), (b, c), (c, d), (c, e). After following the update, the com-
pressed labels are given by L(a) = {{a}, {ab1c2d3e3}},
L(b) = {{a1b}, {bc1d2e2}}, L(c) = {{a2b1c}, {cd1e1}},
L(d) = {{a3b2c1d}, {d}}, L(e) = {{a3b2c1e}, {e}}. Ac-
cording to the final compressed labels, there are four link
types,i.e., LAS=

• ({{a}, {ab1c2d3e3}}, {{a1b}, {bc1d2e2}}),
• ({{a1b}, {bc1d2e2}}, {{a2b1c}, {cd1e1}}),
• ({{a2b1c}, {cd1e1}}, {{a3b2c1d}, {d}})
• ({{a2b1c}, {cd1e1}}, {{a3b2c1e}, {e}}).

Pattern Representation without Label Algorithm
Then, we state how to predict edge types in a graph without
node label information.

• Identify root node Given a graph without G =
< V,E >, identify a node without any target node as
the root node.

• Arrange to tree structure Arrange the graph to a
tree-structure according to the distance (n-hop) to the
root node. The root node’s k-hop neighbor nodes are
set at k-th layer. Then, the nodes are assigned the same
label if they are at the same layer.

• Updating Following pattern representation algorithm
to update all node labels to obtain final labels LG =
{Lab(v) f in |v ∈ V}.

Based on the above compressed node labels, we have three
types of links in Fig. 3, i.e., LG=

• ({{1}, {1213243}}, {{112}, {23142}})
• ({{112}, {23142}}, {{12213}, {341}})
• ({{12213}, {341}}, {{1322314}, {4}}).

Since it is known that this argumentation graph follows the
pattern in Fig. 2, the goal is then to identify a function finj :
LG → LAS that to map the labels in the pattern for all the
links as follows.

min
∑
l∈LG
I
(
finj(l) − LAS(l)

)
(5)

where I = n and n is the number of elements with different
representations of the edges. The error summation is cal-
culated based on “l ∈ LG” rather than “l ∈ LAS”, that is
because some graphs are generated based on some pattern
but may leak some label nodes. As for the uncertain relation-
ship such as (12213,1322314) can map to (a2b1c,a3b2c1d) or
(a2b1c,a3b2c1e), there two methods to tackle it. The first is
to choose one of the types deterministically. The second is to
give a probability of each type of link. Specifically, predict-
ing certain edge types becomes challenging when there’s a
symmetric topology within the pattern. For instance, with a
symmetric topology, the probability of predicting each edge
type in that topology drops to 50%. The accuracy further
diminishes as the number of symmetric topologies increases.
In this paper, we employ the first type method.

4.2 Stage 2: Meta Learning Based RGCN

Relational-GCN (RGCN) Since the types of links have
been predicted, we consider to use RGCN, a GNN model
that can well cope with heterologous edge relationships, to
capture node features to process an argument classification.
Specifically, given a graphG =< V,E >, each node vi can be
embedded to a numeric vector such as Word2Vec, Universal
sequence embedding (USE) or Bidirectional encoder repre-
sentations from transformers (BERT). We use vi,e ∈ Rd to
denote the embedding of each node where d is the dimen-
sion of the embedding. Correspondingly, we can construct
a feature matrix X ∈ R |V |×d where each row represents one
node’s embedding. we denote hli as the embedding vector of
node vi ∈ V at layer l of RGCN. At the first layer, we denote
it as an embedding result of USE, i.e., h0

i = vi,e = USE(vi).
We consider all the edge types (relationships) r ∈ LAS based
on pattern-based prediction. Then each node would use fea-
tures {hlj | j ∈ Sour (i) of its source nodes to update its feature
at each layer.

h(k+1)
i = σ

©«
∑

r ∈LAS

∑
j∈Sour (i)

1
ci,r

W (k)r h(k)j +W (k)0 h(k)i

ª®¬
(6)

where the 1
ci ,r

denotes the weight of relationship r for node
vi; Wk

r and W l
0 are the weight matrix for relationship r and

itself at layer k. That means each layer has |LAS | + 1 param-
eter matrices and totally K ∗(|LAS |+1)matrices are required
to be trained in a RGCN with K layers. We let the final layer
hK pass a liner layer to output the probability of each label
for all nodes, i.e., hK ∈ R |V |× |Lab | .
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Meta-learning As for training RGCN models, we
empoly MAML to train it, which aims at learning a meta
model with a set of initial parameters that can efficiently
adapt to the new task. It consists of two loops where each task
has a specific model and it will update in the inner loop based
on its own support set. In the inner loop, we sample a batch
B from training set Gtrain, i.e., B = {Gb |Gb ∈ Gtrain}
and update the parameter for each model using each graph’s
support set Gb

sup in the batch.

θb ← θb − α∇θ lossGb
( fθ ) (7)

where the loss function is defined in Eq. (2). Then testing
the updated parameter on query set and the meta-learner
would consider all query set parameter updating directions
to update. It has a good generalization ability to multiple
gradient descent tasks. In the outer loop of meta-GNN,
we use the GNN with updated parameters to train it further
on query sets of Gi

que. Then the meta-learner updates by
considering the summation of all updating directions.

θmeta ← θmeta − β∇θ
∑

Gi∼Gtr ain

lossGi

(
fθ′i

)
(8)

4.3 Analysis

In this section, we analyze some properties of pattern-based
RGCN. Weisfeiler-Lehman (WL) test is a classic method
to judge whether two graphs are isomorphic. It follows
the following steps. Aggregation : Li = {lab(vj)|vj ∈
nei(vi)}mul , each node has a label and then each node would
aggregate the labels of its neighborhood as a multiset de-
noted as {}mul . Then it requires finding a hash function to
convert Li to a new “compressed” label, Combination :
Li[ite + 1] ← hash(Li[ite]) where hash is an injective
function mapping Li[ite] to Li[ite + 1]. The above aggre-
gation and combination processes would be repeated until
the compressed labels of two graphs do not change, i.e.,
Li[ite] = Li[ite+ 1]. Once the two figures all have the same
labels, the possibility of the two graphs being isomorphic
would be high. Based on the WL-test, we define a pattern-
based WL-test (PWL-test) to judge whether two graphs share
the same pattern defined in Definition 2.

Pattern-based WL-test (PWL-test) Aggregation:
We consider each node to have a label and then each node
would aggregate the labels of its neighborhood as a set.

Aggregation : Li = {lab(vj)|vj ∈ nei(vi)} (9)

where there do not exist repeated labels in Li . This can be
regarded as what kind of labels exist in the neighbor nodes.

Then we find a hash function to convert Li to a new
“compressed” label.

Combination : Li[ite + 1] ← hash(Li[ite]) (10)

Thus, we can see the key difference between WL-test
is aggregating the label types rather than node labels. Com-
pared with WL-test which is based on edge level (each edge

is determined by its end nodes), PWL-test is based on meta-
edge level (each meta-edge is determined by its end nodes’
labels). Thus we can have the following theorem.

Theorem 1. Once two argumentation graphs pass the PWL-
test, it means they share the same pattern and the meta model
trained by pattern-based RGCN can be applied to the argu-
mentation graphs.

Also, we analyze the computational complexity of our pro-
posed method.

Theorem 2. The complexity of pattern representation algo-
rithm is O

(
|V |(D + 1)

)
.

Proof. Given a graph with |V | nodes, all the node labels will
be updated once at an iteration. The total iteration number
depends on the longest path in the graph, which would be
the node with the longest distance (hop number) from the
root node. Thus, if we denote the longest distance D hop,
the pattern representation algorithm would stop at (D+1)-th
iteration, which corresponds to computational complexity of
|V |(D + 1). □

5. Evaluation

5.1 Evaluation Setting

In this paper, we use IBIS as an instance to conduct ex-
periments. Unlike Dung’s argumentation structure, multiple
types of relations exist such as relations of Idea ’solve’ Issue.
We perform the meta graph learning tasks stated in section
of Problem on the following two data sets.

• Strict-IBIS English-Discussion Data Set The data
set is collected by ten conversations from 5 negative
English speakers in 2022 [20]. Each conversation has a
topic and each argument belongs to one of IBIS labels.
Each conversation nearly includes 250 arguments.

• Strict-IBIS English-Discussion Data Set with Isolate
Argument This data set is collected by ten conversa-
tions from 11 negative English speakers in 2021. Each
conversation nearly includes 200 arguments. Although
each argument graph follows an IBIS structure, some
arguments lack its corresponding link which is called
isolate arguments.

In the above two data sets, each topic-based conversation
is regarded as an argument graph and then is divided into
support data set and query data set according to a ratio of
4 : 1. We apply cross-validation where each graph i can be
as a test graph and the other −i graphs are as a train data
set. Correspondingly, we list the test result on each graph
and compare their average accuracy over ten graphs. We then
compared our proposed method with two classic pattern-free
GNN methods: GCN and Meta-GCN, which are illustrated
as follows.

• GCN [21] method consists of one input layer with 1024
neurals, 6 hidden convolutional layers with 512 neurals
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Table 1 Compare the performances of GCN and meta-GCN on IBIS
english-discussion data set

and output layer with 5 neurals. Under cross-validation,
each test graph corresponds to one GCN model which
is independently trained and evaluated. Specifically,
each graph trained on the support set of each graph and
tested on the query set as the final result.

• Meta-GCN [6] We applied GCN as the GNN model in
Meta-GNN and MAML is employed as a meta-learning
framework. For each test graph Gi , we keep all the
graphs other than graph Gi as training data set, i.e.,
G−i = G − Gi . After training, we applied Meta-GCN
to test graph Gi .

5.2 Result Analysis

In the training phase, we ran all methods for 1000 epochs.
The results of the meta-learning tasks on the two data sets
are detailed in Tables 1 and 2. In regards to the comparison
result of zero-shot learning tasks shown in Tables 1 (a) and
2 (a), both meta-GCN and GCN have underperformed. The
reason is that meta-GCN, which inherently has the potential
to quickly adapt to new tasks, requires training on the support
data set. However, in zero-shot learning, the meta-model is
directly applied to the query set without any prior training
on the support set.

As seen in Tables 1 (b) and 2 (b), meta-GCN performs
better than GCN even with training for only 1 epoch. This
advantage grows with the number of learning epochs. As
shown in Tables 1 (c)(d) and 2 (c)(d), we see that meta-GCN
shows an improvement of around 30% over GCN, demon-
strating that meta-learning can maintain a good generaliza-

Table 2 Compare the performances of GCN and meta-GCN on IBIS
english-discussion data set with isolate argument.

tion capability for new argumentation graphs.
However, our proposed structure-based learning per-

forms well across all types of meta-learning graph tasks.
It even achieves an average accuracy of over 60% on zero-
shot learning tasks. Compared to meta-GCN, this suggests
that pattern-based knowledge can provide the GNN model
with a strong initial performance without any training, in-
dicating good generalization ability across different graphs.
This generalization capability tends to improve along with
the training epochs. As demonstrated in Tables 1 (c)(d) and
2 (c)(d), it achieves high accuracy after training for only 10
and 100 epochs.

Specifically, we present some sample cases to eluci-
date the experiments. The Fig. 4 demonstrates the one-shot
learning outcome for topic 1 in Table 1. Both GCN and
Meta-GCN predict the labels of all nodes as “Issue,” yield-
ing an accuracy of 0.31. In contrast, our proposed method
attains an accuracy of 0.58 after a single training epoch.
Notably, the centrally located nodes are predicted with high
accuracy, aligning with the Topic Issue Idea labels. How-
ever, the prediction accuracy for Cons and Pros is lower.
This is attributed to the pattern-based stage where Cons and
Pros exhibit a symmetric topology, complicating the distinc-
tion of edge types compared to labels without a symmetric
topology. Additionally, we showcase the few-shot learning
results (based on 10 shots) in the Fig. 5. While the accuracy
of our proposed method elevates to 0.79, the outcomes from
GCN and Meta-GCN exhibit minimal variation.

Considering the results from Tables 1 and 2, we com-
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Fig. 4 The case study of topic 1 in Table 1 about one-shot learning task.

Fig. 5 The case study of topic 1 in Table 1 about few-shot
(10epochs)learning task.

Fig. 6 Comparison of average accuracies: Results on the IBIS English-
Discussion Data Set.

Fig. 7 Comparison of average accuracies: Results on the IBIS English-
Discussion Data Set with Isolated Argument.

puted the average accuracy over ten graphs, as depicted in
Figs. 6 and 7. The performance of the three algorithms
improves with the number of learning epochs. From the
results of the zero-shot learning tasks, we observe that our
proposed method maintains high accuracy for new argumen-
tation, exhibiting good generalization ability, and achieves
an accuracy of 80% for few-shot learning tasks on both data
sets.

6. Conclusion

In this paper, we tackled the generalization problem in the
argument classification problem. Unlike most of the exist-
ing pattern-free GNN methods, we proposed a pattern-based
meta GNN model that can make trained GNN model fastly
adapt to new argumentation graphs. We also proposed a new
pattern-based WL-test to judge whether two graphs share
the same pattern and processed the theoretic analysis of our
proposed method. The experiment results show great advan-
tages over pattern-free based GNN methods. Regarding the
experimental setting, we employ cross-validation to circum-
vent the overfitting problem. Although the results slightly
fluctuate depending on the different graphs, the difference
is not significantly large. From this, we can infer that the
overfitting problem does not persist in our proposed method.
Additionally, we tested two IBIS datasets to affirm this con-
clusion.

Although we use argumentation data with IBIS struc-
ture as an instance, our proposed pattern-based RGCN is
a general method that can be extended to other argument
data with a predefined argumentation structure. In the future
work, it is imperative to scrutinize the applicability and ro-
bustness of our proposed method across various other struc-
tures and datasets.
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