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An Evaluation of the Impact of Distance on Perceptual Quality of
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SUMMARY Distance-aware quality adaptation is a potential approach
to reduce the resource requirement for the transmission and rendering of
textured 3D meshes. In this paper, we carry out a subjective experiment
to investigate the effects of the distance from the camera on the perceptual
quality of textured 3D meshes. Besides, we evaluate the effectiveness of
eight image-based objective quality metrics in representing the user’s per-
ceptual quality. Our study found that the perceptual quality in terms of mean
opinion score increases as the distance from the camera increases. In addi-
tion, it is shown that normalized mutual information (NMI), a full-reference
objective quality metric, is highly correlated with subjective scores.
key words: textured 3D mesh, distance, quality assessment

1. Introduction

Textured 3D mesh is a popular format for representing 3D
models [1]. A textured 3D mesh is comprised of two parts,
namely geometry data and texture data. The geometry data,
better known as a polygon mesh [2], is a collection of ver-
tices, edges, and faces that define the shape of a 3D model.
The texture data can be simple repetitive patterns or com-
plex images that are mapped onto the surfaces of the 3D
model [3]. In order to provide a realistic 3D model, high-
quality geometry and texture data are both needed. Thus, the
transmission and rendering of textured 3D meshes usually
require a significant amount of system resources.

A potential method to reduce the resource requirement
of a textured 3D mesh is to dynamically adapt the Level of
Detail (LoD) of the mesh based on the distance between the
mesh and the virtual camera [4], [5]. For that, 3D meshes
are encoded into multiple versions of different LoDs us-
ing methods such as geometric sampling, quantization, and
smoothing [6]. Low-detail versions are chosen for meshes
that are further away, and high-detail versions are chosen for
those that are close. Since low-detail versions contain less
amount of geometry and texture data, resources required to
transmit and render a mesh can be lowered.
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To support optimal generation and selection of LoD
versions, it is important to understand how distance from the
camera affects the user’s perceptual quality of textured 3D
meshes. In the literature, the impacts of various factors on
the perceptual quality of the textured 3D meshes have been
investigated such as types of distortion [6], diffuse colors [7],
and light-material interaction [8]. However, to the best of
our knowledge, no previous work has explored the effects
of distance from the camera on the perceptual quality of
textured 3D meshes.

To fill in this gap, in this paper, we conduct a study of
subjective and objective quality assessment for textured 3D
meshes taking into account the impact of the distance from
the camera. The results of the subjective experiment show
that the further the distance from the camera is, the higher
the Mean Opinion Score (MOS) becomes. On average, the
MOS score is increased by approximately 0.3∼0.5 as the
distance from the camera increases by 4 units. For some
textured meshes, the differences in the perceptual quality
between LoD versions become negligible at long distances.
In addition, we investigate the correlation of the subjective
scores with eight popular objective quality metrics and found
that the NMI metric [9] has the highest correlation with the
subjective scores.

The remainder of the paper is as follows. Related work
is given in Sect. 2. The subjective experiment is presented in
Sect. 3. The evaluation of objective quality metrics is given
in Sect. 4. Finally, the paper is concluded in Sect. 5.

2. Related Work

In the literature, there are several works on quality assess-
ment of textured 3D mesh. The authors in [10] investigate
the impacts of geometry and texture resolution on the quality
of textured meshes. It is found that viewers are more sensi-
tive to the distortion of the texture than that of the geometry.
The impact of the masking effects caused by compression ar-
tifacts of the texture is evaluated in [11]. In [6], a subjective
study is conducted to investigate the influence of five types of
distortion on both geometry and texture data (i.e., compres-
sion, simplification, smoothing, JPEG encoding, and sub-
sampling) on the perceptual quality of the textured mesh. It
is found that meshes with complex textures are very sensitive
to simplification, whereas highly curved models are sensitive
to smoothing. The influence of source models, animations,
and viewpoints with diffuse colors is explored in [7]. In
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[8], the authors study the effects of light-material interaction
on the quality of textured 3D meshes. Related to objective
quality assessment, a no-reference metric for colored mesh
is proposed in [12]. However, no previous work has exam-
ined the influence of the distance from the camera on the
perceptual quality of textured meshes.

3. Subjective Experiment

In this section, we first present the settings of the subjective
experiment. Then, we perform an analysis of the experiment
results.

3.1 Experiment Settings

For the subjective experiment, we use three textured 3D
meshes of Hulk, Squirrel, and Statue from a public dataset
constructed in [6]. The snapshots of the three meshes are
shown in Fig. 1. The Hulk is an artificial model created
using modeling software. It has structured texture content
and smooth texture seams. The Squirrel and Statue are
reconstructed from multiple images of actual objects. Thus,
the texture images of these meshes are noisier and contain
more complex texture seams.

There are many ways to generate LoD versions of tex-
tured meshes such as simplification, quantization, or smooth-
ing of the geometry data, and downsampling or compression
of the texture images [6]. Among that, simplification is the
most widely used method, being supported by popular 3D
software. Thus, in this paper, we apply simplification to the

Fig. 1 Snapshots of three textured 3D meshes.

Table 1 Number of vertices of nine LoD versions of three textured
meshes.

LoD Version Squirrel Hulk Statue
Version 1 18417 40497 311820
Version 2 9204 28926 78024
Version 3 4599 17355 31206

Fig. 2 Snapshots of Version 1 of the Hulk mesh at different distances.

geometry data to generate LoD versions of the considered
meshes. Other LoD generation methods will be considered
in our future work. In particular, for each of the meshes,
three LoD versions are generated. The number of vertices
of each LoD version of the three meshes is given in Table 1.
For the distance from the camera, we consider five distance
values of d = {4,8,12,16,20}. Figure 2 show the snapshots
of Version 1 at different distances from the camera. Totally,
there are 45 stimuli in the experiment.

To obtain the subjective score of each stimulus,
we employ the double-stimulus impairment scale (DSIS)
method [13]. In particular, the subject is presented with a
series of pairs of meshes. The first mesh in a pair is the
original one and the second one is one of the stimuli. Each
mesh is displayed for 8 seconds with two seconds of the
grey screen in between. After viewing the two meshes of
a pair, the subject is asked to give his/her opinion score of
the quality of the second mesh on a five-grade impairment
scale as follows: 5 (imperceptible), 4 (perceptible, but not
annoying), 3 (slightly annoying), 2 (annoying), 1 (very an-
noying). The process is repeated until all the stimuli are
evaluated. The stimuli are displayed randomly on a laptop
screen with a resolution of 1366x768 using A-Frame [14]
which is a web-based framework for AR/VR applications.

We recruit students and staff from our institutions to
participate in the subjective experiment. Totally, there are
20 people took part in the experiment, aged between 20∼32,
all with normal or corrected normal vision. On average, it
took approximately 30 minutes for one subject to complete
rating all the stimuli. Screening analysis is performed on
the obtained scores according to [15], and one person is
rejected. The Mean Opinion Score (MOS) of each stimulus
is calculated as the average score of all the valid participants.

3.2 Result Analysis

Figure 3 shows the MOSs of the LoD versions of three
meshes at five distance values. It can be seen that the MOS
increases as the distance increases for all three meshes. The
average increase in MOS for every four distance units is 0.3
for the Squirrel mesh, 0.5 for the Hulk mesh, and 0.4 for the
Statue mesh. These results imply that the further the dis-
tance is, the more difficult for the participants to recognize
the distortion level of an LoD version. This can be explained
that the further the distance is, the smaller the size of the
mesh on the screen would become.
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Fig. 3 MOSs of the LoD versions of three meshes at five distance values.

We can also see that the impact of the distance across
different LoD versions of a mesh is varying. For the Squirrel
mesh, the difference in MOS between the three versions is
quite stable across all distances. In particular, the MOSs of
Version 1 are 0.45∼0.75 higher than that of Version 2, and the
MOSs of Version 2 are 0.5∼1.1 higher than that of Version
3. This result indicates that for the Squirrel model, selecting
a low-detail LoD version comes at a cost of reducing the
perceptual quality even if the distance from the camera is
relatively far.

For the Hulk mesh, the MOS of Version 2 is 0.75 lower
than that of Version 1 at d = 4. But, the differences in MOS
between the two versions are less than 0.1 for d ≥ 8. These
results indicate that the perceptual quality of Version 1 and
Version 2 of the Hulk mesh is very similar for d ≥ 8 even
though the number of vertices of Version 2 is approximate
30% less than that of Version 1. With this insight, it is pos-
sible to significantly reduce the bandwidth required for the
transmission of the mesh by choosing Version 2 instead of
Version 1 without causing a negative impact on user expe-
rience. The difference in the MOSs between Version 3 and
Version 1 also becomes smaller as the distance increases.
Yet, unlike Version 2, the MOS of Version 3 at d = 20 is still
0.7 lower than that of Version 1.

In the case of the Statue mesh, the difference in MOS of
the three versions becomes smaller as the distance increases.
At d = 12, the difference between Version 1 and Version 2 is
0.25 MOS, and between Version 2 and Version 3 is 0.4 MOS.
At d = {16,20}, the MOSs of the three versions are almost
the same. Given that the number of vertices of Version
3 is approximately 10% of that of Version 1, the resource
required to render the mesh can be reduced by a large margin
by choosing Version 3 instead of Version 1 for d = {16,20}.
These results show that understanding the impacts of distance
from the camera on perceptual quality can help optimize the
transmission and processing of textured meshes.

4. Objective Quality Metric Evaluation

In this section, we investigate the correlation of objective
quality metrics with MOS scores obtained in Sect. 3. In
particular, we consider eight image-based quality metrics,
namely PSNR [16], SSIM [17], MS-SSIM [18], MSE [19],

NMI [9], BRISQUE [20], NIQUE [21], and PIQE [22]. The
first five metrics are full-reference metrics and the last three
metrics are non-reference ones. Besides image-based qual-
ity metrics, geometry-based quality metrics have also been
developed for textured meshes [12]. However, the geometry-
based metrics are independent of the distance from the cam-
era. Thus, we do not consider geometry-based metrics in
this study.

We briefly explain the characteristics of individual met-
rics here. For more detailed descriptions, please refer to the
original publications. The MSE metric measures the aver-
age squared difference in pixel values of the original and
distorted images. The PSNR metric is derived from the
MSE metric and indicates the maximum pixel intensity to
the power of the distortion. The SSIM metric combines local
image structure, luminance, and contrast into a single quality
score. The MS-SSIM metric is an improved version of the
SSIM metric in which luminance information at the high-
est resolution is combined with the structure and contrast
information at several downsampled resolutions. The NMI
metric measures the normalized mutual information between
input images. The BRISQUE metric is a non-reference met-
ric trained on a database with known distortions and thus is
limited to evaluating images with the same type of distor-
tion. Despite the fact that the NIQUE metric is trained on a
database of pristine images, it can measure the quality of im-
ages with arbitrary distortions. The PIQE metric measures
the local variance of distorted image blocks to compute the
quality score.

Similar to [23], to measure the correlation of objective
quality metrics with MOS, we first use a logistic function to
predict the MOS from the objective quality metric:

Sp = d +
a − d

1 + ( xc )b
(1)

where x is the objective quality metric and Sp is the predicted
MOS. a, b, c, and d are learnable parameters; then, two corre-
lation coefficients of Pearson Correlation Coefficient (PCC)
and Root Mean Square Error (RMSE) are calculated for each
metric. PCC quantifies the linear relationship between the
predicted MOSs and the actual MOSs. Let N be the number
of stimuli, Si and Sp

i respectively be the actual MOS and pre-
dicted MOS of the ith stimuli, Smean and Sp

mean respectively
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Table 2 PCC and RMSE of objective quality metrics. Bold numbers indicate the highest correlations
with the MOS.

Mesh PCC RMSE
PSNR SSIM MS-SSIM MSE NMI BRISQUE NIQUE PIQE PSNR SSIM MS-SSIM MSE NMI BRISQUE NIQUE PIQE

Squirrel 0.79 0.67 0.66 0.80 0.81 0.44 0.50 0.40 0.46 0.49 0.50 0.39 0.38 0.64 0.57 0.60
Hulk 0.85 0.76 0.75 0.87 0.90 0.65 0.81 0.32 0.49 0.54 0.54 0.40 0.35 0.81 0.49 0.81
Statue 0.88 0.87 0.85 0.89 0.93 0.69 0.70 0.73 0.59 0.71 0.77 0.37 0.30 0.80 0.58 0.57

All 0.78 0.67 0.63 0.80 0.81 0.40 0.67 0.31 0.51 0.60 0.63 0.49 0.47 0.80 0.60 0.77

be the mean values of the actual and predicted MOSs, PCC
is defined as follows [24].

PCC =

∑N
i=1(Si − Smean)(Sp

i − Sp
mean)√∑N

i=1(Si − Smean)
∑N

i=1(S
p
i − Sp

mean)
(2)

The larger the PCC, the better the correlation. The range of
PCC values typically falls between −1 and 1, where −1 rep-
resents a perfect negative correlation, 1 represents a perfect
positive correlation, and 0 indicates no linear correlation.
The RMSE measures the difference between the predicted
and actual MOSs, and is defined as follows [25].

RMSE =

√∑N
i=1(Si − Sp

i )2
N

(3)

A lower RMSE indicates better performance.
The PCC and RMSE of each metric are shown in Ta-

ble 2. Here, we consider two cases of individual and cross-
meshes. The cross-mesh case, denoted by All, refers to the
case where we use all the data of the three meshes to cal-
culate the PCC and RMSE of individual metrics. It can be
seen that, for both of the cases, the NMI metric achieves the
highest PCC values and the lowest RMSE values (i.e., PCC
≥ 0.81 and RMSE ≤ 0.47) in all cases. This implies that the
NMI metric can be used to evaluate the impact of distance
on the quality of not only the same mesh but also different
meshes. The MSE metric has a slightly lower performance
than the NMI metric. Interestingly, the PSNR metric is found
as a simple but good metric (i.e., PCC ≥ 0.78 and RMSE
≤ 0.59). Both the SSIM and MS-SSIM metrics are worse
than the PSNR metric in terms of both PCC and RMSE. Al-
though full-reference quality metrics have high correlations
with the MOS scores, they require access to the original
textured meshes which is might not always possible.

Among the three no-reference quality metrics, it can be
seen that the correlation of the NIQUE metric with MOSs
is the highest but unstable (i.e., 0.50 ≤ PCC ≤ 0.81 and
0.49 ≤ RMSE ≤ 0.60). Meanwhile, the BRISQUE and
PIQE metrics have the smallest PCC and RMSE values.
For the cases of Squirrel and All, the PCC values with the
BRISQUE metric are smaller than 0.5. The PCC value of the
PIQUE metric across all meshes is only 0.31. Therefore, it is
still necessary to improve non-reference metrics for effective
evaluations.

5. Conclusions

In this paper, we have studied the impact of distance from

the camera on the perceptual quality of textured 3D meshes.
Specifically, we have conducted a subjective experiment to
assess the quality of nine distorted versions of three different
meshes at five different distances from the camera. It is
found that the MOS increases as the distance from the camera
increases. However, the impact of the distance is variable for
different meshes. Also, we have measured the correlations of
objective quality metrics with the obtained subjective quality
scores. The results showed that the NMI metric can be used
to evaluate the impact of distance on the perceptual quality
of not only the versions of the same mesh but also across
different meshes. Also, PSNR is found as a simple but
good metric. In future work, we will expand our evaluation
to other types of meshes and distortion. In addition, we
will evaluate the performance of geometry-based metrics in
comparison to the image-based metrics. Also, we plan to
develop a distance-aware adaptive transmission method for
textured 3D meshes using the finding in this paper.
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