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SUMMARY Noisy labels in training data can significantly harm the
performance of deep neural networks (DNNs). Recent research on learning
with noisy labels uses a property of DNNs called the memorization effect
to divide the training data into a set of data with reliable labels and a set of
data with unreliable labels. Methods introducing semi-supervised learning
strategies discard the unreliable labels and assign pseudo-labels generated
from the confident predictions of the model. So far, this semi-supervised
strategy has yielded the best results in this field. However, we observe
that even when models are trained on balanced data, the distribution of the
pseudo-labels can still exhibit an imbalance that is driven by data similarity.
Additionally, a data bias is seen that originates from the division of the train-
ing data using the semi-supervised method. If we address both types of bias
that arise from pseudo-labels, we can avoid the decrease in generalization
performance caused by biased noisy pseudo-labels. We propose a learning
method with noisy labels that introduces unbiased pseudo-labeling based on
causal inference. The proposed method achieves significant accuracy gains
in experiments at high noise rates on the standard benchmarks CIFAR-10
and CIFAR-100.
key words: deep learning, learning with noisy labels, semi-supervised
learning, causal inference

1. Introduction

The remarkable success of deep neural networks (DNNs) is
due to the collection of large datasets with human-annotated
labels. However, such reliable labeling is expensive and
time-consuming. By contrast, inexpensive alternatives ex-
ist for collecting labeled data. These inexpensive methods
inevitably collect samples with noisy labels. Recent re-
search [1] has shown that DNNs tend to overfit noisy labels,
resulting in poor generalization performance.

Research on learning with noisy labels (LNL) has con-
firmed that DNNs first learn easy (most likely clean) sam-
ples and then learn hard (most likely noisy) samples. This
is called the memorization effect [2], which has been widely
validated. A simple and practical approach to exploiting the
memorization effect is sample selection [3], which monitors
model losses and selects small-loss samples to avoid the in-
fluence of unreliable samples more likely to be noisy labels.
Co-teaching [3] trains two models on each other, selecting
samples with a small loss in one model to train the other.

The strategy that combines LNL with semi-supervised
learning (SSL) is one of the main reasons for the progress
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of LNL. Training data in SSL consist of a small number
of labeled data and many unlabeled data. Pseudo-labels
are generated from the confident predictions of the model
trained on the labeled samples and assigned to the unla-
beled samples. MixMatch [4] takes advantage of unlabeled
samples by forcing the model to make consistent predic-
tions on unlabeled samples that have been augmented using
different weak data augmentation techniques. FixMatch [5]
generates pseudo-labels from weakly augmented unlabeled
samples and forces the model to match the output for strongly
augmented unlabeled samples to the pseudo-labels. By em-
ploying a threshold, this method ensures it uses only reliable
pseudo-labels, which significantly improves its performance
in SSL. However, concerns have been reported regarding
model bias in SSL, specifically that pseudo-labels can be
forced into imbalance because of data similarity, even when
the models have been trained on balanced data [6].

The imbalanced pseudo-labeling problem, which
should be related to noisy pseudo-labels, has not been dis-
cussed in the LNL field. DivideMix [7] is a pioneering
method that combines sample selection and SSL for LNL
and has achieved state-of-the-art performance in recent years
by dividing the training data into a set of labeled and unla-
beled samples and assigning pseudo-labels to the unlabeled
samples, which is called co-divide. The development of ad-
vanced state-of-the-art methods based on DivideMix is an
active research topic [8]. However, DivideMix, when divid-
ing the training data using a model that has memorized noisy
labels, can lead to bias in which the number of labels for
certain classes either increases or decreases according to the
errors in the memorized labels. We refer to this phenomenon
as data bias. This problem is particularly prominent under
conditions with high noise rates. In this letter, we first in-
vestigate the generation of imbalanced pseudo-labels even in
DivideMix, propose an unbiased pseudo-labeling, and show
experimentally that removing model and data bias benefits
LNL.

In summary, our contribution is three-fold.

• To the best of our knowledge, this letter is the first to
demonstrate that imbalanced pseudo-labeling caused by
model and data bias reduces robustness to noisy labels
in supervised learning that employs the SSL strategy.

• We propose a dual-model bias estimation method based
on causal inference that concurrently tackles both types
of bias. This method realizes the concurrent mitigation
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of bias across two networks. Our identification of data
bias, another significant factor in SSL-based LNL meth-
ods, enhances our comprehension of how bias manifests
in pseudo-labeling.

• Experiments on several benchmarks with different noise
types and noise rates show that the proposed method
significantly improves the performance of the conven-
tional method, providing insight into improving the per-
formance of LNL.

This study presents an analysis of two distinct types
of bias within SSL in the context of LNL: model bias and
data bias. Notably, we introduce data bias as an issue yet to
be thoroughly explored in SSL-based LNL. Data bias arises
from inaccurate memorization of noisy labels, leading to an
imbalanced distribution of labels, especially in environments
with high levels of noise.

The proposed method in this letter is the dual-model
bias estimation method. This strategy employs outputs
from two concurrently trained DNNs used in the co-divide
process, facilitating the simultaneous management of both
model and data bias. The effectiveness of this method ex-
tends to environments where the direct application of the
method proposed by [6] may be inadequate, specifically in
LNL situations characterized by high noise rates.

The novelty of our method stems from the divergent
roles of the two networks. In contrast to the unidirectional
teacher–student relationship in the method of [6], our ap-
proach relies on mutual interdependence between the net-
works, resulting in a mutual optimization process. This
distinct approach affords a more encompassing bias estima-
tion and effective bias reduction. Consequently, our method
is not merely an application of the method proposed by [6],
but a useful extension.

2. Biased Pseudo-Labeling in LNL

DivideMix. We briefly review DivideMix, which utilizes
co-divide, a process that trains two networks simultaneously.
First, each network is warmed up for several epochs using the
cross-entropy H(·) with batch size B formulated as follows:

L(k)s =
1
B

∑
H(y,p(k)), (1)

where k ∈ {1,2} is the model number, y and p(k) denote a
one-hot label and the model prediction, respectively. Then,
for each network, a Gaussian mixture model is fitted to the
loss distribution of each sample, and the training set is di-
vided into labeled (clean) and unlabeled (noisy) data. The
separated datasets are used to train the networks in the next
epoch. The set of unlabeled samples is assigned pseudo-
labels generated from the model’s predictions, represented
by the following equation:

ȳ =
1
2
(p(1) + p(2)), (2)

ŷ = ȳ
/∑C

c=1
ȳc , (3)

Fig. 1 Confusion matrices for pseudo-labels (rows: ground truth,
columns: classes of pseudo-labels)

where C is the number of classes. The loss for unlabeled
samples is formulated as follows:

L(k)u =
1
B

∑
| |ŷ − p(k) | |22 . (4)

The final loss function consists of two terms: L(k) =
L(k)s + λuL(k)u , where λu is a hyperparameter. Note that
the derivation of L is associated with MixMatch.
Bias in DivideMix. DivideMix treats samples with labels
likely to be noisy labels as unlabeled samples and generates
pseudo-labels from the confident predictions of the trained
model. However, especially at high noise rates, the model fits
the noisy labels, and the predictions are unreliable and gen-
erate incorrect (biased) pseudo-labels. This biased pseudo-
labeling occurs when the model learns noisy labels as clean
labels and outputs incorrect predictions as confident predic-
tions based on incorrect knowledge. This is referred to as
model bias in LNL.

To verify the model bias in LNL, DivideMix and the
proposed method were used to obtain pseudo-labels for
CIFAR-10 when 90% of the dataset was contaminated by
noisy labels. Figure 1 shows the resulting confusion matri-
ces at the point of best performance during training (details
are given in Sect. 4.1). Symmetric noise, which randomly
flips the labels of training samples to one of the other classes
with a certain probability, was used.

Figure 1 (a) shows the confusion matrix for DivideMix,
which generates incorrect pseudo-labels such as dog→cat
and horse→deer. The visual similarities between these
classes cause these errors, and prior research [6] has stated
that such pseudo-label bias is due to model bias. However,
incorrect pseudo-labels such as plane→cat and dog→frog
were not reported in [6]. These errors are caused by data
bias that appears due to noisy labels. More specifically,
when Model 1 memorizes a noisy label such as plane→cat,
the data labeled as “cat” yields a lower loss value due to the
prediction–label agreement, while the data labeled as “plane”
results in a higher loss value due to the prediction–label dis-
cordance. As a result, the clean label dataset identified by
the model becomes skewed, containing more “cat” labels and
fewer “plane” labels. When this skewed data is used to train
Model 2, its predictions also become biased. By contrast,
as shown in Fig. 1 (b), the pseudo-labeling errors and bias
toward specific classes are reduced by our approach. We
present the method for achieving this in the next section.
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3. Method

3.1 Preliminaries

Causal inference uses factual assumptions alone to draw
counterfactual hypothetical conclusions [9]. Wang et al. [6]
consider the undesirable model bias counterfactual and de-
vise counterfactual reasoning [10] that dynamically reduces
this effect. In counterfactual reasoning, undesirable model
biases become factual assumptions and incorporate causal
relationships that generate erroneous predictions. In Fig. 2,
when A is a particular sample A = Ai , a direct causal rela-
tionship along Ai → Yi , unaffected by model bias, is defined
as a controlled direct effect (CDE) [10] as follows:

CDE(Yi) = [Yi |do(Ai), do(D)] − [Yi |do(Â), do(D)], (5)

where the do(·) operator represents a hypothetical scenario
in which the variable is fixed to a specific value so that the
variable intervenes directly in the prediction without model
bias, and Â = {A1, . . . Ai, . . . , An} denotes all samples with
n samples. When all samples A = Â are exposed under
mediator (model) D with fixed model parameters (denoted
as do(Â)), the direct causal effect of individual samples is
lost from the observed average output and the model bias is
regarded as an indirect effect of Y . By contrast, when A = Ai

is exposed (denoted as do(Ai)), Y includes the indirect effect
of model bias, but D retains the direct causal effect. Thus, if
we remove the indirect effect of the model [Yi |do(Â), do(D)]
from the model output [Yi |do(Ai), do(D)] for A = Ai as in
Eq. (5), we obtain a CDE, that is, predictions without the
model bias effect.

3.2 Unbiased Pseudo-Labeling for LNL

Section 2 shows that using DivideMix with the SSL strategy

Fig. 2 Causal graph and control direct effect

Fig. 3 Overview of unbiased pseudo-labeling

produces model and data bias. This bias causes unlabeled
samples to be assigned incorrect pseudo-labels again, lead-
ing to a vicious cycle of reduced model generalizability. We
propose a semi-supervised LNL that introduces unbiased
pseudo-labeling using counterfactual inference. Figure 3
shows an overview of the unbiased pseudo-labeling intro-
duced in our proposed LNL. Rather than estimating bias
independently in the two models, our method exploits the
outputs from both models to estimate model and data bias.
By removing the pseudo-label bias, unlabeled samples can
be effectively utilized, improving the model’s generalization
performance and enabling train models to be robust to noisy
labels.

Measuring the counterfactual results for all unlabeled
samples ui (∈ U; U is a set of unlabeled samples) is
computationally expensive. We follow [6] and approximate
the CDE using the approximated CDE (ACDE). Previous
methods use a single model for bias estimation and pseudo-
labeling, and when incorporated into DivideMix, two mod-
els are used to perform independent model bias estimation.
However, independent bias estimation fails to debias be-
cause it does not consider data bias. Model bias occurs
when the model generates false pseudo-labels due to data
similarity and memorizes these false pseudo-labels, bias-
ing the pseudo-labels. Data bias, by contrast, occurs when
the model memorizes noisy labels, biasing the data such
that some classes have more or fewer labels, as discussed
in Sect. 2. In addition, biased data can cause the training
model to generate biased pseudo-labels. Both data bias and
model bias can be manifested by the memorization of noisy
labels. The data bias in DivideMix is caused by losses com-
puted from the outputs of different models. That is, the bias
of the other model causes the data bias. Therefore, it is
possible to estimate the bias in a model from its own out-
put and estimate the data bias from the output of the other
model. In our method, we use the outputs of both models
for bias estimation. Thus, we estimate model bias and data
bias comprehensively as follows:

p̂← mp̂ + (1 − m) 1
2B

B∑
b=1

(
p(1)
b
+ p(2)

b

)
, (6)

where p̂ is a probability vector containing the estimated
model bias and data bias, p(k)

b
is the probability distribution

of the unlabeled sample α(ub)with weak data augmentation,
m ∈ [0,1) is momentum, and B is the mini-batch size of the
unlabeled sample. Unbiased pseudo-labeling using ACDE
as an alternative to Eq. (5) is formulated as follows:
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f̃(k)i = fk(α(ui)) − λ log p̂, (7)

where λ is the hyperparameter that controls the strength of
bias removal and fk(·) is the logit. Finally, we perform
unbiased pseudo-labeling by replacing p(k) in Eq. (2) with
unbiased prediction p̃(k), which is obtained by applying the
softmax(·) operator to f̃(k)i . The unbiased pseudo-labels are
represented by ỹ.

4. Experiments

4.1 Experimental Setup

Dataset. We conducted our experiments by synthesizing
noisy labels on CIFAR-10 and CIFAR-100 [11], the standard
benchmark datasets in image classification. CIFAR-10 and
CIFAR-100 consist of 50k training data and 10k test data
with image size 32 × 32 × 3. Following [3], [7], we used
two different noise patterns: symmetric and asymmetric.
Symmetric noise is a pattern in which labels are randomly
flipped at a specified rate regardless of label content. Asym-
metric noise, in contrast, flips the labels of similar classes
(CIFAR-10:truck→ automobile, bird→ airplane, etc.). Note
that following [7], only symmetric noise was used in CIFAR-
100.
Experiment Details. We compared the performance of the
proposed method with that of DivideMix. An 18-Layer
PreAct ResNet [12] was used as the architecture along with
SGD with a momentum of 0.9 and weight decay of 5×10−4.
The model was trained for 300 epochs with a batch size of
128. We set the initial learning rate to 0.02 and reduced it by
a factor of 10 at 150 epochs. The existing parameters were
fixed and equal, and the parameters added by the proposed
method were set to m = 0.997 and λ = 1, respectively.

4.2 Results

Table 1 presents the experimental results on CIFAR-10 with
symmetric noise at rates of 20%, 50%, 80%, and 90% as
well as asymmetric noise at 40%. We use the best test ac-
curacy over all epochs (Best) and the average test accuracy
of the last 10 epochs (Last) for comparison. The proposed
method outperforms DivideMix at all noise rates. At a 90%
noise rate, the proposed method improves DivideMix accu-
racy by about 14%. Table 2 shows the experimental results
for CIFAR-100 with symmetric noise at rates of 20%, 50%,
80%, and 90%. On CIFAR-100, the proposed method out-
performs DivideMix at all noise rates. These experimental

Table 1 Test accuracy on CIFAR-10

Noise type Sym. Asym.
Noise ratio 20% 50% 80% 90% 40%

DivideMix Best 96.2 94.7 93.8 78.0 93.4
Last 96.0 94.5 93.3 76.7 92.5

Proposed Best 96.2 95.8 94.2 92.0 93.6
Last 96.0 95.6 94.0 91.7 92.8

results suggest that the proposed method is particularly ef-
fective in situations with high noise rates and few correct
labels. On CIFAR-10, the proposed method achieves almost
the same test accuracy values even when the noise rate in-
creases. By contrast, on CIFAR-100, the test accuracy drops
as the noise rate increases. This problem is thought to be
due to the increased influence of model bias caused by a
higher number of classes. Furthermore, on CIFAR-100, the
batch size of unlabeled data is smaller than the number of
classes, and it is possible that the effect of model bias is not
sufficiently estimated. Therefore, adaptive control of batch
size according to the number of classes is a future issue to
be addressed.

Figure 4 shows the accuracy of the pseudo-labels (top
row) and the area under the curve (AUC) of the clean/noisy
label classification at the SSL stage (bottom row) at each
epoch when the symmetric noise rate is varied on CIFAR-
10. The AUC indicates whether the labels were divided
correctly and whether the model did not divide them incor-
rectly with high confidence. The proposed method improves
the pseudo-label accuracy the most at a noise rate of 90%,
significantly increasing the AUC. The proposed method also
slightly improves pseudo-label accuracy at noise rates of
50% and 80%, improving the test accuracy, and the AUC
is increased accordingly. The improvement in pseudo-label
accuracy at a 50% noise rate is slightly higher than that at a
80% noise rate. This difference also affects the AUC results;
the improved range of the AUC at a noise rate of 50% is
larger than the improved range of the AUC at a noise rate of
80%. As a result, the test accuracy is better at a 50% noise
rate, but the accuracy is substantially better than these results
at a 90% noise rate. These results suggest that imbalanced
pseudo-labels affected by model bias reduce the segmenta-
tion accuracy of the training data and the generalization to
noisy labels.

4.3 Ablation Study

We conducted an ablation study on bias estimation using
CIFAR-100. We proposed a dual-model bias estimation
method for both model and data bias, which differs from
the previous approach of independent bias estimation. Thus,
we contrast the effects of solely removing data bias, only
removing model bias, and removing both simultaneously.

When we only remove data bias, we subtract the bias
estimated from the secondary model’s output. Conversely,
when only model bias is targeted, the bias calculated from
our primary model’s output is removed. Finally, when both
model and data bias are addressed, we remove the calculated
bias from each model’s output.

Table 2 Test accuracy on CIFAR-100

Noise ratio 20% 50% 80% 90%

DivideMix Best 77.4 74.6 59.7 31.7
Last 76.9 74.4 59.3 30.8

Proposed Best 77.7 76.1 61.0 32.0
Last 77.3 75.8 60.7 31.7
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Fig. 4 Accuracy of pseudo-labels and AUC of clean/noisy labels classification on CIFAR-10.

Table 3 Ablation study results for bias estimation on CIFAR-100

Bias type Noise ratio
Data bias Model bias 20% 50% 80% 90%

7 7
Best 77.4 74.6 59.7 31.7
Last 76.9 74.4 59.3 30.8

3 7
Best 77.8 75.7 61.2 31.8
Last 77.4 75.3 61.1 31.5

7 3
Best 77.6 76.0 60.8 31.8
Last 77.2 75.7 60.4 31.5

3 3
Best 77.7 76.1 61.0 32.0
Last 77.3 75.8 60.7 31.7

The results for the scenario in which no bias is removed
aligns closely with the results from DivideMix. However,
the result of removing model bias alone mirrors the outcome
of integrating [6] with DivideMix. As shown in Table 3,
eliminating both model and data bias consistently enhances
accuracy across all noise rates. While addressing data bias
alone shows promising results, tackling both model and data
bias simultaneously offers optimal outcomes in certain cases.

5. Conclusion

In this letter, we indicated that imbalanced pseudo-labels
caused by model bias affect the training of robust models
on noisy labels. We further proposed a method to remove
model bias from imbalanced pseudo-labels to improve the
accuracy of the pseudo-labels and the accuracy of train-
ing data segmentation. Experimental results show that the
proposed method improves the performance of SSL-based
LNLs. This letter’s insights immediately apply to recent
SSL-based LNL methods and will subsequently contribute
to their improvement.
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