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SUMMARY As more and more programs handle personal information,
the demand for secure handling of data is increasing. The protocol that
satisfies this demand is called Secure function evaluation (SFE) and has at-
tracted much attention from a privacy protection perspective. In two-party
SFE, two mutually untrustworthy parties compute an arbitrary function on
their respective secret inputs without disclosing any information other than
the output of the function. For example, it is possible to execute a program
while protecting private information, such as genomic information. The
garbled circuit (GC)—a method of program obfuscation in which the pro-
gram is divided into gates and the output is calculated using a symmetric
key cipher for each gate—is an efficient method for this purpose. However,
GC is computationally expensive and has a significant overhead even with
an accelerator. We focus on hardware acceleration because of the nature
of GC, which is limited to certain types of calculations, such as encryp-
tion and XOR. In this paper, we propose an architecture that accelerates
garbling by running multiple garbling engines simultaneously based on the
latest FPGA-based GC accelerator. In this architecture, managers are in-
troduced to perform multiple rows of pipeline processing simultaneously.
We also propose an optimized implementation of RAM for this FPGA ac-
celerator. As a result, it achieves an average performance improvement of
26% in garbling the same set of programs, compared to the state-of-the-art
(SOTA) garbling accelerator.
key words: secure function evaluation, garbled circuit, FPGA

1. Introduction

In recent years, there have been many cases of malicious
extraction of personal data. Thus, privacy is emphasized as
personal data is used more and more, and there is an in-
creasing demand for the secure handling of data in many
programs. For example, machine learning often uses data
containing personal information. Secure function evalua-
tion (SFE)—a protocol that allows two or more mutually
untrustworthy people to compute an arbitrary function with-
out disclosing their inputs and without disclosing any infor-
mation other than the output of the function—can solve this
problem.

One of the protocols for SFE is the garbled circuit (GC)
proposed by Yao in 1986 [1]. It obfuscates the program by
making the program a logic circuit and creating a ciphertext
for each gate using a symmetric key cipher. GC research
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has been conducted from both software and hardware as-
pects: Bellare et al.’s JustGarble [2] is a software framework
for GC, while Ebrahim et al.’s GarbledCPU [3] is an FPGA-
based GC accelerator that can execute GC in hardware. It is
advantageous in terms of ease of development, as programs
can be designed in languages such as C and C++, and exist-
ing compilers can be used. On the other hand, it is difficult
in terms of performance for practical use.

Fang proposed an FPGA overlay architecture with su-
perior performance for software execution [4]. Based on
this, Huang and Leeser show how to apply it to cloud ser-
vices using AWS F1 instances [5], [6]. These use SHA-1
as the encryption function, which is no longer considered
secure [7]. On the other hand, Hussain’s FASE [8] solves
this problem by using AES as the encryption function and
outperforms [5], [6] in performance. FASE is an accelerator
implemented using FPGAs running on a cloud server and
is intended to be a model for serving programs to multiple
clients in parallel. In this model, FASE creates an encrypted
program that can be executed by clients from a “netlist”,
which is a set of gates of the program as a pre-processing
step for GC, in order to distribute it to the clients. The cre-
ation of this encrypted program is called garbling.

FASE uses a pipeline to sequentially process the gates
of the netlist and introduces an AES core for GC-optimized
computation based on the fixed-key block cipher optimiza-
tion presented at JustGarble. On the other hand, the pipeline
can process only one gate per cycle. FASE, which has only
one pipeline, can garble only one gate per cycle.

We propose an accelerator architecture for multiple en-
gine operation. We introduce a new gate address and out-
put destination management mechanism for multiple opera-
tions. We also provide sufficient ports to the RAM structures
for multiple pipelines. The FPGA implementation of the
multi-port RAM is conducted efficiently using a live value
table (LVT). This implementation achieves an average per-
formance improvement of 26% for garbling the same set of
programs, compared to the state-of-the-art (SOTA) garbling
accelerator.

The contributions of this paper are as follows:

• Based on the latest FPGA-based GC accelerator, an ar-
chitecture to speed up garbling by parallel processing
of the pipeline is proposed, implemented, and evalu-
ated, resulting in an average performance improvement
of 26% for garbling the same set of programs, com-
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pared to the SOTA garbling accelerator in the two par-
allel case.
• A new mechanism for the proper management of gate

indexes and some RAM addresses is added to cope
with changes in the processing order of gates due to
pipeline parallelization.
• Stalls of garbling engines decreased by increasing the

apparent number of ports by means of a RAM wrapper
circuit using LVTs.

The rest of this paper is organized as follows: Sect. 2
describes GC and FASE, Sect. 3 presents the motivation and
idea of the proposal, Sect. 5 describes the proposed archi-
tecture in detail, Sect. 6 compares the evaluation to existing
methods, and Sect. 7 summarizes the conclusions.

2. Background

2.1 GC

GC, one of the SFE protocols invented by Yao in 1986 [1],
can be applied to privacy preserving program execution and
software rental.

In GC, Alice has input a, and Bob has input b, and
they compute f (a, b) without revealing their inputs to each
other. The protocol obfuscates the circuit to perform the
computation.

1. Let the program to be executed be the circuit C.
2. For each wire of the circuit C, labels corresponding to

the values 0 and 1 are created, respectively. The labels
are often set to 128 bits.

3. The ciphertext for a gate g (Fig. 1) whose gate logic
is z = g(x, y) is created, as shown in Table 1. For
each gate, the labels of the output wire z (hereafter out-
put labels)K0

z ,K
1
z are encrypted with the labels of the

two input wires x, y (hereafter input labels)Ki
x,K

j
y us-

ing the encryption function E(k0,k1) shared beforehand
between Alice and Bob. (Hereafter, E(k0,k1)(n) means n
encrypted with the common key (k0, k1)). Since cipher-
texts are created for all input patterns, four ciphertexts

Fig. 1 gate g

Table 1 Truth Table for logic gate g

Input x key Input y key Output z key Ciphertext

K0
x K0

y Kg(0,0)
z E(K0

x ,K
0
y )(K

g(0,0)
z )

K0
x K1

y Kg(0,1)
z E(K0

x ,K
1
y )(K

g(0,1)
z )

K1
x K0

y Kg(1,0)
z E(K1

x ,K
0
y )(K

g(1,0)
z )

K1
x K1

y Kg(1,1)
z E(K1

x ,K
1
y )(K

g(1,1)
z )

are created per gate. These four ciphertexts are collec-
tively called the garbled table of gates.

4. Alice sends a garbled table to Bob and sends both in-
put labels corresponding to 0 and 1 on the input wire
to Bob in a 1-out-of-2 OT. Bob receives only the label
corresponding to his input. A 1-out-of-2 OT is a com-
munication in which the sender appears to send two
pieces of data, but the receiver receives only one of the
two pieces. Alice uses this to send only the label corre-
sponding to Bob’s input without knowing Bob’s input.

5. Bob decrypts the output label from the input labels and
garbled table for each gate. If the input of the gate is
already the output of a computed gate, the output label
is used as the input label.

6. Alice shares a map of output labels and truth values
with Bob, and Bob shares output labels with Alice; Al-
ice and Bob obtain output values for circuit C.

Steps 2 and 3 are garbling by Alice and steps 5 and 6 are
evaluation by Bob.

Various optimization techniques have been proposed
for GC; FASE and the implementation proposed in this pa-
per introduce the following:.

• Point and Permute [9]:The addition of random mask
bits can reduce the size of the output map.
• Free XOR [10]:The wire label K1 corresponding to 1

on the wire is made from XOR of the label K0 cor-
responding to 0 and (R||1), which combines the value
R defined in common throughout the circuit and 1
(K1 = K0⊕(R||1)), resulting in XOR, XNOR, and NOT
gate garbling being no longer necessary.
• Row Reduction [11]:Ciphertext is reduced by creating

output labels in different ways
• Half Gate [12]:The gate is split to make it a half gate

and is combined with Row Reduction to reduce the size
of the garbled table to two rows.
• Garbling with a Fixed-key Block [13]: Efficient gar-

bling with a fixed-key AES.

2.2 FASE

FASE, the latest FPGA accelerator proposed by Hussain et
al., is used in conjunction with a host CPU. The host CPU
prepares a netlist, which is the data of a Boolean circuit cre-
ated from the program and contains the input and output
wires and logic information of the gates that make up the
circuit. The netlist is optimally scheduled so that the gates
can be efficiently garbled, and FASE creates and outputs the
common key, input labels, mask bits, and garbled table for
the circuit from the netlist. The host CPU (corresponding to
Alice in the previous section) receives the output data and
sends the data to the client (corresponding to Bob in the pre-
vious section) in a 1-out-of-2 OT. This enables the client to
execute programs using the received data.

FASE is capable of fast garbling; it manages RAM
read/write cycles, improving throughput by at least two or-
ders of magnitude, compared to earlier GC accelerators.
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The cryptographic core uses 17% fewer resources than most
modern GC accelerators.

The garbling performed by FASE is as follows. The
netlist, which is the information on the gates of the circuit, is
read one by one from the beginning, and labels are randomly
created when new labels are required; the XOR circuit ob-
tains output labels by XOR for XOR gates and others that do
not require garbling. The other gates are those that encrypt
the input label as plaintext using the AES function and the
fixed AES key that is common to the entire circuit through
a 10-stage pipeline process in the garbling engine. The final
output is the key of the entire circuit (R of Free XOR and
the fixed key of AES), the input labels, the garbled table and
the mask bits.

A feature of FASE is that it uses pipelining to perform
garbling, which increases resource utilization and makes
garbling more efficient. Furthermore, the read/write cycles
of the RAM that stores the output labels are managed to in-
crease port utilization and improve performance.

2.3 Related Work

Based on the FPGA overlay architecture [4] proposed by
Fang, studies have been proposed using F1 instances of
AWS [5], [6]. These methods are superior to software ex-
ecution in terms of performance. One of the major differ-
ences from FASE is the difference in encryption functions.
These methods use SHA-1 as the encryption function, while
FASE uses AES. The security of SHA-1 has been ques-
tioned [7], and AES is more secure than SHA-1. The length
of the label is 128 bits for FASE, while it is 80 bits for these
methods. There is also a difference in the netlist handled.
These methods use FlexSC [14] to generate netlists, while
FASE uses TinyGarble [15]. This difference results in differ-
ent circuit structures for the same program. The latter tends
to have fewer gates. As a result, FASE performs better than
them for garbling programs of similar size.

2.4 LVT [16]

LVT, is a technique to realize multi-port RAM by using ad-
ditional block RAMs, enables the RAM to behave as true
multi-port RAM by directing reads to the appropriate mem-
ory bank based on the memory bank holding the latest write
value.

In this method of implementing multi-port RAM, the
hardware consists of a matrix of memory banks, a table
called the LVT, and multiple selectors. The memory banks
are the memory entities. When writing, values are written to
all memory banks connected to the write port. At the same
time, the number of the write port is written to the LVT.
When reading, the value is read from all memory banks cor-
responding to the read port and input to the multi-selector,
which selects the latest value based on the write port number
read from the LVT.

3. Parallel Garbling Accelerator

3.1 Key Issues for Performance Improvement

The garbling speed is the bottleneck for speeding up GC.
Therefore, speeding up FASE with architectural techniques
is useful to make SFEs more common.

FASE has a single garbling engine, and currently, only
one gate can be garbled at a time. To speed up garbling, we
propose parallelizing the pipeline that processes the gates. If
the pipeline is parallelized n-fold, the throughput is expected
to increase up to n-fold. The throughput is increased if there
is a possibility that other gates can be processed simultane-
ously while a gate is stalled due to gate dependencies. On
the other hand, if the netlist is too complex and the gates
have complex dependencies on each other, the effect of the
parallelization is small.

In a single-column pipeline process, the gates stored in
the netlist are processed in order, but due to the paralleliza-
tion of the pipeline, while one side is waiting for processing,
the other side may move on to the next gate. To cope with
this situation, which could not have occurred in the origi-
nal FASE implementation, a newly developed mechanism
is introduced the manager of the gate index and the RAM
address.

FASE may read and write output labels at the same
time. A maximum of two read and two write requests can
occur simultaneously, which exceeds the number that can be
processed in one cycle, because the RAM for the output la-
bels is a dual-port RAM in the FASE implementation. This
means that there are not enough ports of RAM for the output
labels, at which point a stall occurs. This stall occurs on av-
erage in about 13% of all cycles in the benchmarks and is a
bottleneck in performance. Parallelization further increases
the demand on the number of ports. To solve this problem,
LVT is used.

3.2 Parallelization

3.2.1 Duplication

The number of gate processing pipelines is increased from
one in the original implementation to several. This means
modifying the architecture to allow multiple gates to be pro-
cessed simultaneously. Here, those that can be simply du-
plicated are duplicated. Specifically, the garbling engine and
the XOR circuit are duplicated.

3.2.2 Multiport RAM

There are parts of FASE that cannot be simply duplicated.
These are the RAM that stores gate information, labels,
and garbled table. Since this information must be shared
by multiple pipelines, the number of read/write ports is the
only thing that increases, apparently without leaving a single
RAM. However, due to the original lack of ports, many stalls
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occur if the conventional RAM wrapper circuit is used. As
multi-port RAM is difficult to use on FPGAs, pseudo multi-
port RAM is realized using the LVT technique.

3.2.3 Gate Index

The gate index is a number assigned to the gates in the netlist
in the order in which they are processed; FASE processes
the gates one by one, so the gates in the netlist should be
processed in that order. Therefore, the gate indexes should
simply be incremented one by one as soon as the process-
ing is finished. As the proposed method processes multiple
gates simultaneously, the processing of the other gate may
be completed while one of the gates is being processed. In
this situation, it is not simple enough to allow the next gate
to be processed, so a new mechanism is introduced to man-
age the indexes correctly.

3.2.4 GT Address

The GT address identifies which gate has the garbled table,
except for XOR, XNOR, NOT gates and FF. In other words,
not all gates have a garbled table, so the GT address is man-
aged separately from the gate index.

3.2.5 OM Address (Mask Address)

The mask bit is the last digit of the output label correspond-
ing to 0 used in point and permute [9]. This mask bit tells
the evaluator whether the output label corresponds to 0 or 1.
The OM address is the address that defines the order of the
mask bits (i.e., which output label the mask bit corresponds
to). The OM address should not be incremented as each gate
is processed. The OM address is incremented only when a
gate whose output is the output of the entire circuit is pro-
cessed. As not all gates are outputs of the circuit, the mask
address is also managed separately from the gate index.

3.3 Overall Flow of Garbling Computation

Hereafter, the cycle of the GC circuit is called a netlist cycle;
the clock cycle of the FPGA accelerator is simply called a
cycle.

The basic process flow is the same as that in FASE.
The difference is that two gates are processed at the same
time, so that if one gate is fully processed in one netlist cycle
but the other gate is not, it will wait until the other gate is
processed. It is not possible to process gates in different
netlist cycles at the same time.

Before starting the procedure, the FPGA accelerator re-
ceives the netlist from the host CPU and stores it internally.

1. The R and AES keys to be used in Free XOR [10] de-
scribed in 2.1 are created and sent to the host CPU.

2. Labels corresponding to the constants 0 and 1 are cre-
ated for the initial value of the D flip-flop (DFF) and
sent to the host CPU. This is because garbling a circuit

with flip-flops requires the initial value of the flip-flop
in the first netlist cycle.

3. For each netlist cycle

a. For each DFF,

i. If it is the first netlist cycle, the output labels
are either constant labels or circuit input la-
bels. If it is a circuit input label, it is created
and sent to the host CPU.

ii. For any other netlist cycle, the output labels
are copies of the input labels.

b. For each gate,

i. If the gate is connected to an input of the cir-
cuit, an input label is created and sent to the
host CPU.

ii. Output labels and a garbled table are created.
In the case of XOR, XNOR, and NOT gates,
only the output labels are created.

iii. If the output of the gate is the output of the
circuit, the mask bits used by point and per-
mute are stored internally.

c. At the end of the netlist cycle, all mask bits are
sent to the host CPU.

4. The host CPU communicates with the client and com-
putes outputs while using OT.

3.4 Gate Processing Pipeline

Each entry in the netlist describes a single logic gate or flip-
flop in the target garbled circuit. Each pipeline reads the
netlist one entry at a time and performs garbling over three
stages in the pipeline. A single gate or flip-flop is processed
in the pipeline. Three stages are called the fetch and decode
stage, the execution stage, and the write-back stage, respec-
tively.

3.4.1 Fetch and Decode Stage (F&D)

Fetch the gate data from the netlist; since netlist RAM al-
ways reads data corresponding to one and two gate indices
ahead, the gate data for the gate index to be read can be read
instantly. Therefore, in this stage, the gate data is read and
stored in registers as the input label address, logic (in the
case of a gate), and is output.

3.4.2 Execution Stage (E)

The output labels and ciphertexts of the Garbled Table (for
non-XOR gates) are calculated. For non-XOR gates, 11 cy-
cles are required for encryption; for XOR gates and FF, the
computation can be done in one cycle.

3.4.3 Write-Back Stage (W)

Write back the output labels and Garbled Table (for non-
XOR gates) from the Garbled Engine or XOR.
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4. Parallel Processing

The accelerator fetches two gates or FF data from the netlist.
If they are in the same netlist cycle, they are sent to the
next stage; otherwise, the one with the larger netlist cycle is
stalled. It is not possible to process gates in different netlist
cycles at the same time. In the F&D stage, label data is
loaded. If the flag of the label data to be read is not ready,
the stall occurs because the labels have not yet been gener-
ated.

As an example, consider the circuit shown in Fig. 3,
where the left gate in Fig. 2 is represented as shown on the
right.

The blue arrows represent the inputs of the entire cir-
cuit and the red arrows represent the outputs of the entire cir-
cuit. This circuit is an adder circuit, and when n-cycle clock
inputs are made using FF and inputs are made to wires 0 and
1 simultaneously, one bit at a time, the result of the addition
of the n bits of the inputs is obtained from the output one bit
at a time. Garbling is performed based on this circuit.

The timeline of the 2-row parallel process is shown in
Fig. 4. Since the restriction on the number of ports is re-
moved, only hazards caused by dependencies are generated.
The hazard at gate 3 is due to the dependency to use the out-
put label of FF 2 as input, and the hazard at gate 7 is due to

Fig. 2 Gate example

Fig. 3 Circuit example of adder circuit

Fig. 4 Timeline of parallelized (2-row) pipeline processing

the dependency to use the output label of gate 5 as input.

5. Architecture

5.1 Overview

A two-parallel pipeline version is described here. Figure 5
shows our proposed architecture. The colored areas in the
diagram are our extensions. We have replicated the garbling
engine and XOR circuits (in blue) and created a new address
manager (in purple). The netlist, in orange, has more ports,
and the key generator creates two labels at the same time.
The red part is RAM, where the number of ports is extended
using LVT.

The two gates are read from the netlist module simulta-
neously. The two input labels corresponding to each gate are
read out, and if they have not been created, they are created.
If both input labels for a gate are not ready, it waits until
they are ready. When the input labels are ready, the output
labels and the garbled table are created through the garbling
engine or the XOR circuit. After the creation process, the
gate index is incremented, and the next gate is read from the
netlist. In this case, the incrementing method is devised so
that processing is carried out from the smallest gate index.

5.2 Key Generator

The key generator is a module that creates keys and labels at
the required time. It first creates the AES key for the entire
circuit and the Free XOR key R. It also creates the constant
labels for the initial values of the FFs. When it enters the
gate processing stage, it creates the input labels for the gates
if no labels have been created for the inputs of the entire
circuit.

Due to the possibility of creating all input labels for two
gates at the same time, we increased the number of labels
that the label generator can create at once from two to four.

5.3 Garbling Engine

The garbling engine handles gates other than FF, XOR,
XNOR, and NOT gates. This module creates a garbled ta-
ble and an output label corresponding to an input value of 0
from input labels corresponding to two input values of 0. It
has four AES cores with 10-stage pipeline processing and a
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Fig. 5 Architecture of proposed accelerator

10-stage FIFO circuit.
In the simultaneous processing of the two gates, these

encryption processes are not dependent on each other.
Therefore, we simply duplicate the garbling engine.

5.4 Control Logic

The control logic determines the state of the FSM based on
the state of the FPGA as a whole, which determines whether
to finish processing a gate and start processing the next gate,
and whether to write the created labels, garbled table and
mask bits into the RAM.

The FSM has the initial state of IDLE, GETKEYS for
R and AESkey creation, CONSTLABELS for constant key
creation, WAIT for the wait state, DFF for FF processing,
GARBLE for gate processing, MASKS for waiting for mask
bit transmission completion, and RSTCOUNTERS to reset
the netlist cycle. Those states exist in FASE. We added the
DFFANDGARBLE state, in which a gate that is DFF on one
side and non-FF on the other side is processed. This state is
caused by processing two gates simultaneously.

5.5 Memory Management

The memory that stores the FASE input labels, output la-
bels, and garbled table is a module that manages the dual-
port RAM with a wrapper circuit. The order of reading and
writing is adjusted to suppress stalls, but stalls still occur in
dual-port RAMs due to the small number of ports. The pro-
posed method handles two gates simultaneously, doubling
the number of ports. Therefore, if many write and read re-
quests are made at the same time, a large number of stalls
occur, but by using LVT, stalls are eliminated.

LVT takes one cycle between writing and reading cer-
tain data, so a forwarding mechanism was added by having
a cache in the RAM module that uses LVT. Specifically, the
data to be written is always written to the cache as well, and
when the write signal is set to 1 and the write address and
read address match, the data is read directly from the cache
without referring to the LVT. This enables data to be read
out in the next cycle after the write in the shortest possible
time.

The netlist is a RAM that stores information on the
gates of a circuit. To read out the information of two gates
at the same time, a dual-port RAM was used instead of a
single-port RAM.

The input label memory was solved by implementing a
four-read four-write memory using LVT. Sixteen dual-port
RAMs with one read and one write are used as memory
banks.

The output label memory was also solved by imple-
menting a four-read four-write memory using LVT. This
also uses 16 dual-port RAMs with one read and one write
as memory banks. This also eliminated a stall cycle that
was 13%.

The garbled table memory implements a one-read, two-
write memory using LVT. There are two memory banks.

5.6 Gate Index Management

The gate index is the index of the gate being processed, and
there are a total of two gate indexes as identification num-
bers for each gate being processed. The incrementing rule
for the gate indexes is as follows: the increment signal is
always 1 for FF and 1 for the other gates only when all gate
input labels are ready and 0 otherwise.
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• The initial indexes are set to 0 and 1, respectively.
• If both increment signals are 1 and neither gate index

overflows, each new index shall be one after the larger
of the original two indexes and two after the index of
the larger of the original two indexes.
• If the one-way increment signal is 1 and the corre-

sponding gate index does not overflow, the new in-
dex of the one to be incremented shall be one after the
larger of the original two indexes.
• Otherwise, the index remains unchanged.

By incrementing with this rule, gates can be processed
in parallel sequentially in descending order of indexes.

5.7 GT Address Management

The GT address is the address to write the garbled table of
the gate corresponding to the gate index 10 cycles ago; the
GTbeg address is the GT address 10 cycles ago correspond-
ing to the gate index currently being handled (before the gate
has been read from the netlist and processed by the garbled
engine). There are two GT addresses and two GTbeg ad-
dresses, which is the number of gates.

The GTbeg address works according to the following
rules.

• Prepare an initial signal to determine the initial state.
• In the initial state

– If the gate being processed is not an AND gate,
the address is set to -1.

– If the gate being processed is an AND gate, the
address is set to 0. If there are multiple gates, they
are assigned addresses 0 and 1 in order of decreas-
ing gate index. The initial signal is changed to get
out of the initial state.

• If the FSM is not in the initial state, and the FSM state
is other than WAIT, the gate index increment signal is 1
for the previous cycle, and the gate being processed is
an AND gate, the latest address already assigned +1 is
assigned as the new address. If there are multiple gates,
the latest address +1 and +2 are allocated in order of
decreasing gate index.
• The address does not change when the above is not the

case.

This GTbeg address is output as a GT address after 10
cycles through the FIFO module and becomes the location
to be written into GT memory.

A different address is prepared to determine which ad-
dress can be read out. This address indicates that data has
already been written to the previous address and is ready to
be read.

5.8 OM Address Management

When a mask bit is written to RAM, it is when the gate
whose output has become the output of the entire circuit one

cycle earlier has finished processing. This gate is henceforth
referred to as the output gate. The signal for whether or not
to write the mask bits is “the gate index increment signal is
1 one cycle ago and the gate processed one cycle ago is the
output gate”. This signal is called the OM address increment
signal (OMinc), and since two gates are processed simulta-
neously, there are two of these signals corresponding to the
gates. When this signal is 1, a mask bit is written to the OM
address.

The mask bit is used to identify the output key of the
circuit, but not all gates are outputs of the circuit. There-
fore, it is necessary to manage the OM address in addition
to the gate index. The increment rule of the OM address is
as follows.

• Prepare an initial signal to determine the initial state.
• In the initial state

– If the gate being processed is not an AND gate,
the address is set to -1.

– If the gate being processed is the output gate, the
address is set to 0. If there are multiple gates, they
are assigned 0 and 1 in order of decreasing gate
index. The initial signal is changed to get out of
the initial state.

• If the FSM is not in the initial state, and the OM address
increment signal of one cycle ago is 1 and the gate be-
ing processed is an output gate, the latest address +1
that has already been allocated is allocated as the new
address. If there are multiple applicable gates, the pre-
viously allocated addresses +1 and +2 are allocated in
order of decreasing gate index.
• The address does not change when the above is not the

case.

5.9 Collector

The collector is configured to collect the necessary data and
to send it to the host CPU. The number of output ports has
been doubled to cope with the doubling of the FASE data
output per cycle due to the two gates that process the data
simultaneously.

6. Evaluation

6.1 Evaluation Setup

We implemented our proposed parallelized garbling accel-
erator in RTL. We used the public repository of FASE avail-
able on GitHub [17] as a base.

The circuit of the proposed method has all the garbling
features of FASE. In this implementation, the maximum
number of gates that can be supported is 213, the maximum
input of the garbling program is 210 bits, and the maximum
output is 28 bits. These parameters correspond to the largest
size of the benchmarks in Table 2. The larger the size of the
benchmark function, the larger the number of gates and I/O



OISHI et al.: FPGA-BASED GARBLING ACCELERATOR WITH PARALLEL PIPELINE PROCESSING
1995

Table 2 Benchmark Functions

Benchmark Function
Input
bits

Netlist
cycles

Gates XORs

Mill 8 8 Millionaire’s 8 8 4 3
Add 8 1 Addition 8 1 37 30
Add 8 8 Addition 8 8 5 2
Hamm 32 1 Hamming dist. 32 1 188 157
Hamm 32 32 Hamming dist. 32 32 13 8
Hamm 512 512 Hamming dist. 512 512 21 12
Mult 256 512 Multiplication 256 512 1,699 1,186
MAC 8 1 MAC 8 1 397 231
MAC 16 1 MAC 16 1 1,678 1,077
MAC 32 1 MAC 32 1 7,036 4,805
CORDIC 32 31 Trigonometric 32 31 2,464 1,544
AES 128 11 AES 128 11 4,662 3,225

Table 3 Performance

Benchmark FASE Proposal Improvement
(cycles) (cycles)

Mill 8 8 259 252 1.03
Add 8 1 139 133 1.05
Add 8 8 179 172 1.04
Hamm 32 1 354 262 1.35
Hamm 32 32 2,980 2,884 1.03
Hamm 512 512 78,340 75,780 1.03
Mult 256 512 1,681,412 901,124 1.87
MAC 8 1 716 588 1.22
MAC 16 1 2,889 2,241 1.29
MAC 32 1 11,031 8,133 1.36
CORDIC 32 31 129,925 97,003 1.34
AES 128 11 84,044 55,664 1.51

bits, and the larger the RAM size.
We evaluated the proposed accelerator using Xilinx Vi-

vado 2019.2 with data from the Xilinx Virtex UltraScale
VCU108 (XCVU095) evaluation kit. As a comparison, we
used FASE, an RTL implementation from a public reposi-
tory, which met the timing constraints at a maximum of 80
MHz in our evaluation environment described above.

Table 2 shows the benchmark functions, the number
of input bits or netlist cycles each benchmark has, and the
number of gates each benchmark contains. The evaluation
includes the 128-bit AES encryption program. It is a practi-
cal and large-scale program.

6.2 Performance

Our implementation operates at the same operating fre-
quency as FASE and the critical path is not extended. There-
fore, it is simply better to have smaller cycles required for
garbling and worse to have larger cycles. The cycles re-
quired for garbling are summarized in Table 3. The per-
formance improvement rate is calculated as follows: cycles
required for garbling of FASE/cycles required for garbling
of the proposed method. The largest performance improve-
ment among the benchmarks was achieved by the summa-
tion program (Mult 256 512), with a performance improve-
ment of 87%. On average, the performance of all bench-
marks was improved by 26%. When gates with independent
wire inputs alternate in the netlist, they can be processed
simultaneously, and parallelization improves performance.

Table 4 Resource Utilization of FASE and Proposal

Resource FASE Proposal Ratio
Num % Num % Proposal/FASE

LUT 56,111 10.44 158,902 29.56 2.83
LUTRAM 315 0.41 619 0.81 1.97
FF 15,415 1.43 44,497 4.14 2.89
BRAM 69 3.96 585 33.83 8.53
IO 334 40.14 618 74.28 1.85
BUFG 7 0.73 9 0.94 1.29

Table 5 Resource Utilization of modules

Resource LUT LUTRAM FF BRAM
Total Num 56,111 315 15,415 69
(FASE) % 10.44 0.41 1.43 3.96
Total Num 158,902 619 44,501 585
(Proposal) % 29.56 0.81 4.14 33.83
Garbling Engine Num 26,575 285 5,445 0
(FASE) % 4.94 0.37 0.51 0
Garbling Engine Num 52,975 557 10,856 0
(Proposal) % 9.85 0.73 1.01 0
Input Labels Num 1,073 0 1,031 4
(FASE) % 0.20 0 0.10 0.23
Input Labels Num 4,965 0 3,094 64
(Proposal) % 0.92 0 0.29 3.7
Output Labels Num 22,012 0 8,596 28.5
(FASE) % 4.09 0 0.80 1.65
Output Labels Num 41,539 0 25,116 456
(Proposal) % 7.73 0 2.34 26.39

However, when the circuit is small, the effect of wire de-
pendence is significant and performance is not improved.
Changing the order of gates in the netlist improves perfor-
mance in some case.

6.3 Resource Utilization

Table 4 shows the resources used. BRAM usage is increased
by 8.53 times due to the use of LVT. This is the largest in-
crease in the resources. However, despite the increase in
BRAM usage, it still consumes only 34% of the BRAM on
the FPGA. The remaining resources increase by a factor of
1.5 to 3.

Table 5 shows the resources used in the internal mod-
ules of FASE and the proposal method. The garbling engine
is approximately doubled in resources used due to the dupli-
cation. The input and output labels, in particular, increased
the use of BRAM, and much of the increase in BRAM con-
sumption for the system as a whole is due to these modules.

6.4 Scalability

In the case of 3- or 4-row architectures, performance in-
creases, but performance is limited by wire dependence. In
this case, IO is the bottleneck in terms of resources used,
which can be overcome by upgrading to a larger FPGA.

7. Conclusion

This paper proposed a parallelized garbling accelerator. The
accelerator increased the garbling throughput by running



1996
IEICE TRANS. INF. & SYST., VOL.E106–D, NO.12 DECEMBER 2023

multiple pipelines simultaneously. The control logic to en-
able parallelized garbling was developed. An RTL imple-
mentation of the accelerator, which is capable of running
two garbling engines in parallel, was realized. This accel-
erator can run as parallel as possible, taking into account
netlist dependencies. Simulation-based performance com-
parisons showed an average performance improvement of
26%. Our accelerator can garble the 128-bit AES encryp-
tion program within 700µs.
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