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A Fully-Parallel Annealing Algorithm with Autonomous Pinning
Effect Control for Various Combinatorial Optimization Problems∗
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Masato MOTOMURA†b), and Kazushi KAWAMURA†c), Members

SUMMARY Annealing computation has recently attracted attention
as it can efficiently solve combinatorial optimization problems using an
Ising spin-glass model. Stochastic cellular automata annealing (SCA) is a
promising algorithm that can realize fast spin-update by utilizing its parallel
computing capability. However, in SCA, pinning effect control to suppress
the spin-flip probability is essential, making escaping from local minima
more difficult than serial spin-update algorithms, depending on the prob-
lem. This paper proposes a novel approach called APC-SCA (Autonomous
Pinning effect Control SCA), where the pinning effect can be controlled
autonomously by focusing on individual spin-flip. The evaluation results
using max-cut, N-queen, and traveling salesman problems demonstrate that
APC-SCA can obtain better solutions than the original SCA that uses pin-
ning effect control pre-optimized by a grid search. Especially in solving
traveling salesman problems, we confirm that the tour distance obtained by
APC-SCA is up to 56.3% closer to the best-known compared to the con-
ventional approach.
key words: combinatorial optimization, Ising model, annealing processor,
parallel annealing algorithm, stochastic cellular automata

1. Introduction

Solving combinatorial optimization problems (COPs) is dif-
ficult, but it is an essential task in various industrial fields
like financial service, physical distribution, and traffic man-
agement [1]–[4]. Annealing computation has attracted at-
tention in recent years because it is expected to solve vari-
ous COPs efficiently and uniformly. This computation tech-
nique utilizes an Ising model to represent different COPs in a
unified manner and obtains the optimal solutions by search-
ing for the ground state [5].

There are several annealing algorithms and their spe-
cialized processors. One of the representative algorithms is
quantum annealing [6], and D-Wave [7] adopts it as the op-
erating principle. However, D-Wave takes a huge cooling
cost, which has been making its practical use difficult so
far. Simulated annealing (SA) [8] is another algorithm, and
some extended algorithms [9]–[11] have also been proposed
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to improve the spin-update efficiency. They include digi-
tal annealing [9] and stochastic cellular automata annealing
(SCA) [11], the operating principles of digital annealer [9]
and STATICA [12], respectively. Since these solid-state
processors can operate at room temperature, they do not re-
quire a large-scale cooling system.

SCA is a promising algorithm that updates all spins
in parallel and realizes highly efficient ground-state search.
This parallel spin-update capability is ensured by self-
interaction, named pinning parameter, to suppress the flip
probability of each spin. However, this parameter makes the
spin configuration easily trapped in local minima, depend-
ing on the COP to be solved.

Some prior works [13], [14] have indicated that dy-
namic parameter control is effective in escaping the spin
configuration from local minima. The method in [13] dy-
namically gives an energy offset to forcibly cause some spin-
flip, while the method in [14] introduces dynamic control of
pseudo temperature. In this work, by examining dynamic
control for the pinning parameter in fully-parallel annealing,
we aim to realize that the solution search is rarely trapped in
local minima.

This paper proposes APC-SCA (Autonomous Pinning
effect Control SCA), a novel algorithm that helps the spin
configuration escape from local minima, and evaluates its
performance using max-cut, N-queen, and traveling sales-
man problems. APC-SCA autonomously controls pinning
parameter in the annealing computation. We realize this au-
tonomous control by focusing on the flip of each spin and
adjusting its pinning parameter adaptively and individually.
The evaluation results demonstrate that APC-SCA can ob-
tain better solutions than the original SCA with an optimal
pinning parameter scheduling found by a grid search.

The main contributions and findings of this paper are
as follows:

• APC-SCA overcomes the weakness of SCA, i.e., the
spin configuration is easily trapped in local minima,
depending on the COP to be solved.
• The evaluation results show that APC-SCA can obtain

superior solutions to the original SCA (where the pin-
ning parameters are pre-optimized for individual prob-
lems) in all problems. Especially in solving traveling
salesman problems, APC-SCA can improve the tour
distance by up to 56.3%.

The rest of the paper is organized as follows. In Sect. 2,
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we clarify the problem about pinning parameter control in
the annealing computation. In Sect. 3, we propose a novel
algorithm, APC-SCA, to overcome the problem. Evaluation
results are presented in Sect. 4. The paper is finally wrapped
up in Sect. 5.

2. Preliminaries

2.1 Ising Model and Annealing Computation

The Ising model consists of N spinsσ = {σi}1≤i≤N , spin-spin
interactions J = {Ji j}1≤i, j≤N , and external magnetic fields
h = {hi}1≤i≤N . Each spin σi ∈ σ can be either of two states,
+1 and −1. Based on the spin states, the system energy is
determined by:

H(σ) = −1
2

∑
i� j

Ji jσiσ j −
∑

i

hiσi. (1)

A spin configuration that gives the minimum energy is
called the ground state. When converting a COP into the
Ising model, we construct the energy function Eq. (1) so that
the ground state encodes the optimal solution. As demon-
strated in [16]–[18], various COPs can be converted into the
Ising model.

The annealing computation is a heuristic approach for
the ground-state search of an Ising model. SA is one of
the most well-known algorithms, which updates spins based
on the Markov Chain Monte Carlo method [8]. There also
exist some extended algorithms [9]–[11]. These SA-based
algorithms control spin-flip probabilities using pseudo tem-
perature T for preventing the spin configuration from being
trapped in local minima. The temperature is initially set to
a large value for global search, and it is gradually decreased
to a small value for shifting to local search.

2.2 SCA Algorithm and Its Practical Problem

SCA is a fully parallel annealing algorithm, enabling fast
spin-update [11]. By utilizing this parallel spin-update capa-
bility, it is expected to improve the efficiency of the ground-
state search. In SCA, the current spin states (σ) are updated
in parallel, and the next spin states (τ) are generated simul-
taneously. The algorithm of SCA is shown in Algorithm 1,
which aims at minimizing the following energy function:

H(σ, τ) = − 1
2

∑
i� j

Ji jσiτ j − 1
2

∑
i

hi(σi + τi)

+ q
∑

i

(1 − σiτi),
(2)

where q > 0 is a pinning parameter. The third term indicates
that the energy increases by 2q when a spin state σi changes
after the update (τi � σi). Therefore, q denotes a degree of
the pinning effect that keeps the current spin states from be-
ing changed. In the previous study [11], it has been proved
that SCA can correctly reach the ground state when using

Algorithm 1 SCA: Stochastic Cellular Automata annealing.
Input:

# of spins: N
initial spin states: σ(1) = {σi(1)}1≤i≤N

spin-spin interactions: J, external magnetic fields: h
# of Monte Carlo (MC) steps: S
pseudo temperature scheduling: T (s)
pinning parameter scheduling: q(s)

Output:
optimized spin states: argmin1≤s≤S+1 {H(σ(s))}

1: for s = 1 to S do
2: for i = 1 to N do
3: Calculate local field

� h̃i =
∑

j Ji jσ j(s) + hi

4: Calculate flip probability
� pi = sigmoid(−(h̃iσi(s) + q(s))/T (s))

5: Generate a random number rand = [0, 1)
6: if pi > rand then
7: τi = −σi(s)
8: else
9: τi = σi(s)

10: for i = 1 to N do
11: σi(s + 1) = τi

q ≥ λ/2, where λ is the maximum eigenvalue of −J.
In solving a practical COP by an annealing algorithm,

we usually put a realistic limit on the number of MC steps
(S). The exponential temperature scheduling Texp(s) is suit-
able for this situation because it allocates high, medium, and
low temperatures in a well-balanced manner:

Texp(s) = Tinit · rT
s−1, rT =

(
Tfinal

Tinit

) 1
S−1

, (3)

where Tinit and Tfinal are the initial and final temperatures,
respectively. In this case, there is no mathematical guaran-
tee to reach a ground state even when using q = λ/2 in SCA.
We should note that the heuristic Texp(s) scheduling has been
commonly used in SA since it empirically gives good solu-
tions even though there is no mathematical guarantee either:
we follow the same practice.

Figure 1 visualizes the behavior of SCA when solving
a well-known max-cut benchmark problem G22 [19] assum-
ing S = 1000, q(s) = λ/2, and Texp(s) with (Tinit,Tfinal) =
(10, 0.1). This figure shows that the spin configuration is
trapped in a local minimum, and the ground-state search
does not progress in the latter half of the annealing com-
putation.

2.3 Related Work

To make escaping from local minima easy, some methods
to dynamically control the spin-flip probability have been
developed [13], [14]. Digital Annealer (DA) [13] is a solid-
state annealing processor that updates a single spin per MC
step. In DA, a dynamic offset Eoffset (≥ 0) was introduced
to prevent the spin configuration from being fixed for a long
time. In the DA’s spin-update procedure, Eoffset continues
to increase while there is no spin-flip candidate and is re-
set to zero if there is even one candidate. Since Eoffset tem-



OKONOGI et al.: A FULLY-PARALLEL ANNEALING ALGORITHM WITH AUTONOMOUS PINNING EFFECT CONTROL FOR VARIOUS COPS
1971

Fig. 1 The behavior of SCA with q(s) = λ/2 when solving a max-
cut problem G22 [19]. We here assumed S = 1000 and Texp(s) with
(Tinit,Tfinal) = (10, 0.1). Spin flips no longer appear in the latter half of
the annealing computation (s ≥ 500), indicating that the spin configuration
cannot escape from a local minimum.

porarily increases the spin-flip probability, the spin config-
uration is forced to change and thus can be escaped from
local minima. According to the paper [13], this technique
approximately equivalent to multiplying the common factor
exp(β ·Eoffset) by the flip probability of each spin, where β is
the inverse temperature 1/T (s).

Tao et al. proposed the improved parallel annealing
(IPA) [14] derived from momentum annealing (MA) [10].
IPA applies the dynamic offset to the pseudo temperature
control for efficiently solving traveling salesman problems
(TSPs). We aim to prevent the spin configuration from be-
ing trapped in local minima by utilizing dynamic parameter
control. Our proposed method extends dynamic offset to
pinning parameter with assigning it for each spin σi as qi.

3. APC-SCA: SCA with Autonomous Pinning Param-
eter Control

3.1 Motivation

DA and SCA are single and parallel spin-update algorithms,
respectively, so their flip probabilities are:

pDA
i = sigmoid

(
− h̃iσi

T (s)

)
(4)

and

pSCA
i = sigmoid

(
− h̃iσi + q(s)

T (s)

)
, (5)

where q(s) is a pinning parameter and should be set to λ/2
for keeping the reachability to the ground state. However,
this parameter strongly prevents the spin state from escaping
from local minima. Therefore, obtaining the ground state
using SCA is more challenging than DA.

As an approach to help the spin state escape from local
minima, DA utilizes a dynamic offset Eoffset that continues to
increase as long as the spin state remains unchanged and is
reset to zero once the spin state changes. In the spin-update
procedure, Eoffset is updated as follows:

Fig. 2 Illustration of the Ising energy transition and the spin-flip number
transition when running G22 with q = λ/6. The Ising energy scale-out and
the spin-flip number equal the spin number.

Eoffset(s+ 1) =

{
Eoffset(s) + Einc if σ(s + 1) = σ(s)
0 otherwise

,

(6)

where Einc is a constant value that shows the increment of
Eoffset. Since the offset value varies across MC steps, Eq. (4)
is re-written as follows:

pDA
i = sigmoid

(
− h̃iσi

T (s)
+ Eoffset(s)

)
. (7)

Similarly, we can use this approach in SCA and obtain the
following flip probability from Eq. (5):

pSCA
i = sigmoid

(
− h̃iσi + q(s)

T (s)
+ Eoffset(s)

)
(8)

= sigmoid

(
− h̃iσi + q(s) − Eoffset(s)T (s)

T (s)

)
(9)

In Eq. (9), q(s), Eoffset(s), and T (s) are all functions of s so
that SCA can incorporate the dynamic offset into the pinning
parameter. As a result, Eq. (9) is equivalent to Eq. (5). SCA
can naturally escape the spin state from local minima by
appropriately controlling the pinning parameter q(s). The
next question is how we should control q(s) to maximize
the capability.

To devise a strategy for dynamic control of the pin-
ning parameter, we first observe the behavior of SCA by
using a constant q: large or small. In the case of a large
q (= λ/2), the spin configuration is easily trapped in local
minima because the pinning effect enforces spin configura-
tion to keep the current states in the latter half of annealing
(see Fig. 1). In the case of a small q (= λ/6), the spin config-
uration goes toward high Ising energy because the pinning
effect becomes weak and the number of flips excessively in-
creases (see Fig. 2). These results indicate that we should
use a smaller q if the number of flips is too few and a larger
q if it is too many. Now the question is how to judge, in
the annealing computation, that the number of flips is few
(many). However, it is not realistic to estimate, before or
during annealing, how many spins should flip. For this rea-
son, we focus only on individual spins and aim to control
their pinning parameters independently. We let the i-th spin
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have an exclusive pinning parameter qi. The idea of this
independent control leads us to a strategy for autonomous
control of each pinning parameter: decrease the value of qi

if the i-th spin does not flip in the previous MC step, and
vice versa.

3.2 Proposed Algorithm

In this section, we propose a novel fully-parallel anneal-
ing algorithm, APC-SCA, based on the strategy in Sect. 3.1.
This algorithm is constructed by integrating autonomous
and individual pinning parameter control into SCA. Algo-
rithm 2 shows the algorithm of APC-SCA. Note that the
difference between Algorithm 1 and this algorithm is high-
lighted in blue. Unlike the original SCA, we need to pre-
pare N pinning parameters {qi}1≤i≤N and initialize each of
them to λ/2 as shown in Lines 1–2. In each MC step, APC-
SCA updates the i-th spin in the same manner as SCA except
that the individual pinning parameter qi is used for calculat-
ing the flip probability pi in Line 6. Every MC step up-
dates qi according to whether the i-th spin flips or not. This
update is controlled by two additional parameters, rq < 1
and qlimit ≥ 0, which are constant values showing the de-
creasing rate and the lower limit, respectively. The value of
qi becomes λ/2 after the i-th spin flips (Line 10), while it
decreases to qi · rq (or remains at qlimit) if it does not flip
(Line 13).

Algorithm 2 APC-SCA: Autonomous Pinning effect Con-
trol SCA.
Input:

# of spins: N
initial spin states: σ(1) = {σi(1)}1≤i≤N

spin-spin interactions: J, external magnetic fields: h
# of Monte Carlo (MC) steps: S
pseudo temperature scheduling: T (s)
decreasing rate of pinning parameter: rq

lower limit of pinning parameter: qlimit
Output:

optimized spin states: argmin1≤s≤S+1 {H(σ(s))}
1: for i = 1 to N do
2: qi(1) = λ/2

3: for s = 1 to S do
4: for i = 1 to N do
5: Calculate local field

� h̃i =
∑

j Ji jσ j(s) + hi

6: Calculate flip probability
� pi = sigmoid(−(h̃iσi(s) + qi(s))/T (s))

7: Generate a random number rand = [0, 1)
8: if pi > rand then
9: τi = −σi(s)

10: qi(s + 1) = λ/2
11: else
12: τi = σi(s)
13: qi(s + 1) = max

{
qi(s) · rq, qlimit

}
14: for i = 1 to N do
15: σi(s + 1) = τi

3.3 Applicability of Autonomous Pinning Effect Control
to Other Annealing Algorithms

Our autonomous pinning effect control, proposed and intro-
duced into SCA in Sect. 3.2, can be applied to other parallel
annealing algorithms. To realize parallel annealing extended
from SA, introducing self-interaction like q in SCA is essen-
tial for converging the spin configuration to the ground state.
Momentum annealing (MA) [10] and restricted Boltzmann
machine (RBM) [20] are other parallel annealing algorithms
on an Ising model and have self-interactions denoted as wi

and wii, respectively. We expect these self-interactions to be
controlled autonomously using the same strategy applied to
SCA.

We here try to apply autonomous pinning effect con-
trol to wi in MA and propose APC-MA. Note that we will
evaluate APC-MA in Sect. 4.4. The main differences be-
tween MA and SCA are threefold: 1) temperature schedul-
ing, 2) pinning effect calculation, and 3) dropout.

1) Temperature scheduling: MA uses the logarithmic
temperature scheduling given by:

T (s) =
1

β0ln(1 + s)
, (10)

where β0 is the inverse of the initial temperature.
2) Pinning effect calculation: SCA originally applies a

uniform pinning parameter q to all spins. In contrast, MA
calculates the self-interaction wi for each spin using the fol-
lowing equation:

wi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
σ j∈σ
|Ji j| − 1

2

∑
σ j∈σA

|Ji j| (σi ∈ σA)

λ

2

, (11)

where λ is the maximum eigenvalue of −J, and σA is an ar-

bitrary subset of σ. We used σA =

{
σi

∣∣∣∣ λ ≥ ∑
σ j∈σ

∣∣∣Ji j

∣∣∣} in

this paper. MA increases the pinning effect by multiplying
the scaling factor c(s) to wi. The scaling factor c(s) varies
from a small value to 1 as follows:

c(s) = min

{
1,

√
s
S

}
. (12)

3) Dropout: MA utilizes a dropout technique that tem-
porarily removes some pinning effects with a certain proba-
bility. The dropout probability pdrop gradually decreases to
zero as annealing progresses and is calculated by:

pdrop(s) = max
{
0, 0.5 − s

2S

}
. (13)

In APC-MA, wi is autonomously controlled in the same
manner as APC-SCA using the self-interaction given by
Eq. (11) as its initial value. Moreover, the scaling factor and
the dropout are applied to the post-calculated wi.
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Table 1 List of Ising models used in this paper.

Name # of spins (N) # of interactions Graph topology

G22 2, 000 19, 990 Random graph with Ji j = −1 for all interactions
G30 2, 000 19, 990 Random graph with Ji j ∈ {+1,−1} for all interactions
G32 2, 000 4, 000 Toroidal graph with Ji j ∈ {+1,−1} for all interactions
G35 2, 000 11, 778 Planar graph with Ji j = −1 for all interactions

32-queen 1, 024 52, 576
Two-dimensional graph where negative interactions are given to all pairs
of spins that align in the horizontal, vertical, and diagonal directions

burma14 196 5, 096 Two-dimensional lattice graph with Ji j ∈ [−630.5,−4.75]
ulysses16 256 7, 680 Two-dimensional lattice graph with Ji j ∈ [−1394.5,−13]
ulysses22 484 20, 328 Two-dimensional lattice graph with Ji j ∈ [−1394.5,−3.5]

Table 2 Common parameter settings.

Description (Notation) Max-cut 32-queen TSP

# of MC steps (S) 1, 000 1, 000 10, 000

# of trials (M) 128 128 128

Initial temperature (Tinit) 10 10 0.2N min
Ji j�0
|Ji j |

Final temperature (Tfinal) 0.1 0.1 0.1max
i, j
|Ji j |

4. Experimental Results

4.1 Environments and Settings

We implemented APC-SCA in CUDA C++ and ran it on
a GPU, NVIDIA GeForce RTX 2080 Ti. We utilized the
method [21] as a baseline implementation of SCA. This im-
plementation uses the single precision floating point number
(i.e., float) for storing spin-spin interactions, external mag-
netic fields, and local fields. In the experiments, we assumed
four max-cut problems (G22, G30, G32, and G35) [19], the
32-queen problem (32-queen), and three traveling salesman
problems (burma14, ulysses16, and ulysses22) [22]. These
problems are briefly described in Table 1. Unless otherwise
noted, we assumed the parameter settings in Table 2 to solve
each problem.

For comparison, we also solved the eight problems us-
ing the original SCA approach, i.e., Algorithm 1, that de-
termines the pinning parameter scheduling q(s) in advance.
Here we assumed that q(s) is an exponential function, which
is represented by:

q(s) = qinit · rq
s−1, rq =

(
qfinal

qinit

) 1
S−1

, (14)

where qinit and qfinal are the initial and final values of q,
which denotes q(1) and q(S), respectively. To optimize q(s)
for individual problems, we solved the eight problems while
varying qinit and qfinal independently in the range (0, λ/2] as
follows:

qinit ∈
{
λ

64
n
}

1≤n≤32
, qfinal ∈

{
λ

64
n
}

1≤n≤32
. (15)

We here conducted 128 rounds of annealing on each
parameter set, (qinit, qfinal), and then recorded the average
Ising energy of 128 optimized solutions. For each problem,

Table 3 Optimized pairs of (qinit, qfinal) for SCA. This pair is fine-tuned
for each problem through a grid search on Eqs. (14) and (15). The obtained
energy is the average energy of 128 rounds by using SCA with the opti-
mized (qinit, qfinal) pair, while the optimal energy is the best-known energy
of each benchmark, i.e., the energy of the ground state.

benchmark qinit qfinal Obtained energy Optimal energy

G22
31
64
λ

1
64
λ −6, 545.5 −6, 728.0

G30
2
64
λ

2
64
λ −6, 638.9 −6, 826.0

G32
26
64
λ

3
64
λ −2, 726.3 −2, 798.0

G35
27
64
λ

1
64
λ −3, 430.1 −3, 596.0

32-queen
4
64
λ

1
64
λ 28.7 0.0

burma14
22
64
λ

1
64
λ 5, 652.1 3, 323.0

ulysses16
5
64
λ

1
64
λ 11, 333.2 6, 859.0

ulysses22
32
64
λ

1
64
λ 13, 773.7 7, 013.0

we judge that a parameter set that gives the lowest average
Ising energy is optimized. We fine-tuned the parameters for
each problem through a 32×32 grid search on Eqs. (14) and
(15), which resulted in the optimized parameters shown in
Table 3. We call this approach “fine-tuned SCA” in the fol-
lowing.

4.2 Max-Cut Problems

We evaluated APC-SCA with four max-cut problems while
varying the decreasing rate of the pinning parameter (rq)
from 0.0 to 1.0. Figures 3 (a) to 3 (d) show the average Ising
energy used as solution quality. We assumed the lower limit
of pinning parameter qlimit = 0. We use a percentage (x%)
notation for evaluation purposes. It indicates that the anneal-
ing process results in x% closer to the optimal solution from
the baseline. We put 0% at the expected Ising energy of ran-
dom spin configuration. These figures show that APC-SCA
can obtain a better solution than the fine-tuned SCA. Al-
though the trend varies from problem to problem, the range
from 0.4 to 0.9 looks suitable for obtaining a good solution.

To measure the extent of implementation overhead, we
solved G22 by APC-SCA with rq = 0.45 and qlimit = 0 while
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Fig. 3 The average Ising energy when solving max-cut problems with
APC-SCA while varying rq from 0.0 to 1.0. The blue and green lines show
the APC-SCA with 1, 000 and 5, 000 MC steps, respectively. The orange
and red horizontal lines show the fine-tuned SCA with 1, 000 and 5, 000
MC steps, respectively. These results indicate that APC-SCA can obtain a
better solution than the fine-tuned SCA.

Table 4 Parameter settings for G22 to evaluate the relationship between
execution time and Ising energy.

SA Fine-tuned SCA APC-SCA

# of MC steps (S)

10, 240 400 400
20, 480 800 800
40, 960 1, 600 1, 600
81, 920 3, 200 3, 200

163, 840 6, 400 6, 400
327, 680 12, 800 12, 800
655, 360 25, 600 25, 600

1, 310, 720 51, 200 51, 200
2, 621, 440 102, 400 102, 400
5, 242, 880 204, 800 204, 800

10, 485, 760 409, 600 409, 600

varying the MC steps listed in Table 4. Figure 4 shows the
result of the relationship between execution time and solu-
tion quality. The execution time in this figure is calculated
by dividing the overall annealing time by the number of tri-
als M = 128. For comparison, we solved the same prob-
lem by SA and fine-tuned SCA assuming the settings in Ta-
ble 4. Note that we implemented the algorithm of SA using
the work [21] as a reference and ran it on the same GPU as
APC-SCA. Figure 4 demonstrates that APC-SCA is supe-
rior to SA and fine-tuned SCA. By comparing the execution
time between fine-tuned SCA and APC-SCA, we find that
GPU can realize our autonomous pinning parameter control
with little overhead. That is because each qi is updated in-
dependently, and hence the update procedure (i.e., Lines 10
and 13 in Algorithm 2) is easily parallelized.

4.3 32-Queen Problem

The 32-queen problem is used in the experiments as a typ-

Fig. 4 Comparison of average Ising energies when solving G22 while
varying the number of MC steps. APC-SCA can obtain better solutions in
a short time compared to SA and fine-tuned SCA.

Fig. 5 Average Ising energies (upper) and CS rates (lower) when solving
32-queen by APC-SCA while varying qlimit from 0 to λ/128. By using a
small positive value as qlimit, the solution quality can be improved signifi-
cantly.

ical constraint satisfaction problem. Figure 5 shows the re-
sult when solving 32-queen by APC-SCA with rq = 0.9
while varing qlimit from 0 to λ/128. The upper and lower
figures show the average Ising energies and the constraint
satisfaction (CS) rates, respectively. As metrics of the so-
lution quality, the CS rate indicates the number of optimal
(i.e., H(σ) = 0) solutions obtained by solving the prob-
lem M = 128 times. Figure 5 indicates that the solution
quality is improved by using small qlimit > 0. Practically,
qlimit = λ/512 achieves a high CS rate.

Figure 6 shows the relationship between the execution
time and the CS rate when solving 32-queen by APC-SCA
with rq = 0.9 and qlimit = 0 or λ/512. For comparison, we
also solved the same problem by SA and fine-tuned SCA.
Here we varied the number of MC steps as listed in Table 4.
Comparing the two results by APC-SCA, qlimit = λ/512 can
improve the solution quality.
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Fig. 6 Comparison of CS rates when solving 32-queen while varying
the number of MC steps. APC-SCA with qlimit = λ/512 can obtain high-
quality solutions in a shorter time than SA and fine-tuned SCA.

Fig. 7 The average tour distance when solving three TSPs with APC-
SCA while varying rq from 0.0 to 1.0. The blue and green lines show the
APC-SCA with 10,000 and 50,000 MC steps, respectively. The orange
and red lines show the fine-tuned SCA with 10,000 and 50,000 MC steps,
respectively.

4.4 Traveling Salesman Problems (TSPs)

TSP is the most difficult problem in the three problem
classes used in this study because large energy walls are
generated between two local minima by the constraints of
this problem. Although there is a viable approach that de-
creases the importance of the constraints when converting
the problem into an Ising model, we use the same Ising
models as IPA [14] for comparison. As listed in Table 1,
we assumed three TSPs from TSPLIB [22]. Figure 7 shows
the average tour distance when solving them by APC-SCA
and fine-tuned SCA with 10,000 and 50,000 MC steps. In
APC-SCA, we varied rq from 0.0 to 1.0. We use a percent-
age (x%) notation for evaluation purposes. The 100% and
200% grid lines show the minimum and double minimum
tour distances, respectively. Figure 7 indicates that rq ≈ 0.8
is appropriate for TSPs. We confirmed that tour distances
can be 31.5% to 52.1% closer at 10,000 MC steps and 27.6%
to 56.3% closer at 50,000 MC steps to the optimal distance
compared with fine-tuned SCA.

Table 5 compares APC-SCA, APC-MA, Fine-tuned
SCA, IPA [14], and MA. We cited the IPA’s result from [14]
and tried to solve 100 times for each problem with these
algorithms. As for APC-SCA and APC-MA, we show the
results of rq = 0.8. We also use Eq. (10) as the temperature
scheduling in MA and APC-MA, where β0 = 9.0 × 10−4 for
burma14, β0 = 8.0×10−4 for ulysses16, and β0 = 5.0×10−4

for ulysses22. Comparing APC-SCA with fine-tuned SCA,
APC-SCA can obtain superior solutions to fine-tuned SCA
in all problems in terms of average, minimum, and max-
imum metrics. APC-SCA is superior to IPA in terms of
minimum metrics, and is not significantly inferior to IPA
in terms of average and maximum metrics. Since anneal-
ing computation is generally performed in multiple trials,
obtaining minimum energy solutions can be an advantage.

We also compare APC-MA to that without the dropout.
In APC-MA, after the dropout occurs, the spin will flip with
a high probability, and the pinning effect will be reset to the
initial value. This means that the dropout disturbs the effect
of autonomous control. For this reason, APC-MA without
the dropout outperforms APC-MA in all metrics. As a re-
sult, APC-MA (without the dropout) can be up to 26.9%
closer at 10,000 MC steps and up to 30.1% closer at 50,000
MC steps to the optimal tour distance than MA.

Comparing APC-SCA with APC-MA, the latter ob-
tained better solutions on average. This may be attributed to
temperature scheduling, the main difference between APC-
SCA and APC-MA. Unlike exponential scheduling, loga-
rithmic scheduling maintains a constant temperature for a
long time. Therefore, logarithmic scheduling achieves more
efficient searches when an appropriate temperature is set
than exponential annealing scheduling, which rapidly low-
ers the temperature. However, in ulysses22 at 10,000 MC
steps, APC-MA decreased by 18.9% in accuracy compared
to MA. This may be attributed to incomplete temperature
cooling, meaning that more MC steps (e.g., 50,000 MC
steps) are required for the convergence. On the other hand,
incorporating IPA-like temperature control into APC-SCA
or APC-MA is also an interesting direction in the future.
However, it is not easy to realize because both parameter
control methods depend on the same branch condition, i.e.,
whether spin-flips occur.

Finally, we observe the escape from local minima in
ulysses16 and illustrate the spin transition during the anneal-
ing process. Figures 8 (a) and 8 (b) illustrate the spin tran-
sition in the final stage of annealing with fine-tuned SCA
and APC-SCA, respectively. While the fine-tuned SCA is
stuck in a local minimum without being able to get over the
energy walls, APC-SCA can do and transition to a lower en-
ergy state. From these results, we confirm that APC-SCA
achieves escape from local minima.

5. Conclusion

We have proposed APC-SCA, an annealing algorithm that
enables escape from local minima by utilizing autonomous
pinning parameter control in SCA. APC-SCA realizes the
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Table 5 The performance of APC-SCA, APC-MA, fine-tuned SCA, IPA, and MA for solving
burma14, ulysses16, and ulysses22. We cite the IPA’s result from [14] and summarize the average,
maximum, and minimum tour distance. All methods tried to solve 100 times for each problem. Ta-
bles 5 (a) and 5 (b) show the results of 10,000 and 50,000 MC steps, respectively.

(a) 10,000 MC steps

Benchmark Metrics APC-SCA APC-MA APC-MA w/o dropout Fine-tuned SCA IPA [14] MA

Ave. 4138.3 4407.1 4075.4 5878.1 4241.6 4422.0
Max. 4702.0 4943.0 4409.0 8091.0 4703.0 4916.0
Min. 3514.0 3673.0 3516.0 4331.0 3839.0 3444.0

burma14

Std. 205.6 251.0 182.7 715.5 185.1 263.1

Ave. 9419.5 10294.4 9209.0 11403.9 8804.2 11055.7
Max. 10988.0 12474.0 10922.0 13611.0 9869.0 13554.0
Min. 7768.0 8024.0 7659.0 8676.0 7816.0 8485.0

ulysses16

Std. 527.7 899.0 676.3 1009.2 407.9 1126.8

Ave. 11488.6 17337.4 13626.0 14053.1 11170.0 12297.2
Max. 14309.0 23035.0 17807.0 17415.0 12301.0 14894.0
Min. 9144.0 12055.0 10127.0 10061.0 9527.0 10545.0

ulysses22

Std. 942.2 2580.9 1453.9 1466.0 527.3 861.0

(b) 50,000 MC steps

Benchmark Metrics APC-SCA APC-MA APC-MA w/o dropout Fine-tuned SCA IPA [14] MA

Ave. 3902.4 4042.9 3821.9 5777.6 4018.5 4235.7
Max. 4271.0 4462.0 4133.0 7613.0 4423.0 4846.0
Min. 3459.0 3667.0 3439.0 3897.0 3580.0 3745.0

burma14

Std. 155.5 183.6 138.6 667.7 159.9 237.1

Ave. 8589.0 10197.5 9086.4 10456.7 8387.6 11148.0
Max. 9529.0 12668.0 11806.0 12528.0 9218.0 13457.0
Min. 7356.0 8359.0 7068.0 8779.0 7554.0 8810.0

ulysses16

Std. 424.4 743.8 667.4 786.7 303.3 1045.1

Ave. 10630.8 12296.9 10756.0 14374.9 10389.0 11664.6
Max. 11808.0 14645.0 12465.0 19199.0 11167.0 13672.0
Min. 8817.0 9405.0 8557.0 10368.0 9163.0 9729.0

ulysses22

Std. 636.3 978.8 668.1 1421.0 433.7 806.6

Fig. 8 Illustrations of the Ising energy and spin state transitions during
the annealing process with ulysses16. The spin state (‘+1’ in white, ‘−1’ in
black) at one step is arranged vertically, and the horizontal axis represents
the number of MC steps.

autonomous control by updating an individual pinning pa-
rameter qi based only on the flip information of the i-th
spin. Thanks to this independent qi update, we can imple-

ment APC-SCA on a GPU in almost the same manner as
SCA did. Through the experiments on max-cut, 32-queen,
and TSP, we confirmed that APC-SCA could escape from
local minima. For a max-cut problem and a 32-queen prob-
lem, APC-SCA could obtain equivalent quality solutions in
a shorter time than SA and fine-tuned SCA. For TSP, we
confirm that tour distances are 31.5% to 52.1% closer at
10,000 MC steps and 27.6% to 56.3% closer at 50,000 MC
steps to the optimal distance than fine-tuned SCA.

As a future direction, we envision improved APC-SCA
in combination with dynamic temperature control like IPA.
Moreover, it may also be an exciting research direction to
design a parallel annealing hardware architecture that adopts
APC-SCA as the operating principle.

Parallel spin-update algorithms like SCA are powerful
annealing methods for solving COPs efficiently. However,
some problem classes make the annealing machine stuck on
local minima. Although we believe that the advantage of
annealing computation is that it can solve COPs on a sin-
gle platform, it is not good at solving problems, like TSP,
that are stuck in local minima. The experimental results in
this paper indicate that parallel annealing can escape from
local minima by controlling the parameters, and uniformly
solving various COPs becomes realistic. By expanding fur-
ther our knowledge of the graph topology and the problem
scale, we hope to establish the annealing machine as a uni-
fied solver for COPs.
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