
1012
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

PAPER Special Section on Formal Approach

Generating Test Cases for Invariant Properties from Proof Scores in
the OTS/CafeOBJ Method∗

Masaki NAKAMURA†a), Member and Takahiro SEINO††, Nonmember

SUMMARY In the OTS/CafeOBJ method, software specifications are
described in CafeOBJ executable formal specification language, and ver-
ification is done by giving scripts to the CafeOBJ system. The script is
called a proof score. In this study, we propose a test case generator from
an OTS/CafeOBJ specification together with a proof score. Our test case
generator gives test cases by analyzing the proof score. The test cases are
used to test whether an implementation satisfies the specification and the
property verified by the proof score. Since a proof score involves impor-
tant information for verifying a property, the generated test cases are also
expected to be suitable to test the property.
key words: formal specification, proof score, software testing, OTS,
CafeOBJ

1. Introduction

Nowadays, since software plays an important role in our so-
ciety, people requires software quality assurance. To obtain
reliable software, formal methods are useful at the require-
ment and design phases. On the other hand, software testing
plays important role at the implementation and debugging
phases. The usefulness of software testing depends on the
quality of test cases. How to design test cases which are
exhaustive and efficient is important but not so easy task.

The OTS/CafeOBJ (Observational Transition Systems
in CafeOBJ) method is a formal method. In this method, it is
verified that a specification satisfies a given desired property
by describing a proof score. There are many successful case
studies of formal verification with proof scores [6], [8]–[10].
On the other hand, there is no established method to obtain
test cases which test whether an implementation satisfies the
property verified by a proof score.

A proof score consists of proof passages. Each proof
passage can be regarded as a test case in an abstract level of
the target software. If we obtain a complete proof score for
some property, the set of proof passages is guaranteed to be
exhaustive and to be enough detailed for the verification to
succeed. By generating test cases from a proof score, it is
expected that (1) exhaustive test cases can be obtained sys-
tematically and semi-automatically, and (2) the quality of

Manuscript received July 22, 2008.
Manuscript revised November 19, 2008.
†The author is with School of Electrical and Computer Engi-

neering, Kanazawa University, Kanazawa-shi, 920–1192 Japan.
††The author is with Center for Service Research, National In-

stitute of Advanced Industrial Science and Technology (AIST),
Tokyo, 135–0064 Japan.

∗A preliminary version of this article appeared in [15].
a) E-mail: masaki-n@is.t.kanazawa-u.ac.jp

DOI: 10.1587/transinf.E92.D.1012

test cases can be increased. The test case generator we pro-
pose in this paper takes an OTS/CafeOBJ specification and
its proof score, and generates (a) Java skeleton code and (b)
test cases. The generated test cases are used for testing an
implementation which is obtained by instantiating the gen-
erated Java skeleton code. To handle generated test cases
effectively and efficiently, we use JUnit testing framework∗∗
for the Java programming language∗∗∗ (Fig. 1).

In the rest of this paper, we first introduce the
OTS/CafeOBJ method with an example of a specification
of an automated teller machine of a bank and its proof
score. In Sect. 3, we propose a test case generator from an
OTS/CafeOBJ specification and its proof score. We show
how to use generated test cases in Sect. 4. In Sect. 5, we
give theorems on the completeness and the exhaustiveness
of our test case generator. In Sect. 6, we give some improve-
ment of our proposed generator, and conclude with some of
the future work in Sect. 7.

2. Preliminaries

We assume the reader is familiar with the Java programming
language. In this section, we introduce OTS/CafeOBJ spec-
ifications and proof scores [3], [8], [9], which are inputs of
our test case generator.

2.1 Data Specification

A CafeOBJ specification consists of modules. The follow-
ing is a CafeOBJ module whose name is USER.

mod* USER {

[User]

op _=_ : User User -> Bool { comm }

var U : User

eq (U = U) = true .

}

Module USER has a declaration of a sort User between the
square brackets [], and a binary operator = on User after
the keyword op. In an operator declaration, the sequence
of sorts at the left-hand side of -> (e.g. User User for =)
is called the arity, and the sort at the right-hand side (e.g.
Bool) is called the co-arity. Underlines () are positions of
arguments, i.e., u = u′ is a term of Bool for terms u, u′ of

∗∗http://www.junit.org/
∗∗∗http://java.sun.com/

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

NAKAMURA and SEINO: GENERATING TEST CASES FOR INVARIANT PROPERTIES FROM PROOF SCORES
1013

Fig. 1 Test case generator.

User. comm at the end of an operator declaration means that
the operator is commutative. var is a keyword of variable
declaration. U is a variable of User, which is used in the
following equation declaration. Equations are declared with
eq. The equation in USER denotes that Term u = u is equiv-
alent to true for any u of User. A set of sorts and operators
is called a signature, and equations is called axioms.

A CafeOBJ specification denotes an algebra which has
carrier sets and functions which correspond to the sorts and
the operators respectively and which satisfies the equations.
USER denotes an algebra which has a carrier set (User)
and a commutative and reflexive function (predicate) (=).
CafeOBJ contains built-in modules for standard data types,
like integers, strings, etc. For example, INT is a built-in
module together with constants . . ., -2, -1, 0, 1, 2, . . ., and
operators + , - , etc.

2.2 System Specification

An OTS is a state machine whose states are identified
with its observations. A CafeOBJ specification which de-
notes an OTS is called an OTS/CafeOBJ specification. An
OTS/CafeOBJ specification consists of data specifications,
like USER and INT, and a system specification. We show
ATM automated teller machine of a bank, an example of sys-
tem specifications. First, the signature part of ATM is given
as follows:

mod* ATM {

pr(INT + USER)

[Atm]

op init : -> Atm

bop balance : User Atm -> Int

bop deposit : User Int Atm -> Atm

bop withdraw : User Int Atm -> Atm

op c-deposit : User Int Atm -> Bool

op c-withdraw : User Int Atm -> Bool

Module ATM imports INT and USER in the protect mode

(with the keyword pr(. . .)). Roughly speaking, a protec-
tively imported module is used by the importing module
with no change. A special sort, called a hidden sort, is de-
clared enclosing *[and]*. Non hidden sorts are called
visible. A hidden sort is used to denote the state space of
a target system. An initial state init is declared as a con-
stant, an operator whose arity is empty. Special operators,
called behavioral operators, are declared after the keyword
bop. A behavioral operator should have at most one hidden
sort in its arity. When its co-arity is hidden, the behavioral
operator is called a transition. When its co-arity is visible,
it is called an observation. In ATM, balance is an observa-
tion, which observes the balance of a user. deposit is a
transition, which deposits money into a user’s account. The
other transition withdraw withdraws money from a user’s
account. Operators c-deposit and c-withdraw are used
to define pre-conditions of deposit and withdraw respec-
tively. Next the axioms part of ATM is given as follows:

vars U U’ : User

var I : Int

var A : Atm

eq c-deposit(U,I,A) = I >= 0 .

eq c-withdraw(U,I,A) = balance(U,A) >= I

and I >= 0 .

eq balance(U,init) = 0 .

ceq balance(U, deposit(U’,I, A)) =

(if U = U’ then I + balance(U,A)

else balance(U,A) fi)

if c-deposit(U’,I,A) .

ceq deposit(U’,I,A) = A

if not (c-deposit(U’,I,A)) .

ceq balance(U,withdraw(U’,I,A)) =

(if U = U’ then balance(U,A) - I

else balance(U,A) fi)

if c-withdraw(U’,I,A) .

ceq withdraw(U’,I,A) = A

if not(c-withdraw(U’,I,A)) .

}

1014
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

The first two equations define pre-conditions of deposit
and withdraw. An amount of deposit should not be a nega-
tive integer. An amount of withdrawal should be at least zero
and at most the balance of the user who is withdrawing. The
third equation defines the initial balances of all users as zero.
The keyword ceq is used for declaring a conditional equa-
tion. The conditional equation ceq e if c means that the
equation e holds whenever the condition c holds. In this pa-
per, both conditional and unconditional equations are simply
called equations. The fourth equation defines the balance of
each user after applying deposit to a state A which satis-
fies the pre-condition of deposit. Only the balance of the
user who makes the deposit is increased. The fifth equa-
tion in ATM means an application of deposit has no effect
when the pre-condition does not hold. The sixth and seventh
equations define the behavior of withdraw in a similar way.
Note that we adopt the syntactic definition of OTS/CafeOBJ
specifications proposed in [7].

2.3 Verification with Proof Score

One of the important purposes of formal methods is to verify
a specification satisfies requirements. The executable speci-
fication language CafeOBJ supports the reduction command
red which supports automatic equational reasoning. A
proof passage is a set of declarations of constants, equations
and reductions, which correspond to arbitrary elements, an-
tecedents and a consequent respectively. The following is
an example of proof passages:

open ATM .

ops u1 u2 : -> User .

ops a1 a2 : -> Atm .

eq (u1 = u2) = false .

eq a1 = deposit(u2,200,init) .

eq a2 = deposit(u1,100,a1) .

red balance(u2,a2) .

close

The first line is an instruction of opening Module ATM. While
opening a module, we may declare operators, equations and
reductions on the module. ops is a keyword for declar-
ing multiple operators whose arities and co-arities are same.
The first equation means that the users u1 and u2 are differ-
ent. The second equation means that a1 is the result state of
applying deposit with 200 by User u2 to the initial state.
The third equation means that a2 is the state after deposit
with 100 by u1 to a1. The reduction command is an instruc-
tion of reducing balance(u2,a2), the balance of u2 at a2.
For the above proof passage, the CafeOBJ system returns
200. Thus, it guarantees the following sentence:

∀u1, u2 ∈ User.∀a1, a2 ∈ Atm.
((u1 = u2)=false)
∧(a1 =deposit(u2,200,init))
∧(a2 =deposit(u1,100,a1))
⇒
balance(u2,a2) = 200

For a given property, the set of all proof passages which
guarantee the specification to satisfy the given property is
called a proof score. In this paper we focus on a proof
score for invariant properties. A predicate inv on the set
of states is invariant if and only if inv holds for any state
which can be obtained by applying transitions to the initial
state, called a reachable state. The following is a prelim-
inary part of a proof score for verifying that the predicate
∀u.balance(u,s) >= 0 is invariant for ATM.

mod INV {

pr(ATM)

op inv : User Atm -> Bool

eq inv(U:User,A:Atm) = balance(U,A) >= 0 .

ops s s’ : -> Atm

op istep : User -> Bool

eq istep (U:User) =

inv(U, s) implies inv(U, s’) .

}

Module INV specifies a predicate inv, which will be proved
invariant, states s, s’, which are used as a current state and
a successor state, and a predicate istep, which is used to
prove that if a current state satisfies inv, so does a succes-
sor state. In the following, we prove that inv satisfies the
initial state (Base Step), and istep holds when s′ = τ(s)
for any transition τ, i.e. τ preserves inv (Induction Step).
The following is a proof passage for the property that the
initial state init satisfies inv (for any user u1):

open INV

op u1 : -> User .

red inv(u1, init) .

close

The reduction command returns true, whose trace is
inv(u1,init) =⇒ balance(u1,init) >= 0 =⇒ 0 >=
0 =⇒ true. The following is one of the proof passages for
the property that deposit preserves inv:

open INV

ops u1 u2 : -> User .

op i1 : -> Int .

eq u2 = u1 .

eq i1 >= 0 = false .

eq s’ = deposit(u2, i1, s) .

red istep(u1) .

close

Arbitrary users u1 and u2, and an arbitrary integer i1 are
declared such that u1 and u2 are a same user and i1 is neg-
ative. The last equation means that s’ is obtained by ap-
plying deposit(u2,i1,) to s. The reduction command
returns true, and it is guaranteed that deposit preserves
inv under the above conditions: u1 = u2 and i1 >= 0 =
false. To complete a proof score, proof passages should be
prepared for all cases, for example, u1 and u2 are different,
i1 is positive, and for all transitions. When CafeOBJ re-
turns true for the all cases, it is guaranteed that any user’s
balance should not be negative for all reachable state. We

NAKAMURA and SEINO: GENERATING TEST CASES FOR INVARIANT PROPERTIES FROM PROOF SCORES
1015

have verified the property with a proof score consisting of
eleven proof passages (with some lemma). See [8], [9] for
more details of proof scores in OTS/CafeOBJ method. In
this paper, for each proof passage, we assume all equations
except for the last one eq s’ = deposit(u2, i1, s) do
not have any transition operators which is a natural assump-
tion, and most existing proof scores of the OTS/CafeOBJ
method satisfy this as far as we know.

2.4 JUnit Testing Framework

JUnit automated unit testing framework has been devel-
oped by Kent Beck and Erich Gamma, and is one of the
most popular supporting tools for Test Driven Develop-
ment (TDD) for Java programs [1]. Once making a set
of test cases, we can run all the test cases automatically
and repeatedly. Classes for testing are inherited from
junit.framework.TestCase provided by JUnit. Inside
the test class inherited from TestCase, a test code for each
item (method or case) is written in a method whose name
begins with test, e.g. testInv deposit 1.

3. Generating Java Codes

In this section, we propose a rule generating a skeleton code
and test cases for an implementation of an OTS/CafeOBJ
specification from the specification and a proof score. Ta-
ble 1 is a correspondence between an input OTS/CafeOBJ
specification with a proof score and the output Java codes.
A sort declared in data specifications corresponds to a class,
called a data class. A non-behavioral operator corresponds
to a class method (a static method) of the special class Ops.
A class generated from a system specification (a hidden sort)
is called a system class. Observations, transitions and an
initial state correspond to instance variables (attributes), in-
stance methods and a constructor respectively. A class for
testing is generated from a proof score. Each proof passage
corresponds to an instance method for testing.

Hereafter, we give a definition of our test case genera-
tor. We use the notation “. . .” as an omission mark. Some
codes which can be easily complemented are there. The no-
tation � stands for the empty, i.e., no codes are there. �
should be filled by an implementer after generating skeleton
codes. We assume any input CafeOBJ code is finite, that is,

Table 1 OTS/CafeOBJ and Java.

OTS/CafeOBJ specification Java code
Data specification
Sort Data class
Non-behavioral operator Class method (Ops)
System specification
Hidden sort System class
Observation Instance variable
Transition Instance method
Initial state Constructor
Non-behavioral operator Class method (Ops)
Proof score
Proof passage Instance method

the sizes of data and system specifications and proof scores
are finite. Thus, the numbers of sorts, operators, equations,
proof passages and so on are also finite.

3.1 Data Class

Each sort in data specifications are translated into an empty
class with the same name†.

Definition 3.1: Let S be a visible sort. The generated data
class S is defined as class S {�}.
Example 3.2: We show the data classes generated from
visible sorts Int and User:

class Int {}

class User {}

Especially for the CafeOBJ built-in module BOOL we let
it correspond to the Java primitive data type boolean. A
data class (or its object) is expected to be immutable, i.e.,
the state cannot be modified after the object is created, like
java.lang.String class.

Class Ops is a class containing class methods gener-
ated from non-behavioral operators, which is regarded as a
bridge between CafeOBJ operators and Java data classes.

Definition 3.3: Let fi : S i1 S i2 · · · -> S i (i = 1, 2, . . .)
be the set of all non-behavioral operators declared in the
OTS/CafeOBJ specification. The generated operator class
Ops is defined as follows:

class Ops{
static S 1 f1(S 11 s11, S 12 s12, . . .){�}
static S 2 f2(S 21 s21, S 22 s22, . . .){�}
· · ·

}

We assume that the input OTS/CafeOBJ specification in-
cludes operators (predicates) = : S S -> Bool for
each visible sort S . Thus, Ops includes class methods
boolean equal(S s1, S s2)

††.

Example 3.4: We show the operator class generated from
ATM†††:

class Ops {

static boolean equal(User u1, User u2){ }

static boolean equal(Int i1, Int i2){ }

static boolean ge(Int i1, Int i2){ }

†CafeOBJ can treat an order relation on sorts, however, for
simplicity, we assume that there are no ordered sort.
††Since the syntax of Java does not allow = as a method name,

we let equal be the name of the generated method. For other such
cases, we also rename them similarly.
†††A built-in module may have a lot of operators. Some of them

are not used in the input data and system specifications, e.g. not
only + , - and >= but also * , divides and < are included
in the built-in INT. For built-in modules, we do not generate meth-
ods for such unused operators.

1016
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

static Int zero(){ }

static Int plus(Int i1, Int i2){ }

static Int minus(Int i1, Int i2){ }

static boolean c_deposit(User u, Int i,

Atm a){}

static boolean c_withdraw(User u, Int i,

Atm a){}

static Int if_then_else_fi(boolean b,

Int o1, Int o2){}

}

3.2 System Class

To define a generated system class, we give first an interface
IState for the attribute of the system class. The interface
IState consists of methods generated from observations.

Definition 3.5: Let bop oi : H
−→
Voi -> Voi (i = 1, 2, . . .)

be the set of all observations†. An interface IState is de-
fined as follows:

interface IState{
public Vo1 o1(Vo11 vo11 ,Vo12 vo12 , . . .);
public Vo2 o2(Vo21 vo21 ,Vo22 vo22 , . . .);
· · ·

}

Next, we give a system class. The system class consists of
an attribute whose type is IState, a constructor and meth-
ods generated from observations and transitions. The meth-
ods generated from transitions are called transition methods.

Definition 3.6: Let bop τi : H
−→
Vτi -> H (i = 1, 2, . . .)

be the set of all transitions. A system class H is defined as
follows:

public class H{
private IState s;
public H(){�}
public Vo1 o1(Vo11 vo11 , . . .){ return s.o1(−→vo1) }
public Vo2 o2(Vo21 vo21 , . . .){ return s.o2(−→vo2) }
· · ·
public void τ1(Vτ11 vτ11 ,Vτ12 vτ12 , . . .){�}
public void τ2(Vτ21 vτ21 ,Vτ22 vτ22 , . . .){�}
· · ·

}

Example 3.7: We show the system class generated from
ATM:

interface IState {

Int balance(User u, Atm a);

}

public class Atm {

private IState s;

public Atm() { }

public Int balance(User u){

return s.balance(u)

}

public void deposit(User u, Int i){ }

public void withdraw(User u, Int i){ }

}

3.3 Test Class

We give a translating rule from CafeOBJ terms to Java
codes.

Definition 3.8: Let t be a term constructed from operators
in an input OTS/CafeOBJ specification except transition op-
erators. The translated Java code t′ is recursively defined as
follows:

t′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ops. f(
−→
t′) if t = f (−→t),

f is a non-behavioral operator

s.o(
−→
t′) if t = o(−→t , s),

o is an observation operator
s is of the hidden sort

t o.w.

Here, s in t′ is the instance variable of the system class H
used for testing by a test class HTest.

For example, Terms t1 = i1 >= 0 = true and t2 =
balance(u, s) >= 0 are translated into Java codes t′1 =
ge(i1, zero()) == true and t′2 =ge(s.balance(u),
zero()). Especially for constructors of Bool, they are
translated into the corresponding constructors on the Java
boolean type, e.g., Term t1 and t2 is translated into Java code
t′1 & t′2.

Definition 3.9: A test class HTest is defined as follows:

import junit.framework.TestCase;

public class HTest extends TestCase{
TestAxiom
TestInv

}
TestAxiom consists of test methods testAxiom init oi and
testAxiom τi o j for all observations and transitions. For

the equations eq oi(
−→
Xi,init) = riniti of the initial state,

test methods testAxiom init oi, which test new H()
against the axiom, are defined as follows:

public void testAxiom init oi(){
// begin setup

Voi1 Xi1 = �;
Voi2 Xi2 = �; · · ·
Atm s = new H();
// end setup

Voi right = rinit′i;
assertTrue("Axiom init oi:axiom",

Ops.equal(s.oi(
−→
Xi), right));

}
†−→A is an abbreviation of a sequence A1, . . . , An.

NAKAMURA and SEINO: GENERATING TEST CASES FOR INVARIANT PROPERTIES FROM PROOF SCORES
1017

If we write assertTrue(str,cond) and cond is false, i.e.,
the assertion fails, then we receive an assertion failed error
message together with str.

For ceq o j(τi(S,
−→
Yi),
−→
Xj) = ro jτi if c-τi(S,

−→
Yi) of the

transitions τi, test methods testAxiom τi o j, which test the
transition method τi against the axiom, are defined as fol-
lows:

public void testAxiom τi o j(){
// begin setup

Voj1 Xj1 = �;
Voj2 Xj2 = �; · · ·
Vτi1 Yi1 = �;
Vτi2 Yi2 = �; · · ·
Atm s = �
// end setup

boolean pre = crτ′i;
assertTrue("Axiom τi o j:setup", pre);

Voj right = ro jτ
′
i;

s.τi(
−→
Yi);

assertTrue("Axiom o j τi:axiom",

Ops.equal(s.o j(
−→
Xj), right));

}
TestInv consists of test methods testInv init i and

testInv τi j for all proof passages. Let eq inv(
−→
X , S :

H) = rinv(
−→
X , S) be an equation defining the invariant

property in INV. Let eq liniti j = riniti j (j = 1, 2, . . .) be the
set of all equations except the last eq s’ = · · · included
in the i-th proof passage for the initial state. Test methods
testInv init i (i = 1, 2, . . .), which test new H() against
inv, are defined as follows:

public void testInv init i(){
// begin setup

�
V1 x1 = �;
V2 x2 = �;
...

Atm s = new H();
// end setup

boolean pre = equal(linit′i1, rinit′i1) &
equal(linit′i2, rinit′i2) & · · ·

assertTrue("Initi:setup", pre);
boolean inv = rinv(−→x , s)′ ;
assertTrue("Initi:inv", inv);

}
Let eq lτi jk = rτi jk (k = 1, 2, . . .) be the set of all equa-
tions except the last eq s’ = · · · included in the j-th proof
passage for transitions τi. Test methods testInv τi j (j =
1, 2, . . .), which test τi against inv, are defined as follows:

public void testInv τi j(){
// begin setup

V1 x1 = �;

V2 x2 = �;

...

Vτi1 yi1 = �;

Vτi2 yi2 = �;
...

Atm s = �

// end setup

boolean pre = equal(lτ′i j1, rτ
′
i j1) &

equal(lτ′i j2, rτ
′
i j2) & · · ·

assertTrue("Inv τi j:setup", pre);

s.τi(
−→yi);

boolean inv = rinv(−→x , s)′;
assertTrue("Inv τi j:inv", inv);

}

Example 3.10: We show a part of the test class AtmTest
generated from ATM.

public class AtmTest extends TestCase {

public void testAxiom_init_balance(){

// begin setup

User U =

Atm s =

// end setup

Int right = Ops.zero() ;

assertTrue("Axiom_init_balance:axiom",

Ops.equal(s.balance(U),

right));

}

public void testAxiom_deposit_balance(){

// begin setup

Int I =

User U =

User U2 =

Atm s =

// end setup

boolean pre = Ops.ge(I,Ops.zero());

assertTrue("Axiom_deposit_balance:setup",

pre);

Int right = Ops.if_then_else_fi(

Ops.equal(U, U2),

Ops.plus(I, s.balance(U)),

s.balance(U));

s.deposit(U2, I);

assertTrue("Axiom_deposit_balance:axiom",

Ops.equal(s.balance(U),

right));

}

public void testInv_init_1(){

// begin setup

User u1 =

Atm s = new ATM();

// end setup

boolean pre = true;

1018
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

assertTrue("Inv_init_1:setup", pre);

boolean inv = Ops.ge(s.balance(u1),

Ops.zero());

assertTrue("Inv_init_1:inv", inv);

}

public void testInv_deposit_1(){

// begin setup

User u1 =

User u2 =

Int i1 =

Atm s =

// end setup

boolean pre = Ops.equal(u1,u2)

& Ops.ge(i1, Ops.zero()) == false;

assertTrue("Inv_deposit_1:setup", pre);

s.deposit(u2, i1);

boolean inv = Ops.ge(s.balance(u1),

Ops.zero());

assertTrue("Inv_deposit_1:inv", inv);

}

...

}

Note that boolean pre is true in testInv init 1 since
the corresponding proof passage has no antecedents (equa-
tions).

4. Implementation with Generated Test Cases

We show how to use generated test cases (AtmTest) to com-
plete a Java skeleton code (Class Atm, etc).

4.1 Preparations

The first error we face when executing the generated test
class is a syntax error between // begin setup and
// end setup, called a preparation part, in a test method.
Each test method tests whether Class Atm satisfies an as-
sertion “P implies Q”. Filling a preparation is choosing
an instance of P. For example, to initialize User U and
Int I, data classes User and Int should be completed
first. In this example, for both data classes we give classes
whose attributes are private variables of the Java primitive
data type int and methods getVal to refer the values.
We do not give public methods which change their values,
like setVal, in order for those classes to be immutable.
The soundness of test methods depend on the property that
all local variables initiated in the preparation part are not
changed through the test execution. More precisely, the
value of I at boolean pre = Ops.ge(I,Ops.zero()) in
testAxiom deposit balance should be preserved at the
later occurrence at s.deposit(U2, I).

4.2 Operation Class

The next error may be caused by methods in Class Ops, e.g.
Ops.zero does not return Int value. In Class Ops, we need

to define methods corresponding to the operators in the input
specification. To avoid such error, for example, Ops.zero
are given as follows:

static Int zero(){

Int j = new Int(0);

return j;

}

4.3 Observation Class

Next, Interface IState should be implemented. Object
State implementing IState for Atm is given as follows:

public class State implements IState {

private Hashtable h;

public State(){

h = new Hashtable();

}

public void setBalance(User u, Int i){

h.put(u.getUid(),i);

}

public Int balance(User u) {

if(h.get(u.getUid()) != null)

return (Int) h.get(u.getUid());

return Ops.zero();

}

}

Our example implements IState by Java class Hashtable
of a hash table. Class State keeps the balance for each user.
We also define Constructor of Atm as public Atm() {
s = new State();}.

4.4 Assertion Failed Error from JUnit

When we face a runtime error AssertionFailedError
from junit.framework, it should be a preparation error,
an axiom error, or an invariant error. It can be recognized
by a message together with the error. The preparation error
indicates that a test method has an error. The axiom error
and the invariant error indicate that the implementation has
an error.

4.4.1 Preparation Error

When the message ends with setup, the error is a
preparation error which indicates that the preparation part
does not satsfies the antecedent P of “P implies Q”.
For example, if we initiate I = new Int(-1000) in
testAxiom deposit balance, a preparation error is re-
turned since it does not satisfies the precondition pre =
Ops.ge(I,Ops.zero()).

4.4.2 Axiom Error

A message with axiom indicates that the implementation

NAKAMURA and SEINO: GENERATING TEST CASES FOR INVARIANT PROPERTIES FROM PROOF SCORES
1019

does not satisfies the specification. For example, if the def-
inition of deposit still empty, it does not satisfies the fol-
lowing equation:

ceq balance(U, deposit(U’,I, A)) =

(if U = U’ then I + balance(U,A)

else balance(U,A) fi)

if c-deposit(U’,I,A) .

which means that deposit(U,I) increases the balance of
U. To avoid the error, we give the definition of Method
deposit as follows:

public void deposit(User u, Int i){

Int j = s.balance(u);

int k = (j.getVal() + i.getVal()) ;

((State) s).setBalance(u, new Int(k));

}

4.4.3 Invariant Error

A message with inv indicates that the implementation does
not satisfies the invariant property. The invariant property
of our example is that balances are not negative. The above
definition of deposit does not satisfies the invariant prop-
erty since we can deposit a negative value. To avoid the
invariant error, we improve the definition of deposit as fol-
lows:

public void deposit(User u, Int i){

if (i.getVal() >= 0){

Int j = s.balance(u);

int k = (j.getVal() + i.getVal()) ;

((State) s).setBalance(u, new Int(k));

}

}

When no error is returned in the end, we obtain an imple-
mentation which passes all test cases.

5. Properties

The following properties hold under the assumption that
each data class is immutable.

Theorem 5.1: If some test method in HTest returns
an error AssertionFailedError with the message
Axiom x o:axiom, the implementation does not satisfy the
specification. More precisely, if x is init, it does not sat-
isfy the equation o(. . . ,init) = · · · . If x is a transition
τ, it does not satisfy the equation o(τ(. . .)) = · · · . If the
message is Inv x i:inv, the implementation does not sat-
isfy the invariant property. More precisely, if x is init, the
constructor definition public H(){. . .}, does not satisfy
inv. If x is a transition τ, Method τ does not preserve inv.

Proof. A counter-example can be made from the
preparation part of the indicated transition method.
If the message is Inv deposit 1:inv for example,
the set of initiated variables in the preparation part

of Method deposit is a counter-example, i.e., we
have an state which does not satisfy inv by initiat-
ing s and calling s.deposit(u2,i1). If the mes-
sage is, for example, Axiom deposit balance:axiom,
then the set of initiated variables in the preparation
part does not satisfy ceq balance(U, deposit(U’,I,
A)) = · · · if c-deposit(U’,I, A), More precisely, it
satisfies c-deposit(U’,I,A), however it does not satisfy
balance(U, deposit(U’,I,A))= · · · .
Theorem 5.2: If the implementation does not satisfy the
specification, there is an instance of some test method such
that it returns an error with the message which ends with
axiom. If the implementation does not satisfy the invariant
property, there is an instance of some test method such that
it returns an error with the message which ends with inv.

Proof. The former is trivial since each equation in the axiom
corresponds to a test method directly. The latter holds since
we assume that the proof score is complete, that is, the set
of proof passages should cover all cases.

6. Improvement

There is a problem that some preparation error cannot
be removed by any initiation. For example, a proof
passage which includes Equation eq balance(s,u) >=
0 = false generates a test method which includes pre =
Ops.ge(s.balance(u), Ops.zero()) == false &

...;. However this pre cannot be true since it includes
the negation of the invariant property. The state satisfying
the pre should be unreachable, that is, the state cannot be
obtained by applying any sequence of transitions to the ini-
tial state. To solve the problem, it is needed for the user
(the implementer) to check whether the preparation part of
a test method is unreachable or not and if so, remove the
test method from the test class. The problem of deciding
whether a given preparation part is reachable is undecidable
in general†. Thus, we propose a partial solution to check
unreachable preparation parts.

The invariant property has been already verified for-
mally at the specification phase, that is, any reachable state
satisfies inv. We can use the negation of inv as a suffi-
cient condition of the unreachability. To be concrete, be-
fore generating a test method from a proof passage, it is
checked whether the precondition inv(−→x , s) of the last re-
duction istep(−→x) holds or not by the CafeOBJ reduction
command. If it does not hold, i.e. false is returned, then
no test method for the proof passage is generated. In our
example of ATM, there are eleven proof passages and four
of them do not generate test methods, i.e. the preconditions

†The reachability problem for term rewriting systems is the
problem of deciding, for a given TRS R and terms t and t′, whether
t can reduce to t′ by applying the rules of R. It is well-known
that the reachability problem is undecidable [12]. We can describe
an OTS/CafeOBJ specification of a given term rewriting system
where states and transitions correspond to terms and the rewrite
relation respectively.

1020
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

are reduced into false for those four proof passage. The
final test class does not include the test methods for the four
proof passages, and the other test methods can be instanti-
ated without any preparation error. Note that the theorems
in the previous section hold even if our test case generator
has been improved as above.

7. Related Work

There are two kinds of formal verification techniques: the-
orem proving and model checking. The CafeOBJ processor
can be regarded as an interactive theorem prover. For theo-
rem provers, for example Isabel/HOL, PVS and so on, test
generation is used for specification testing, that is, testing is
used to check the desired property with randomly produced
parameters before or during the formal verification of that
property [2], [11]. Those approaches are helpful in practice
to find bugs in a given specification or a property to be ver-
ified. As far as we know, our test case generator is the first
tool to generate test cases for program testing from specifi-
cations together with interactive proofs.

The mainstream of studies on test generation for pro-
gram testing is automated test generation with model check-
ers [13]. Model checkers are tools to verify that a system
satisfies a given logical formula written in the propositional
logic, the temporal logic or so on. One of the most important
features of the model checkers is that it does not only prove a
given property but also disprove the property with a counter
example. The counter example is a sequence of reachable
states beginning with an initial state and ending with a state
where the input property is violated. In the literature [5], a
method for generating test sequences with model checkers
has been proposed. Let P⇒ Q be a property which already
has been verified. Our goal is to obtain a meaningful test
sequence, i.e. a sequence of transitions �τ, from P⇒ Q, that
is, when applying �τ to the initial state, we obtain the state
s which satisfies P and thus which should be tested to sat-
isfy Q since P ⇒ Q has been verified. To obtain such a test
sequence, we first translate P to the negation of P, which is
called a trap property [5], and then check whether ¬P holds
for any reachable state with a model checker. Then, the
model checker returns a counter-example (if any), that is,
a sequence of reachable states beginning with an initial state
and ending with a state which satisfies P. In [5], the model
checkers SMV and SPIN are used and compared. For ref-
erence, the literature [13] may be helpful as more detailed
survey for automatic test generation with model checkers.

Relating with our study, the model checking approach
may coexist with our test case generator. Our test case gen-
erator generates test cases whose preparation part, P, should
be instantiated to run the tests. To instantiate the prepara-
tion part, model checkers approaches may be helpful. On
the other hand, for the model checking approach, our test
case generator gives suitable criterions P to test an invari-
ant property. There is another difference between our ap-
proach and the model checker approach on inputs which
each technique can be applied to. Basically model checkers

can be applied to only concrete finite state machines, while
the OTS/CafeOBJ method can deal with more abstract spec-
ifications. For example, Module USER should be refined to
a concrete finite data to do model checking.

8. Conclusion

Generated test cases are regarded as black-box testing [4],
which tests whether the implementation satisfies the spec-
ification and the invariant property. Each test method for
the invariant property is generated from each proof passage.
The case analysis in the proof score has enough informa-
tion to verify the invariant property, and we believe that it
is also useful for the testing phase. Our test case generator
can be improved by combining other software test methods
and techniques. For each generated test method (skeleton
code), we need to instantiate the preparation part. At that
phase, we can apply existing useful methods and techniques
used in the area of software testing: equivalence partition-
ing, the boundary value analysis, etc [4]. A study of those
techniques for user-defined abstract data type, which is one
of the most important features of algebraic specification lan-
guages, is one of the future work. We showed an example
which has only one proof score for a given specification. A
specification may have many proof scores if there are sev-
eral desired properties, for example, liveness properties and
so on. For such cases, our test case generator may generate
too many test cases. A study of how to manage (merge or re-
duce) test cases of several proof scores is another one of the
future work. We have implemented the proposed test case
generator in XSLT (XSL transformations). The tool is a part
of the family of supporting tools for the OTS/CafeOBJ for-
mal method including, for example, Gateau [14] toolkit for
generating and displaying proof scores.

Acknowledgement

This research was partially supported by the Ministry
of Education, Culture, Sports, Science and Technology
(MEXT), Grant-in-Aid for Young Scientists (B), 17700028
and 18700024.

References

[1] K. Beck, Test Driven Development: By Example, Addison-Wesley
Longman, 2002.

[2] S. Berghofer and T. Nipkow, “Random testing in Isabelle/HOL,”
Proc. 2nd International Conference on Software Engineering and
Formal Methods, IEEE Computer Society, pp.230–239, 2004.

[3] R. Diaconescu and K. Futatsugi, CafeOBJ report, World Scientific,
1998.

[4] E. Dustin, J. Rashka, and J. Paul, Automated Software Testing: In-
troduction, Management, and Performance, Addison Wesley Profes-
sional, 1999.

[5] A. Gargantini and C. Heitmeyer, “Using model checking to gener-
ate tests from requirements specifications,” Proc. Joint 7th European
Software Engineering Conference and 7th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, ACM
SIGSOFT Software Engineering Notes, vol.24, no.6, pp.146–162,
1999.

NAKAMURA and SEINO: GENERATING TEST CASES FOR INVARIANT PROPERTIES FROM PROOF SCORES
1021

[6] W. Kong, K. Ogata, and K. Futatsugi, “Algebraic approaches to for-
mal analysis of the mondex electronic purse system,” Proc. 6th Inter-
national Conference of Integrated Formal Methods (IFM), pp.393–
412, 2007.

[7] M. Nakamura, W. Kong, K. Ogata, and K. Futatsugi, “A specifica-
tion translation from behavioral specifications to rewrite specifica-
tions,” IEICE Trans. Inf. & Syst., vol.E91-D, no.5, pp.1492–1503,
May 2008.

[8] K. Ogata and K. Futatsugi, “Some tips on writing proof scores in the
OTS/CafeOBJ method,” Proc. Festschrift Symposium in Honor of
Joseph A. Goguen (Algebra, Meaning, and Computation: Essays
Dedicated to Joseph A. Goguen on the Occasion of His 65th Birth-
day), Lecture Notes in Computer Science 4060, pp.596–615, 2006.

[9] K. Ogata and K. Futatsugi, “Proof scores in the OTS/CafeOBJ
method,” Proc. 6th IFIP WG6.1 International Conference on Formal
Methods for Open Object-Based Distributed Systems (FMOODS),
pp.170–184, 2003.

[10] K. Ogata, D. Yamagishi, T. Seino, and K. Futatsugi, “Modeling
and verification of hybrid systems based on equations,” Proc. IFIP
18th World Computer Congress TC10 Working Conference on Dis-
tributed and Parallel Embedded Systems (DIPES), pp.43–52, 2004.

[11] S. Owre, “Random testing in PVS,” Workshop on Automated For-
mal Methods (AFM), 2006. Available at
http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf

[12] M. Oyamaguchi, “The reachability problem for quasi-ground term
rewriting systems,” Journal of Information Processing, vol.9, no.4,
pp.232–236, 1986.

[13] J. Rushby, “Automated test generation and verified software,” Proc.
IFIP WG Conference on Verified Software: Theories, Tools, Exper-
iments, Lecture Notes in Computer Science, vol.4171, pp.161–172,
2008.

[14] T. Seino, K. Ogata, and K. Futatsugi, “A toolkit for generating
and displaying proof scores in the OTS/CafeOBJ method,” Proc.
6th International Workshop on Rule-Based Programming (RULE),
ENTCS 147(1), pp.57–72, Elsevier, 2006.

[15] M. Nakamura and T. Seino, “Generating tests from proof scores in
the OTS/CafeOBJ method,” IEICE Technical Report, SS2007-42,
2007.

Masaki Nakamura is an assistant profes-
sor at School of Electrical and Computer En-
gineering, College of Science and Engineering,
Kanazawa University. He received his Ph.D.
in information science from JAIST (Japan Ad-
vanced Institute of Science and Technology) in
2002. He was an assistant professor at Gradu-
ate School of Information Science, JAIST from
2002 to 2008. His research interest includes
software engineering, formal methods, alge-
braic specification and term rewriting.

Takahiro Seino is a postdoc researcher
at Center for Service Research, National Ad-
vanced Institute of Science and Technology
(AIST). He received his Ph.D. in information
science from Graduate School of Information
Science, Japan Advanced Institute of Science
and Technology (JAIST) in 2003. His research
interests include combining formal methods and
ontology for large-scale information systems.
He is occupied on some actual projects which
built up large-scale information systems apply-

ing his research results.

