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XSemantic: An Extension of LCA Based XML Semantic Search∗

Umaporn SUPASITTHIMETHEE†a), Toshiyuki SHIMIZU††b), Nonmembers,
Masatoshi YOSHIKAWA††c), Member, and Kriengkrai PORKAEW†d), Nonmember

SUMMARY One of the most convenient ways to query XML data is a
keyword search because it does not require any knowledge of XML struc-
ture or learning a new user interface. However, the keyword search is am-
biguous. The users may use different terms to search for the same informa-
tion. Furthermore, it is difficult for a system to decide which node is likely
to be chosen as a return node and how much information should be included
in the result. To address these challenges, we propose an XML semantic
search based on keywords called XSemantic. On the one hand, we give
three definitions to complete in terms of semantics. Firstly, the semantic
term expansion, our system is robust from the ambiguous keywords by us-
ing the domain ontology. Secondly, to return semantic meaningful answers,
we automatically infer the return information from the user queries and take
advantage of the shortest path to return meaningful connections between
keywords. Thirdly, we present the semantic ranking that reflects the degree
of similarity as well as the semantic relationship so that the search results
with the higher relevance are presented to the users first. On the other hand,
in the LCA and the proximity search approaches, we investigated the prob-
lem of information included in the search results. Therefore, we introduce
the notion of the Lowest Common Element Ancestor (LCEA) and define
our simple rule without any requirement on the schema information such as
the DTD or XML Schema. The first experiment indicated that XSemantic
not only properly infers the return information but also generates compact
meaningful results. Additionally, the benefits of our proposed semantics
are demonstrated by the second experiment.
key words: LCA, ontology, semantic search, XML, XSemantic

1. Introduction

As described in [1], XML search tasks can be divided into
Content-And-Structure (CAS) tasks where both structure
and content are queried and Content-Only (CO) tasks where
XML documents are searched by using keywords.

There have been several approaches in the area of CAS
tasks such as in [2]–[5]. However, users still use the familiar
keyword query to perform an XML search because there is
no knowledge required about XML structure such as DTD
or XML Schema or learning a new user interface. Therefore,
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a great deal of research [6]–[13], [16], [19], [20] focuses on
how to improve the query results based on a keyword search.

A keyword search provides a convenient way for the
users to input information, but it is difficult for a system
to find and return the part of the XML document that the
users are really interested in. Especially, in a large XML
document, the search results may turn out to be big subtrees
which are time-consuming for the users to examine.

There are many challenges in XML keyword search en-
gines as shown in Fig. 1.

First, the users may use various terms to search for the
same information. However, the classical search engine pro-
vides only term matching and fails to capture the informa-
tion request semantics. For example, consider the XML tree
in Fig. 2 (b) as the tree represents information in a univer-
sity laboratory. When the users would like to find research
works done by “Terada”, different terms can be entered by
the users such as “work terada”, “publication terada”, “re-
search terada”. Suppose that the user inputs the following
keywords “research terada” as shown in Q1, Fig. 2 (a), the
systems in [6]–[9], [12], [13], [16], [19], [20] fail to recog-
nize the meaning of the keyword “research” and return an
empty node in this case. In fact, a set of node ids {12, 13,
21} refers to the concept of “research” even if the exact term
“research” is not used. To fill the gap between user queries
and semantic queries, we build an ontology graph based on
WordNet and our richer node types to translate a list of key-
words into equivalent semantic queries.

Second, it is difficult to consider which XML node is
likely to be chosen as a return node from pure user key-
words. For example, consider Q1: “research terada” in
Fig. 2 (a). Suppose that we replace the keyword “research”
with “publication”, the possible return nodes can be node
id 1 or node id 12 because both of them contain “publi-
cation” and “terada” nodes. However, if a system assigns
node id 1 as a return node, it would become a big tree
because node id 1 is also a root node of XML document
tree. To solve this problem, there have been several research
works [6], [11]–[13], [19] using the concept of Lowest Com-
mon Ancestor (LCA) and choosing node id 12 as a return
node. However, we investigated that LCA node is not al-
ways presented as the appropriate return node. Therefore,
we refine LCA and define the concept of Lowest Common
Element Ancestor (LCEA).

Third, the keyword queries do not specify exactly how
much information should be included in the results. The
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Fig. 1 Issues, previous works and our ideas.

Fig. 2 Sample keyword searches and XML tree based representation.

LCA concept has been suggested as an effective way to re-
turn the deepest node containing the keywords but it is in-
efficient in some cases. The information under LCA node
often includes too many irrelevant nodes. Consider Q1, sup-
pose that the keyword “research” is replaced with “publica-
tion”. LCA will return the whole subtree rooted at node
id 12 which contains not just the desired paper node (node
id 13) but also the unwanted journal node (node id 21) as
shown in Fig. 3 (a). In contrast to XSemantic, the answer
will be returned only if the paper node matches the condition
plus the path to the publication node as shown in Fig. 4 (a).
In addition, LCA is not guaranteed to return enough infor-
mation for the users’ understanding. For example, consider
Q4, LCA returns the text node under node id 14 to the users

because the node itself matches a keyword “kikori” and also
presents a lowest common ancestor node. To better under-
stand the answer, in this case, XSemantic navigates up to a
larger element (Paper node) which contains more informa-
tion as shown in Fig. 4 (a). Another approach, the keyword
proximity search, has been proposed to solve the limitation
of LCA by applying the concept of shortest path to connect
only a set of relevant nodes [15], [16], [20]. For example,
consider Q1, it generates a path from node id 12 to connect
a set of related node ids 13, 15 and 16 as shown in Fig. 3 (b).
Even though it produces a result which includes only re-
lated nodes, it gives insufficient information for the users to
understand. To return semantic meaningful answers, XSe-
mantic automatically infer the return information from the
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Fig. 3 Search result of Q1.

Fig. 4 Search result of Q1.

user queries. Then we use the concept of LCEA instead of
LCA and our simple rule to generate compact and informa-
tive search results.

In particular, ranking the search results over our pro-
posed semantics is one of the focuses of this paper. We
present an effective ranking function that reflects the degree
of the query and result similarity as well as the semantic re-
lationship so that the search results with higher relevance are
presented to the users first.

The paper is structured as follows. We begin with a
discussion of related work in Sect. 2. Then the syntax of
keyword search is introduced in Sect. 3. In Sect. 4, we de-
tail our proposed semantics, namely, (1) semantic term ex-
pansion, (2) semantic meaningful answer and (3) semantic
ranking. In Sect. 5, we describe XSemantic architecture and
query processing. In Sect. 6, the experimental studies are
presented. Finally, in Sect. 7, we offer the conclusion.

2. Related Works

There has been a lot of research done in searching XML
documents. The main goals are firstly to provide a simple

method to construct search queries. Secondly, to return the
search results that satisfy what the users are looking for. The
key point is that the results should be as compact as possi-
ble but at the same time large enough to carry meaningful
information to the users.

There is research evidence that supports the former
goal, for example, [15] creates its own graphical user in-
terface which allows users to create a search query without
any knowledge of the query language. [14] helps the users
who have only a limited knowledge of XML structure to
construct the correct XQuery. [21] proposes a flexible XML
search language called XXL query language that has been
designed to allow SQL-style queries on XML data. How-
ever, as opposed to introducing a new query interface or
a new query language, there are still substantial research
works that focus on XML keyword search [6]–[13], [16],
[19], [20] because it provides the most user-friendly inter-
face for the users to express what information they want
without structure knowledge.

There has been little attempt to apply more semantic
based searches which will be very important if we are to
move toward the next generation search engines. [15] and
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[21] provide the similarity operator (˜) which expands a key-
word with similar terms but it works on the authors’ user in-
terface. [14] similarly proposes a simple function expand()
to solve the problem of ambiguous terms but it is based on
XQuery language. [10] proposes the conception of an XML
search engine that includes the translation of user keywords
into their corresponding concepts as one of the key tech-
niques. Although [11] presents an intelligent search based
on domain ontology, it does not calculate the similarity be-
tween a keyword and corresponding concepts. Furthermore,
the users must always input the search words because the
system cannot infer the return information from user key-
words.

To achieve the latter goal, several works have been
done. Most of these works [6], [11]–[13], [19] which fo-
cus on keyword queries attempt to find the smallest sub-
tree that contains all the keywords. The concept of Low-
est Common Ancestor (LCA) has been widely accepted to
perform this task. Similar ideas are extended under dif-
ferent names, namely SLCA [8], Interconnection [9] and
MLCA [14]. However, LCA is itself meaningless as ex-
plained in Sect. 1. It does not guarantee the information
under LCA node. It often returns unrelated parts or lacks
any additional information. Only a few research works have
addressed this issue [7], [12], [13]. However, [7] does not
dynamically generate the search results because it requires
the system administrator to design a unit of target objects
that will be presented to the users in advance.

The approach closest to ours is XSeek [12], [13]. We
also aim at finding return information by inferring from user
keywords and generating meaningful search results. How-
ever, XSemantic can retrieve results which XSeek can never
find by using semantic term expansion, and also XSemantic
can provide a ranking which XSeek does not provide. We
define XML node categories differently and produce differ-
ent results. XSeek classifies XML nodes into three types:
entity, attribute, and connection nodes. If a node has sib-
lings of the same name then it is considered to represent an
entity. If a node does not have siblings of the same name,
and it has one child, which is a value, then it is considered
to represent an attribute. A node is a connection node if it
represents neither an entity nor an attribute. We use black
and gray circles representing entity and connection nodes
respectively as shown in Fig. 4 (b). However, XSeek may
return answers containing unrelated parts because only en-
tities can be presented as a return node. Consider Q1 again,
suppose that XSeek supports the semantic search and the
publication node matches the keyword “research”. In fact,
XSeek cannot determine the meaning of a query which is
one of the crucial steps in a semantic search engine. Refer-
ring to XSeek definitions, publication is a connection node
because it has no siblings of the same name and also has
no child value. Therefore, the publication node becomes a
link node when the result is generated. XSeek then seeks
the nearest ancestor (entity) node and assigns it as a master
entity (return node). If such an entity cannot be found, the
root node of the XML tree is considered as a return node. In

this case, XSeek returns the laboratory node as the master
entity that includes name and location attributes to the users
as shown in Fig. 4 (b). It is clear that XSeek definitions are
not concise enough to choose an appropriate return node and
generate meaningful results.

3. Query Syntax

Our query interface extends the standard keyword search en-
gine by allowing the users to explicitly specify the return in-
formation. We design the syntax of the keyword query into
two parts: return information and condition information.

Query ::= [KRI:]S+
KRI ::= keyword of return information
S ::= search clause
search clause ::= search keyword|search condition

In the first part, the users can explicitly tell the sys-
tem about the return information of search results. How-
ever, this part is optional. In case the users do not explicitly
specify the return information, the system will automatically
analyze the return information by inferring from the search
clauses. The second part allows the users to express search
keywords or search conditions. The users can use any func-
tions that return a Boolean value (TRUE/FALSE) such as <,
>, =, contain(). If the functions return TRUE, it means that
the search conditions are met, otherwise, the nodes fail in
the search conditions.

For example, “author: paper kikori”, “author” is a key-
word of return information and other terms “paper” and
“kikori” are search keywords. This example shows that the
user is interested in the information about an author who
has written a paper containing the word “kikori”. After our
system finds nodes that satisfy the search keywords (“pa-
per” and “kikori”), we generate the path that connects the
author information and the nodes matched search keywords
to the user. Another example, “publication year > 2005”,
it is likely that the user is interested in the information
about publications which have been published since 2006.
In this case, the user does not identify the return informa-
tion; hence, the system automatically determines the return
information by inferring from the search clause.

In this paper, we focus on a conjunctive semantic
search. The search results that contain all of the search key-
words and match the search conditions are returned to the
users.

Given the query syntax, it is easy to transform our
query syntax to other XML query languages such as XQuery
or SQL statements. The return information (user defined or
system inferred) can be mapped to the return node of the
SELECT clause in an SQL statement or the return clause in
an XQuery statement. The second part can be mapped to
WHERE clause.

4. XML Semantic Search

In this section we detail the integration of our semantics
to bridge the critical gap between semantic search and the
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Fig. 5 The domain ontology graph.

users as follows:

4.1 Semantic Term Expansion

Each keyword specified in the user queries may be different
from the actual name of the element or attribute even the
term in the XML element/attribute content. To better satisfy
users, we find the element name, attribute name and the term
in the XML element/attribute content that conceptually re-
lates to a given keyword by using domain ontology. The use
of domain ontology allows us to perform a semantic search
between keywords in the query and the terms in the XML
documents.
Definition 1. A domain ontology is a directed graph G1 =

(V1, E1) where V1 is a finite set of nodes and E1 is a finite set
of edges. There are two node types: XML nodes and non-
XML nodes. There is an edge between two nodes n1 and n2

if n1 and n2 are semantically related terms. Each edge e is
labeled with a type of relationship and a weight which ex-
presses the similarity of two connected nodes. The range of
edge weight is (0-1]. Figure 5 shows our domain ontology
graph.
Definition 2. A non-XML node is a WordNet node or an
extracted node.

The WordNet lexical knowledge base [22] provides
the different word senses and relationships between them.
The type of relationship can be hypernyms and hyponyms
(Gen/Spec), holonyms and meronyms (Whole/Part) and
synonyms. The edges of hyponym and meronym types are
reverse directions of hypernym and holonym respectively.
In an implementation, we can shrink a pair of edges into a
single edge yielding an undirected graph.

An extracted node is derived or generalized from the
existing XML nodes by the system administrator. For exam-
ple, the XML nodes that contain terms “exchange student”,
“ph.d.”, “master”, and “undergraduates”, can be generalized
as an extracted node “student”.

For each keyword in a user query Q, we find one or
more candidate concepts {n1,. . . , nm} ∈ V1 that match XML
nodes in G1. For k, n ∈ V1 that are connected by a path
P = {v1=k, v2, v3, v4, . . . , vl=n}, the similarity of the node
k and the node n is the product of the edge weights along
the path P. Then we use Dijkstra’s algorithm [23] to com-
pute the similarity score of all possible paths and choose the

maximum scores for the similarity between the node k and
the node n. For very large ontology graphs, we can stop the
algorithm when the similarity falls below the threshold.

sim(k, n) =
t

max
j=1

⎛⎜⎜⎜⎜⎜⎜⎝Pj

⎛⎜⎜⎜⎜⎜⎜⎝
l−1∏

i=1

weight 〈vi, vi+1〉
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ (1)

where vi = k, vl = n, P = possible paths P1, . . . , Pt. The
following algorithm illustrates how we build our domain on-
tology.
Step 1. The XML element names and keywords of element
content are collected as XML nodes of ontology. We use
stopword elimination to choose important keywords from
element content. Term frequencies are also collected for
ranking.
Step 2. The concepts that relate to the term given at Step 1
are searched based on WordNet lexical database. The ex-
tracted nodes can be inserted in this step.
Step 3. A variety of correlation coefficients can be used to
express the degree of similarity between two concepts such
as Jaccard coefficient, Dice coefficient, and Cosine coeffi-
cient. In this paper, we choose the Dice coefficient to com-
pute the edge weights for two given concepts. Since a word
may have more than one sense, the word alone is not enough
to represent one of its senses. Therefore, to capture the pre-
cise meaning of the word, we use both word and its context
to compute the correlation of concepts. For synonym rela-
tionship, we give the similarity equal to 1.

Dice coefficient =
2 ∗ f (x ∩ y)
f (x) + f (y)

(2)

where f (c) is the approximate frequency of concept c and its
definition which appears in web pages of large web search
engines like Google or Yahoo. f (c1 ∩ c2) is the approximate
frequency of concept c1, c2 and their definitions that appear
in web pages together.
Step 4. The edge between XML nodes and related nodes is
created according to the type of relationship.
Step 5. If there is no edge connecting between nodes in
Step 4 then the fictitious root node is created to connect each
subgraph.

Based on this domain ontology, if the specified key-
word itself does not have an exact matching in the target
XML documents, XSemantic can handle it by using seman-
tic term expansion.

4.2 Semantic Meaningful Answer

Since retrieved elements which match a user query can be
found at any level of granularity, an element can be a large
element such as Publication or a small element such as Title.
The challenge is which document portions are more mean-
ingful to return as the query answer.

XSemantic does not always return the whole subtree
rooted like the LCA approach but generally returns only a
part of the subtree. We call this part a return body.

To identify a meaningful retrieval unit, firstly, we auto-
matically infer the return information from the user queries.
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Secondly, because user keywords may appear in different
parts of the XML tree, the schematic of XML document is
exploited to limit the search context as opposed to whole
document and also to define our simple rule. This simple
rule is used to determine which document fragments are
more meaningful to return as a query answer. In a sense,
the simple rule maps user queries to implicitly structured
queries. Based on this rule, XSemantic may generate a re-
turn body that is specific to a small element or navigate up to
larger elements which express what the user is looking for.

We model an XML document as a tree (as shown in
Fig. 2 (b)) and do not consider ID/IDREF and XLink. How-
ever, our system can be extended to model XML informa-
tion as a graph. We do not consider mixed contents for sim-
plicity.

In contrast to earlier work, we do not require the
schema information to classify node categories. Instead, we
use the same definitions in the XPath specification [18] to
define text nodes and element nodes. To avoid returning
too little information to the users, we introduce our instance
node type which is an element node close to a text node.
An element node is an instance node if it has a text node
as a child node or its meaning is equivalent to the meaning
of another instance node. Equivalence of the meaning of
nodes is determined by the system administrator. We treat
XML attribute nodes as instance nodes as well. To make
the notion of instance node clear, consider a set of node ids
{2, 3, 5, 6, 7, 9, 10, 11, 14, 16, 17, 18, 19, 20, 22, 24, 25,
26, 27, 28} as shown in dot circles in Fig. 2 (b) representing
the instance nodes. Also the set of node ids {15, 23} are the
instance nodes because node id 15 and node id 23 have the
same meaning as node ids {16, 17, 18} and {24, 25} respec-
tively.

Hereafter, we use the term element node to represent
the element node which is not the instance node.

We observed that the instance node and the text node
alone should not be chosen as the return node because they
do not carry sufficient information for the users. Therefore,
in general, the top most node returned as a search result is
the element node.
Definition 3. Given a search clause s, Lowest Element Node
(LEN) of a matching node n of s is an XML element node
which is

1. the lowest ancestor node of n (if n is an instance node
or a text node); or

2. the self element node n (if n is an element node.)

We consider that two or more search clauses appear in
the same context if they share the same LEN node.

According to the problem of the search results in the
LCA as described in Sect. 1, we refine LCA and define the
concept of Lowest Common Element Ancestor (LCEA) as
shown in Definition 4.
Definition 4. Let q be a query with clauses c1, c2, ck. Low-
est Common Element Ancestor (LCEA) for q is an XML el-
ement node

1. of which self-or-descendant nodes contain at least one

LEN for each ci (i = 1, 2, k); and
2. none of its descendant element node satisfies the con-

dition (1).

Definition 5. LCEA for q is a return node.
Note that LCEA node must be an element node because

LENs are element nodes.
General Rule: A return body contains a collection of LENs
for each search clause ci and LCEA of those LENs, plus
paths between each LEN and LCEA.

To clarify this rule, we break down the rule into cases
as follows:
Case 1: If all matching nodes of every ck are text nodes,
then XSemantic infers that all text nodes represent the con-
dition information. To better understand the search results,
for one LEN node, we return the subtree rooted at LCEA
node. For more than one LEN node, we generate the shortest
path from LCEA node to each subtree rooted at each LEN
node. In case the users specify the return information, the
return body includes the path that connects only the user’s
return information and the condition information.

Example 1.1: Consider Q4: “Kikori”, it would not
make sense to return only the node (under node id 14) it-
self to the users even if it matches the keyword “Kikori”.
Instead, we return the subtree rooted at LCEA node (node
id 13) because it carries other more useful information that
is understandable by the users.
Case 2: If there is at least one keyword matching an el-
ement or instance node that has no text node descendant
that matches a keyword, then XSemantic infers that this
element or instance node is the return information and all
other nodes that match keywords represent the condition in-
formation. In this case, the return body includes the return
information, condition information and the connection be-
tween them. For the return information, we return the sub-
tree rooted at LEN node if it matches the element node. Oth-
erwise, we return the matched instance node and path to its
LEN node. For the condition information, we return its de-
scendant matched condition and path to its LEN node. In
the case where users explicitly specify the return informa-
tion, the path of the matched user’s return information is
connected to the return body as well. To clarify this case,
we give some examples below and their results as shown in
Fig. 6.

Example 2.1: Consider a query “journal”, it is likely
that the user is interested in the general information about
the journal. In this case we return the subtree rooted at
LCEA node (node id 21) to the user.

Example 2.2: Consider a query “email”, it is likely that
the user would like to know only the email information. In
this case we generate the shortest path from LCEA node,
Member node, to only the instance node Email.

Example 2.3: Consider Q2: “XML author”, it indi-
cates that the user intends to find the author who has pub-
lished publications about “XML”. In this example, “author”
matches an instance node and “XML” matches the text node
that is not a descendant of the author node. Therefore, we
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Fig. 6 The return bodies.

Fig. 7 A different schema of laboratory document.

generate the shortest path from LCEA node (node id 21) to
the instance node id 22 containing “XML” to the instance
node id 24 and 25 that match the Author node.
Case 3: As opposed to Case 2, if all element or instance
nodes that match keywords have text node descendants that
match some keywords as well, XSemantic infers that key-
words that match the element or instance nodes represent the
condition information, not the return information. If there is
only one LEN node, we return the subtree rooted at LCEA
node to the users. For more than one LEN node, we gener-
ate the shortest path from LCEA node to each subtree rooted
at each LEN node. In the case where users explicitly spec-
ify the return information, the return body includes the path
that connects only the user’s return information and the con-
dition information.

Example 3.1: Consider Q1: “research terada”. Sup-
pose that based on ontology, a term “research” matches an
element node Publication (node id 12) which has a struc-
tural relationship with “terada” (node id 16). We generate
the shortest path from LCEA node, Publication node, to the
subtree rooted at Paper node (node id 13) that is now pre-
sented as LEN node of “terada” as shown in Fig. 4 (a).

In addition, we demonstrate that XSemantic can re-
turn meaningful results with unknown schema or multiple
schemas because knowledge of XML structure is not re-
quired for the query. Consider Q5: “journal year 2005”,
this asks journal information published in 2005 on the same

XML laboratory data in Fig. 2 (b) and Fig. 7 arranged in two
different schemas. Figure 2 (b) organizes publications ac-
cording to their types (paper or journal), whereas Fig. 7 or-
ganizes publications based on the year of publication. The
different meaningful results of Q5 are generated as shown
in Fig. 8. Based on the document structure of Fig. 2 (b), the
query matches Case 3. All user keywords present the con-
dition information. Therefore, LCEA node, Journal node
(node id 21), plays a return node. Hence, XSemantic re-
turns the subtree rooted at LCEA node which its children
contain both keywords “year” and “2005”. While the query
is on the document structure of Fig. 7, it matches Case 2.
The search keywords “year 2005” present the condition in-
formation which matches node id 22 and another keyword
“journal” presents the return information which matches the
LEN node id 23. Then XSemantic generates the path from
Publication node which presents as LCEA node connecting
the information.

4.3 Semantic Ranking

When searching for large XML documents, it is possible
that there may be more than one search result that matches.
It is important to rank them effectively so that the most rel-
evant results appear first. As opposed to a keyword search
over a flat HTML document, a nested structure of an XML
document must be taken into account. The ranking has to be



1086
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Fig. 8 Search result of Q5 with multiple schemas.

done at the granularity of XML nodes rather than the entire
XML documents. Given the user queries, the search results
should be ranked in descending order of relevant semantics.
Our ranking function takes the following three factors into
consideration.

1) Semantic similarity based on the domain ontology is
denoted as sim(k, n).

2) Term frequency is denoted by freq(n) to express
weight of the XML node n. Freq(n) is equal to the num-
ber of times that n appears in the element, instance or text
node divided by the maximum number of times that a word
appears in that element, instance or text node.

The following formula is defined for the node score of
node n.

ns(n) = freq(n) ∗ sim(k, n) (3)

The accumulated node score alone is not enough to de-
termine the degree of semantic relationship between con-
cepts because they may appear in different parts of the
XML tree. Therefore, to properly rank search results, we
should prefer potential answers that concepts can be reached
through only a few nodes. We exploit our node types to
compute the weight of nodes that are in the spanning tree.
If nodes along the spanning tree belong to zero or one el-
ement node type, it means that they share a common par-
ent/ancestor and are more semantically related. For exam-
ple, consider the result groups in Q3, a set of node ids {15,
17, 18} and {23, 24, 25} are the spanning tree of the first and
the second groups respectively. There are no element node
types appearing along the path. Therefore, we can conclude
that both author nodes appear in the same context of Paper
and Journal node and they have a strong relationship with
each other. In contrast to the third result group, the path
between keyword “yoshikawa” and “shimizu” contains two
element nodes, Laboratory and Member node. It indicates
that node ids 2, 9, and 10 are not semantic related because
node id 2 appears in the context of Laboratory as opposed to
node id 9 and 10 appear in the context of Member. There-
fore, the third result is ranked behind the first and the second
results.

To assess the compactness of search results as de-
scribed above, we shrink each directed edge of the XML

tree into an undirected edge yielding an undirected acyclic
graph G2=(V2, E2) where V2 is a set of XML nodes and E2

is a set of edges connecting between XML nodes. Let wtype
be the weight of node type and let {t1, t2, t3,. . . , tn} ∈ V2 be
nodes that are in the spanning tree T. We assign the weight
of each node type as wtype(element) > wtype(instance) >
wtype(text).

3) Compactness C(N) of a potential search result N is
the reciprocal of the sum of weights of all nodes in the min-
imal spanning tree as shown below:

C(N) =
1∑

t∈T
wtype(ti)

(4)

Given a user query Q, the score of a potential answer
N denoted by S(N) is defined as the production between the
sum of node score and the compactness value.

S (N) = C(N) ∗
∑

n∈Q
ns(n) (5)

5. System Architecture

The system architecture of XSemantic is presented in Fig. 9.
XML documents are parsed and categorized according to
our node types namely, element, instance and text nodes.
We treat attribute nodes as the instance nodes. To speed up
the query processing, three types of indexes are built into
our system: the translation index, the semantic node index
and the inverted semantic keyword index. We partition a text
value in an XML element/attribute node in the same way of
partitioning an inverted file in information retrieval [17].

5.1 Query Processing

To demonstrate our query processing, we use Q1: “research
terada” and Q3: “yoshikawa shimizu” in Fig. 2 (a) as run-
ning examples. The search process of XSemantic is com-
prised of five major steps as follows:
Step 1. We translate the user queries into corresponding
semantic queries by using the translation index. Based on
our domain ontology, we can map each keyword into re-
lated concepts. For example, a set of different keywords
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Fig. 9 The system architecture of XSemantic.

{“coauthor”, “author”, “writer”} can be mapped to the same
concept of author with their different similarity values. After
this step, a keyword is no longer a lexical string but instead
a concept expresses the exact search meaning that the users
are looking for.

Example: Q1, a keyword “research” is mapped to a set
of concepts {“publication”, “paper”, “journal”}. Therefore,
we can construct a set of corresponding semantic queries
as {Q1.1: “publication terada”, Q1.2: “paper terada”, Q1.3:
“journal terada”}.

Q3 is itself matching in the target XML nodes.
Step 2. For a set of semantic queries in step 1, we re-
trieve the associated XML nodes matching each concept by
searching nodes from the semantic node index and the in-
verted semantic keyword index. If the users input the search
conditions in this step, the conditions must be all satisfied at
the same time.

Example: we find a set of matches to each semantic
query as follows:

Q1.1: publication: (12), terada: (16)
Q1.2: paper (13), terada (16)
Q1.3: journal (21), terada (16)
Q3: yoshikawa: (2, 17, 24), shimizu: (9, 10, 18, 25)

Step 3. We find the Lowest Element Node (LEN) node of
each concept. If there is more than one LEN node, we then
compute LCEA node by using node connections stored in
our indexes.

In Q1, for concept “terada”, all semantic queries
(Q1.1–Q1.3) have the same LEN node (node id 13).

Q1.1, LEN node of publication is itself (node id 12).
Since there is more than one LEN node, we then compute
LCEA node that contains both LEN nodes. According to
the definition of LCEA, node id 12 presents LCEA node.

Q1.2, LEN node of paper is the same as terada.
Q1.3, LEN node of journal is node id 21 and their

LCEA node is node id 12.
For Q3, LEN nodes of yoshikawa are node id {1, 13,

21}, while LEN nodes of shimizu are node id {8, 8, 13, 21}
respectively. After that, we group each LEN node based on
their LCEA nodes. LCEA node in the first group is paper
node (node id 13) which contains LEN node {13}. LCEA
node in the second group is journal node (node id 21) which
contains LEN node {21}. LCEA node in the third group is
laboratory node (node id 1) which contains LEN nodes {1,
8}.

Note that if each concept has the common LEN node,
then we automatically assign this LEN node as LCEA node
because it indicates that both concepts share a common par-
ent/ancestor.
Step 4. After concepts are grouped according to their LCEA
nodes, we analyze the return information by inferring from
the user queries. We then generate the shortest path to pro-
duce a piece of information that is large enough to be mean-
ingful by using our rule. Continue our running examples
below.

Q1.1 matches Case 3. Terada is a descendant of publi-
cation node. We then generate the shortest path from LCEA
node, Publication node, to the subtree rooted at LEN node
of “terada”.

Similar to Q1.1, Q1.2 matches Case 3 because terada is
also a descendant of paper node. They share the same LEN
node (node id 13). Therefore, we return the subtree rooted
at LCEA node, Paper node, which contains the concept “pa-
per” and “terada”.

Q1.3 matches Case 2 because terada is not a descen-
dant of journal node. We then generate the shortest path
from LCEA node, Publication node (node id 12), to descen-
dant terada and to the subtree rooted at node id 21 that now
presents LEN node of Journal node.

Another Example, Q3 matches Case 1. We can gener-
ate three answers as follows:

The first group contains one LEN node, so we return
the subtree rooted at the Paper node (node id 13).

The second group, similar to the first group, there is
only one LEN node. Therefore, we return the subtree rooted
at the Journal node (node id 21).

The third group, LCEA node is the laboratory (node
id 1). Therefore, we generate the shortest path from the
Laboratory node to all instance nodes including the concept
“yoshikawa” to the subtree rooted at the Member node (only
node id 8) that contains concept “shimizu”.
Step 5. Multiple candidate answers may be produced like
Q1 and Q3. Therefore, it is important to rank the answers
according to the degree of relevance.

Consider Q1, the result of semantic query Q1.1 is first
presented because based on our ontology the term “publica-
tion” receives the highest semantic similarity score with the
term “research” and also has a strong relationship with an-
other keyword “terada”. For Q1.3, it has a lower total score
than Q1.2. The reason is that Journal node is not a direct
parent of Terada node.

Another example Q3, the first and second groups
are the most relevant results because both yoshikawa and
shimizu concepts appear in the same context as the Pa-
per and Journal node respectively. Therefore, our ranking
will return these results as the first answer. We also re-
turn the third group but after the first two answers because
“yoshikawa” which matches the context of laboratory, while
“shimizu” matches the different context member.
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Table 1 Test queries for Reed college course description.

No. Query Keyword(s) XSeek node types XSemantic node types
QR1 Find all course course entity element
QR2 Find all instructor instructor attribute instance
QR3 Find the course which contains course, subj, anth entity, attribute, value element, instance, text

the keyword anth in the subj
QR4 Find all instructor of the course instructor, course attribute, entity instance, element
QR5 Find the course which contains the keyword course, subj, anth, entity, attribute, value, element instance, text,

anth in the subj and the crse is 211 crse, 211 attribute, value instance, text
QR6 Find the course which contains course, anthropology entity, value element, text

the keyword anthropology

QR7 Find the title of the course which contains course, 431, title entity, value, attribute element, text, instance
the keyword 431

QR8 Find the subj and the instructor of course, subj, instructor entity, attribute, element, instance,
the course attribute instance

Table 2 Test queries for Yahoo auction.

No. Query Keyword(s) XSeek node types XSemantic node types
QY1 Find all bid history bid history connection element
QY2 Find the opened opened attribute instance
QY3 Find the seller info which contains seller info, webaxion connection, value element, text

the keyword webaxion
QY4 Find the opened of the auction info opened, auction info attribute, connection instance, element
QY5 Find the listing which the seller info listing, seller info, jenzen12, entity, connection, element, element, text,

contains the keyword jenzen12 and the item info, RDRAM value, connection, element, text
item info contains the keyword RDRAM value

QY6 Find the auction info which contains auction info, bidder name, connection, attribute, element, instance, text
the keyword mike in the bidder name mike value

QY7 Find the highest bid amount of highest bid amount, scanner attribute, value instance text
the keyword scanner

QY8 Find the high bidder and the memory listing, high bidder, memory entity, connection, element, instance,
of the listing attribute instance

6. Experiments

We set up a couple of experiments in order to assess XSe-
mantic search quality and to point out improvements on a
classical search engine by applying our proposed semantic
techniques. XSemantic was implemented in Java. We stored
XML data and built our index on a relational database sys-
tem. To reduce the query processing cost, we precomputed
the similarity score of all possible paths in the domain on-
tology graph and recorded the maximum scores for the sim-
ilarity of concepts in the same relational database.

6.1 Search Quality

In the first experiment, we compared XSemantic with
XSeek as described in Sect. 2. We ignored our seman-
tic search and ranking function in this experiment because
XSeek does not support these features. The experiment
was performed by using both Reed college course descrip-
tions and Yahoo auction datasets from the XSeek website
(http://xseek.asu.edu/).

Since we define XML node categories differently from
XSeek, it produces different results. XSeek classifies nodes
into three types: entity, attribute, and connection nodes. To
demonstrate that XSemantic produces different results from

XSeek, we have tested eight queries in various node types
for each dataset as shown in Table 1 and Table 2.

The quality of the search results is still an open issue.
There is no standard accepted measurement. However, in
order to carry out the evaluation of XSemantic, we applied
the precision and recall as done in XSearch [9], as shown
below:

Precision =
number of correct nodes returned

number of nodes returned
(6)

Recall =
number of correct nodes returned

number of correct nodes
(7)

To measure precision and recall, we count the num-
ber of correct nodes that appear in the set of nodes returned
by each system. We obtained correct nodes for a query by
generating the XQuery which expressed the user require-
ments shown in the Query column. It should be noted that an
equivalent XQuery was constructed based on human judge-
ment. For example, in QY3, the user intends to find the seller
information that contains the keyword “webaxion”. The cor-
responding XQuery was constructed as shown below:

for $a in //seller_info

where contains(string($a),"webaxion")

return $a

Then we chose the underlined keywords which ex-
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Fig. 10 Precision measurement.

pressed each of query requirements to search on both XSeek
and XSemantic. All queries were run on the XSeek web-
based interface (http://xseek.asu.edu/) on March 6th, 2008.

Both XSemantic and XSeek yield perfect recall. How-
ever, the precision differs in each case. The precision
of XSemantic and XSeek on each dataset is presented in
Fig. 10.

XSemantic has perfect precision on both Reed course
descriptions and Yahoo auction datasets. On the other hand,
XSeek usually has a high precision in the Reed dataset be-
cause there are only a few connection nodes. The only ex-
ception is QR2. XSeek inferred that the users were inter-
ested in the general information about the course, so when
generating the results, XSeek returned the course node as the
master entity including all attribute nodes. In fact, the users
would like to know only the instructor of each course but
XSeek returned the whole subtree rooted at course node as
the results. Interestingly for QR4, there is the same user re-
quirement as QR2 but we added another keyword “course”.
XSemantic generated the same result as QR2 but this is not
the case for XSeek. In this query, XSeek did not infer the
course as the return node like QR2 but instead assigned
the instructor node as the return node. For the remaining
queries, XSemantic generated the same results as that of
XSeek.

As described in Sect. 2, when the keywords match the
connection node types and there are no other keywords
matching the entity nodes, XSeek returns search results with
irrelevant entity nodes as shown in QY3, QY4, and QY6 in
the Yahoo auction dataset. The listing entity node and its at-
tributes were always returned as the nearest ancestor (entity)
node when generating the results. The reason is that XSeek
defines only the entity node type as a return node. In contrast
to XSemantic, we define the auction info and the seller info
as the element nodes. When generating the results, QY3 and
QY6 matched Case 3 so we returned the subtree rooted at
LCEA nodes, seller info and auction info respectively. For
QY4, it matched Case 2 so we generated the shortest path
from LCEA node, auction info, to only the opened instance
node. For QY1, even though XSeek has perfect precision,
if we replaced the keyword “bid history” with “history”,
XSeek would return the whole subtree rooted at listing node
instead of returning only the bid history node and incur low
precision. The reason is that under the bid history XSeek
found another attribute node, highest bid amount, match-
ing the keyword “bid”. Then XSeek incorrectly inferred

that the users were interested in the “highest bid amount”
and considered the “highest bid amount” as the return node.
When generating the result, XSeek generated the path from
VLCA node, listing, to the highest bid amount under the
bid history connection node. For QY2, XSeek has the low-
est precision. In fact, it is the same case as QR2. The key-
word “opened” matches the attribute node type like the key-
word “instructor” in QR2 but “opened” node is the attribute
node under the connection node, “auction info”, not the en-
tity node like “course” in QR2. Therefore, XSeek must find
the nearest ancestor (entity) node. In this case the listing
node presented the nearest entity node and XSeek returned
the whole subtree rooted at listing node instead of only the
“auction info” node. For QY5, we added the entity node,
listing, in the search query, XSeek still returned unrelated
nodes such as “auction info” in the search results. In XSe-
mantic, QY5 matched Case 3 so we generated the shortest
path from the listing node that presented LCEA node to
each subtree root at LEN node of “seller info” and “auc-
tion info”. For the remaining queries, both XSemantic and
XSeek have perfect precision.

6.2 Semantic Search and Ranking

The main objectives of the second experiment are to test our
proposed semantics. We did not compare XSemantic with
INEX systems though INEX benchmark provides Content
Only (CO) task. This is because search results of XSemantic
are return body whereas search results of systems for INEX
are always whole subtrees. We aim at finding the return
information that is as compact as possible by inferring the
user queries. We also did not use the two datasets from the
first experiment because these datasets were designed for
exact match and none ranked queries. Therefore, we man-
ually collected XML data from Yoshikawa laboratory web-
site (http://www.db.soc.i.kyoto-u.ac.jp). In this website, it
is possible to obtain information about the labs, professors,
students, staffs, and publications. The size of the XML doc-
ument is 477 KB with a maximal depth of 6. Then we built
our domain ontology dealing with above information based
on two sources; WordNet together with extracting the new
types from XML data. We chose the weight of element,
instance, and text node types as 1.0, 0.5, and 0.1 respec-
tively, which gave a good ranking result. We have tested
eight queries as shown in Table 3.

To analyze the query results of our proposed seman-
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Table 3 Test queries for Yoshikawa laboratory.

No. Test Queries
QL1 title: IEICE journal
QL2 member mail
QL3 yr=2008 paper
QL4 student name email
QL5 yoshikawa shimizu
QL6 work terada
QL7 research terada
QL8 coauthor: yoshikawa XML

tics, we searched the literatures on semantic search for a
reasonable amount and did not find one that could be used
in our case. We decided to do a qualitative analysis by con-
ducting user surveys on the test queries. We randomly se-
lected 10 students who are active in the XML research area
in Yoshikawa laboratory to participate in the survey. Then
we used the following three metrics to assess XSemantic.

1) To evaluate the search quality of our semantic mean-
ingful answer, each participant was asked to specify his/her
desired return body for each answer. We then computed the
ratio of the number of desired nodes according to user stud-
ies with the number of nodes returned by XSemantic as fol-
lows:

Precision =
number of desired nodes returned

number of nodes returned
(8)

Recall =
number of desired nodes returned

number of desired nodes
(9)

2) We applied the standard precision and recall to as-
sess the quality of XSemantic especially for our semantic
term expansion. Ordering of results was not considered in
this step. We called Precstan and Recallstan to prevent the
reader’s misunderstanding. Note that the correct answers
were specified by participants.

Precstan =
number of correct answers returned

number of answers returned
(10)

Recallstan =
number of correct answers returned

number of correct answers
(11)

3) In order to evaluate how our semantic ranking model
effects the relevancy degree of retrieved answers. We com-
puted the precision of ranking by using the following for-
mula as a metric to compare two ranked lists: one of re-
trieved answers (the result of a query) and one of expected
answers (specified by participants).

Precrank =
∑

i∈retrieved

ranking scorei

| rank(ret,i) − rank(exp,i) | +1

∗ 1
total ranking score

(12)

where rank (List, i) is the rank order of answer i in List.
The denominator is the rank difference between the two rank
lists, which are retrieved list and expected list, being com-
pared. The difference between the two ranked lists indicates
how good the ranking performs. Then the ranking score of
each answer is divided by the rank difference. Finally, in

Fig. 11 Search quality.

Fig. 12 Standard Precision-Recall.

order to keep the precision of ranking score to 1, we nor-
malize the sum of evaluated ranking score by the total rank-
ing score, thus producing a value in the range 0 (worst) to 1
(best).

Figure 11 shows the average precision and recall of the
first metric. As shown in the graph, XSemantic achieves per-
fect precision and recall. In QL2, a few participants would
like to see other information of members rather than only
email. The results of the user study confirm that not only
does XSemantic choose the appropriate return nodes but
also generate meaningful answers that meet the user’s infor-
mation needs. This is because XSemantic does not return
the whole subtree rooted at LCA node. As described ear-
lier, the information under LCA node is not guaranteed to be
meaningful where in some cases, it may be too specific or
too general for the users. Instead, XSemantic dynamically
generates the answers by inferring from the user queries.
XSemantic would return a specific answer when the users
explicitly specify the return information or our system finds
the implicit return information. Otherwise, we attach other
more information that the users may be looking for.

The average standard precision and recall are shown in
Fig. 12. The Precstan of XSemantic is 96% on average with
an average precision of 86.6% for the worst query (2 out
of 8 queries). XSemantic achieves perfect Recallstan for all
queries. We obtain perfect (high) precision and perfect re-
call in QL2, QL3, QL4, QL6, QL7 and QL8. The result of
these queries demonstrates that XSemantic is robust from
keyword ambiguity. The absence of semantic term expan-
sion would yield the worst recall because none of the re-
sults will be generated. For example, since we generalized
the new type “student” from the existing XML node types:
“phd”, “master”, “undergraduate”, we take this advantage
to expand the keyword “student” in QL4. For QL2, QL3 and
QL8, the keyword “mail”, “yr” and “coauthor” were trans-
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Fig. 13 Precision of ranking.

Fig. 14 Example of ranking answers.

lated into “email”, “year” and “author” respectively. In QL6

and QL7, the keyword “work” and “research” were mapped
to the same set of ontology terms, “publication”, “paper”,
and “journal”, but the different semantic similarity scores.

The average of precision of ranking is shown in Fig. 13.
XSemantic has the lowest precision in QL3. This is be-
cause when the node score of potential answers is insignifi-
cant, our system may select answers where nodes appear at
a shorter distance to each other to present first. In QL5, a
few participants would like to see the results of paper and
journal which contain both keywords ranked according to
published year and the number of authors. However, it is
out of the scope of this paper. For the remaining queries,
the participants felt that our ranking function produced ap-
propriate ranked results. The key point is that XSemantic
always returns first the answer which contains all keywords
and appears in the same LEN node or the same direct par-
ent. In other words, the more LEN nodes the more different
contexts and consequently leads to less compactness.

To demonstrate the effectiveness of our ranking model,
consider QL8, this query may be retrieved in many answers
because “yoshikawa” and “XML” keywords often appear on
the Yoshikawa laboratory website. Two possible answers of
QL8 are shown in Fig. 14. The gray circles represent the
context. We can see that both of the answers satisfy the user
requirement. However, by looking carefully at the details
in Fig. 14 (a), the return node (publication) brings together
the unrelated “yoshikawa” and “XML” nodes and leads to a
meaningless answer. In contrast to the answer in Fig. 14 (b),
“yoshikawa” and “XML” keywords are related with a strong
semantic relationship to each other by belonging to the same
paper context and are regarded as a meaningful answer. To
ensure that all XML nodes match the user queries are pre-

sented to the users even though they appear in a different
context, thus both answers are returned but with a different
ranking score. As a result, the ranks of “yoshikawa” and
“XML” in Fig. 14 (b) were presented before the answer of
Fig. 14 (a) with a higher ranking. This illustrates the effec-
tiveness of our compactness factor.

7. Conclusions

In this paper, we present an extension of LCA based XML
semantic search called XSemantic. To the best of our knowl-
edge, XSemantic is the first XML semantic search that au-
tomatically infers return information from user queries. We
propose three definitions of semantic, namely, (1) seman-
tic term expansion, (2) semantic meaningful answer and (3)
semantic ranking. In addition, to solve the problem of the
information in the LCA and proximity search approaches,
we introduce the notion of Lowest Common Element An-
cestor (LCEA) and define our simple rule to generate the
meaningful results. Our experiments show that XSemantic
has an improved search quality and returns a good ranking
result.
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