
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009
1125

PAPER

A Biologically Inspired Self-Adaptation of Replica Density Control

Tomoko IZUMI†a), Taisuke IZUMI††, Fukuhito OOSHITA†††, Members, Hirotsugu KAKUGAWA†††, Nonmember,
and Toshimitsu MASUZAWA†††, Member

SUMMARY Biologically-inspired approaches are one of the most
promising approaches to realize highly-adaptive distributed systems. Bio-
logical systems inherently have self-∗ properties, such as self-stabilization,
self-adaptation, self-configuration, self-optimization and self-healing.
Thus, the application of biological systems into distributed systems has
attracted a lot of attention recently. In this paper, we present one success-
ful result of bio-inspired approach: we propose distributed algorithms for
resource replication inspired by the single species population model. Re-
source replication is a crucial technique for improving system performance
of distributed applications with shared resources. In systems using resource
replication, generally, a larger number of replicas lead to shorter time to
reach a replica of a requested resource but consume more storage of the
hosts. Therefore, it is indispensable to adjust the number of replicas ap-
propriately for the resource sharing application. This paper considers the
problem for controlling the densities of replicas adaptively in dynamic net-
works and proposes two bio-inspired distributed algorithms for the prob-
lem. In the first algorithm, we try to control the replica density for a single
resource. However, in a system where multiple resources coexist, the algo-
rithm needs high network cost and the exact knowledge at each node about
all resources in the network. In the second algorithm, the densities of all
resources are controlled by the single algorithm without high network cost
and the exact knowledge about all resources. This paper shows by simula-
tions that these two algorithms realize self-adaptation of the replica density
in dynamic networks.
key words: replica density control, resource replication, bio-inspired ap-
proach, single species population model

1. Introduction

Continuous and significant increase in scale, dynamics and
diversity of network environments requires highly-adaptive
distributed systems. Thus, autonomic distributed sys-
tems with self-∗ properties, such as self-stabilization, self-
adaptation, self-configuration, self-optimization and self-
healing, are attracting widespread attention from researchers
and engineers in the fields of distributed systems.

Biological systems inherently have self-∗ proper-
ties to realize environmental adaptation. Thus, several
biologically-inspired approaches have succeeded in realiz-

Manuscript received July 24, 2008.
Manuscript revised December 19, 2008.
†The author is with Center for Social Contribution and Collab-

oration, Nagoya Institute of Technology, Nagoya-shi, 466–8555
Japan.
††The author is with the Graduate School of Engineering,

Nagoya Institute of Technology, Nagoya-shi, 466–8555 Japan.
†††The authors are with the Graduate School of Information Sci-

ence and Technology, Osaka University, Toyonaka-shi, 560–8531
Japan.

a) E-mail: izumi.tomoko@nitech.ac.jp
DOI: 10.1587/transinf.E92.D.1125

ing highly adaptive distributed systems. Successful projects
include Bio-Networking project [1] and Anthill project [2].
These projects adopt biologically-inspired approaches to
provide a highly adaptive platform for mobile-agent-based
computing [3], [4].

This paper presents one successful result of bio-
inspired approach in dynamic distributed systems: we pro-
pose distributed algorithms for resource replication inspired
by a biological system. Resource replication is a crucial
technique for improving performance and availability of re-
source sharing systems, which are one of the most funda-
mental distributed applications (a well-known example is
file sharing on peer-to-peer networks [5], [6]). In resource
sharing systems using replication, replicas of an original re-
source are distributed over the network so that each user can
get a requested resource by accessing a nearby replica. Re-
source replication can reduce communication latency and
consumption of network bandwidth and can also improve
availability of the resources even when some of the replicas
are unavailable.

In systems using resource replication, generally, a
larger number of replicas lead to shorter time to reach a
replica of a requested resource, but consume more storage
of the hosts. Thus, it is indispensable to adjust the num-
ber of replicas appropriately for the system. It is natural to
consider that the system, where each host provides a con-
stant amount of storage for keeping replicas, should keep as
many replicas as possible to improve system performance.
The total amount of storage in the system depends on the
network size. In this paper, we consider control algorithms
on application layer (e.g., on overlay in a peer-to-peer net-
work) to adapt the number of replicas depending on the
amount of storage at each host and the current network size
(i.e., the number of hosts). By applying an adaptive algo-
rithm for the controlling the number of replicas, the system
can guarantee QoS to a certain extent regardless of the net-
work size. One such example is resource searching protocol
PWQS, which is a quorum-based probabilistic protocol on
peer-to-peer networks [7]. In PWQS, replicas are dispersed
randomly in a network, and a user searches a requested re-
source by accessing hosts randomly. While PWQS requires
replicas of each resource in numbers proportional to the net-
work size to attain good performance, an algorithm for the
control of the number of replicas is not proposed in [7].

However, in dynamic networks such as peer-to-peer
networks, an appropriate number of replicas for the applica-

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

1126
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

tion changes with time, since network size varies with time.
When a special host does centralized control of the number
of replicas, it should compute global information repeatedly
to adapt to dynamic changes of the network, such as the
current network size and the number of replicas. The com-
putation requires much greater cost since the host must col-
lect state of all hosts (e.g., replicas each host has). So, it
is unrealistic to assume that each node knows such global
information. Moreover, in terms of fault tolerance, a sys-
tem should not have such a special host. Therefore, we fo-
cus distributed algorithms to realize adaptable control of the
number of replicas in dynamic networks without a special
host and global information.

Control of the number of replicas and replica alloca-
tion, which determines the node each replica is allocated
to, improves the system performance. We focus only on
control of the number of replicas in this paper, meanwhile
many other researchers focus on replica allocation [8], [9].
Our algorithms can be combined to these allocation proto-
cols since the algorithms can control the number of replicas
independently from replicas’ allocation. For the control of
the number of replicas, some papers have proposed central-
ized and distributed algorithms [10], [11]. These algorithms
control the number of replicas depending on a request fre-
quency distribution of resources. As stated above, in this
paper, we focus on the amount of storage for keeping repli-
cas in a network. That is, we first propose a problem for
the control of the replica density adaptively in response to
change of network size.

Contribution of this paper. In this paper, we first formulate
the replica density control problem in dynamic networks,
and present biologically-inspired algorithms for the prob-
lem. The replica control problem requires us to adapt the
total number of replicas to a given constant fraction of the
current network size and to adapt the number of replicas of
each resource equally.

Our algorithms borrow an idea from the single species
population model, which is a well-known population ecol-
ogy model. This model considers population of a sin-
gle species in an environment such that individuals of the
species can survive by consuming food supplied by the en-
vironment. The model is formulated by the logistic equa-
tion and shows that the population automatically converges
to and stabilizes at some number depending on the amount
of supplied food.

In the proposed algorithms, replicas are regarded as in-
dividuals of a single species. To supply food to replicas, we
use mobile agents created by nodes. The first algorithm fo-
cuses on controlling the replica density of a single resource
by supplying an appropriate amount of food. The simula-
tion results show that the first algorithm can adequately ad-
just the replica density. In the system where multiple re-
sources coexist, we can control the replica density of each
resource by applying this algorithm to each resource: repli-
cas of resource i are supplied food by agents that have food
for resource i.

However, since the first algorithm controls the replica
density of each resource independently, the number of
agents on the network is proportional to the number of re-
sources. Moreover, it is necessary for each node to have the
exact knowledge about all resources existing in the network.
To solve these problems, we propose the second algorithm
in which densities of all resources are controlled without a
great number of agents and the exact knowledge about all
resources. In the second algorithm, every replica can eat
any food supplied by agents. Since the technique for sup-
plying food fairly to replicas of every resource is needed,
we limit the amount of food supplied to replicas of each
resource. The simulation results show that the second algo-
rithm also realizes self-adaptation of the replica density in
dynamic networks.

We have already proposed the algorithm to control the
number of objects in dynamic networks through the same
approach in [12], [13]. In [13], we proposed an algorithm
for control the replica density of only one resource while we
try to control the densities of multiple resources at the same
time in this paper. In [12], we tried to control the mobile
agent population. The difference between the control algo-
rithms of replicas and mobile agents is that the target objects
are static or dynamic. Mobile agents can migrate between
nodes and eat food for itself, but replicas cannot migrate in
the network.

The rest of this paper is organized as follows. In Sect. 2,
we present the model of distributed systems, and define the
replica density control problem. In Sect. 3, we explain about
the single species population model, and in Sect. 4, we pro-
pose the without a special host and global information with-
out a special host and global information first distributed
algorithm for the problem and show its simulation results.
The second algorithm is presented and simulated in Sect. 5.
Section 6 concludes the paper.

2. Preliminaries

2.1 System Models

Dynamic networks. In this paper, we consider a dynamic
network such that its node set and its link set vary with time.
To define dynamic networks, we introduce discrete time and
assume that each time is denoted by a non-negative integer
in a natural way: time 0 denotes the initial time, time 1 de-
notes the time immediately following time 0 and so on.

Formally, a dynamic network at time t is denoted by
N(t) = (V(t), E(t)), where V(t) and E(t) are respectively the
node set and the link set at time t. A link in E(t) connects
two distinct nodes in V(t) and a link between nodes u and v
is denoted by euv or evu. We also use the following notations
to represent the numbers of nodes and edges at time t: n(t) =
|V(t)| and e(t) = |E(t)|.

Mobile agent systems. A mobile agent is an autonomous
program that can migrate from one node to another on the
network [14], [15]. In a dynamic network, an agent on a

IZUMI et al.: REPLICA DENSITY CONTROL
1127

node u ∈ V(t) at time t can start migrating to a node v ∈ V(t)
only when link euv is contained in E(t). The agent reaches v
at time t + Δ only when the link euv remains existing during
the period from t to t + Δ, where Δ is an integer represent-
ing migration delay between the nodes. The agent migrating
from u to v is removed from the network when the link euv

disappears during the period from t to t + Δ.
Each of nodes and agents has a local clock that runs

at the same rate as the global time. However, we make no
assumption on the local clock values: the difference between
the local clock values in the system is unbounded.

An agent and a node can interact with each other by
executing operations: an agent p on a node u can change
its state and the state of u depending on the current states
of p and u, and u can change its state and the states of the
agents residing on u depending on the current states of u
and the agents. Besides the above operations, each agent
can execute operations to kill itself and each node can also
execute operations to create new agents.

When agents reside on a node, the agents and the node
have operations they can execute. For execution semantics,
we assume that the agents and the node execute their opera-
tions sequentially in an arbitrary order. We also assume that
the time required to execute the operations can be ignored,
that is, we consider all the operations are executed sequen-
tially but at an instant time.

2.2 Replica Density Control Problem

In this paper, we consider the replica density control prob-
lem. Resources are objects shared by the nodes on the net-
work: files, documents, and so on. Replicas are copies of an
original resource. Each node has zero or more replicas. We
distinguish an original resource from its replicas: an original
resource is allocated on its original node and is never deleted
unless the original node decides to delete the resource, while
a replica of the original resource can be deleted. Each node
v can create same replicas from a replica or an original re-
source on v and can delete replicas on v. Let r(t) be the total
number of replicas (including original resources) and ri(t)
be the number of replicas of a resource i (including the orig-
inal resource i) on the network N(t) at time t. The problem
is defined as follows.

Definition 2.1
The goal of the replica density control problem is to adjust
the total number of replicas r(t) and the number of replicas
ri(t) of each resource i at time t to satisfy the following equa-
tions for a given constant δ.

r(t) = δ · n(t)

ri(t) = r j(t) ∀i, j

We assume that the constant δ is initially given to ev-
ery node. The parameter δ represents the amount of storage
each node can assign to keeping replicas. The expression
δ · n(t) is the total amount of storage on the network at time
t. If nodes can maintain many replicas in their storage then

δ should be set to a large value. In this case, since a large
amount of storage is provided, the system can achieve good
performance by creating a large number of replicas. The
first equality represents the adaptation of the current total
number of replicas to the current total amount of storage on
the network. That is, the more nodes exist on the network
or the more amount of storage is provided, the more repli-
cas can be kept on the whole network. The second equality
represents the restriction on the number of replicas of each
resource. That is, when there are many resources on the net-
work, each resource cannot be kept many its replicas since
the replicas of the other resources also consume much stor-
age of nodes. On the other hand, when there are not many
resources on the network, each resource can be kept many
its replicas.

In some applications, a control of replica density de-
pending on popularity of resources may be desired. Al-
though our algorithms try to keep the number of replicas of
each resource equally, they can control the number of repli-
cas of each resource depending on its popularity by adding
some preprocessing. We discuss the preprocessing in Con-
clusion.

We consider a distributed system such that replicas are
distributed over the network and nodes can leave or join
the networks at any time. In such environment, it is obvi-
ously impossible to keep satisfying the above equation all
the time. Thus, our goal is to propose distributed algorithms
that realize convergence to and stability at the target number.

3. Single Species Population Model

In this section, we introduce the single species population
model. The model formulates the population growth of the
species in the environment, and shows that the population
(i.e., the number of individuals) in the environment automat-
ically converges to and stabilizes at some number depending
on the amount of food supplied by the environment.

Each individual of the species periodically needs to
take a specific amount of food to survive. That is, if an
individual can take the specific amount of food then it can
survive. Otherwise, it dies. Moreover, in the case that an
individual can take a sufficient amount of extra food, then it
generates progeny. Consequently, the followings hold: the
shortage of supplied food results in decrease in the popu-
lation. Conversely, the excessive amount of food results in
increase in the population.

The single species population model formulates the
above phenomena. Let p(t) be the population at time t. The
single species population model indicates that the popula-
tion growth rate at time t is represented by the following
nonlinear first-order differential equation known as the lo-
gistic equation [16]:

Δp(t)
Δt
= p(t) · g(t) = p(t)(k · fa(t) − k · f · p(t)),

where fa(t) is the amount of food supplied by the environ-
ment at time t, f is the amount of food consumed by one

1128
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Fig. 1 Convergence to the equilibrium point in logistic equation.

individual to survive and k is a positive real constant. The
function

g(t) = k(fa(t) − f · p(t))

in the above formula is called the per capita growth rate at
time t.

The expression fa(t) − f · p(t) represents the difference
between the amounts of supplied food and consumed food.
When the supplied food exceeds the consumed food, g(t)
takes a positive value proportional to the amount of the sur-
plus food. A scarcity of the supplied food causes a nega-
tive value of g(t) proportional to the shortage of the supplied
food.

The logistic equation has two equilibrium points of the
population size p(t): p(t) = 0 and p(t) = fa(t)/ f . That
is, the population remains unchanged, when the popula-
tion size is at the equilibrium points. The equilibrium point
p(t) = fa(t)/ f represents the maximum population that the
environment can keep, and is called the carrying capacity of
the environment.

If the population is larger (resp. smaller) than the carry-
ing capacity then the population decreases (resp. increases).
Once the population reaches the carrying capacity, then it
remains unchanged (see Fig. 1). Consequently, the single
species population model implies that the population even-
tually converges to and stabilizes at the carrying capacity.
Notice that the carrying capacity depends on the amount of
food supplied by the environment.

4. Algorithm for Replica Density Control of a Single
Resource

In this section, we propose an algorithm for the replica den-
sity control problem of a single resource.

4.1 Algorithm

In the algorithm, we introduce time interval of some con-
stant length denoted by CYCLE. Behavior of each node and
each replica can be divided into series of the time interval:
each node supplies food every the time interval and decides
by the food consumption of each replica whether the replica
can survive to the next time interval or not. It should be
noticed that the start time of the intervals at different nodes

need not be synchronized. Moreover, the decisions about
survival of different replicas on the same node are made at
the different times.

Figure 2 and Fig. 3 show the detailed behaviors of a
node and an agent in our algorithm. In the algorithm, we do
not specify the allocation of replicas since our algorithm is
independent of replicas’ allocation.

The algorithm is simple: each node creates a new agent
every CYCLE time units (i.e., at the beginning of each time
interval). Each agent has a specific amount of food on the
initial state and traverses the network with the food. In this
paper, we adopt a random walk as migration pattern of an
agent since it is adaptive and the simplest migration pattern
without memory space of the agent. That is, each agent re-
peatedly executes the following actions: each agent stays
at a node for a stay time, and then migrates to one of its
neighboring nodes with equal probability. When an agent
visits a node v, the agent feeds the replicas on v. The replica
can survive to the next time interval if it can be fed a spe-
cific amount of food, denoted by RF, during the current time
interval. The replica is deleted if it cannot be fed food of
amount RF during the time interval. The original resource
behaves the same as a replica: it consumes food just like
replicas, but is not deleted even if it cannot be fed food of
amount RF. When all the food the agent p carries is con-
sumed, p kills itself (i.e., removes itself from the network).

In addition, each node creates a new replica of resource
i if a replica ih of resource i is fed surplus food of amount RF.
This idea derives from the fact that the positive per capita
growth g(t) in the single species population model is pro-
portional to the amount of surplus food. This scheme is re-
alized in the following way: if all food an agent has is not
consumed by replicas after CYCLE time units from its cre-
ation time, the agent stores the surplus food into variable
surplus food and continues a random walk. The amount
of surplus food implies the number of replicas the system
should create since agents supply adequate amount of food
to keep an appropriate number of replicas. Thus, the surplus
food should be consumed by replicas to create new replicas.
In our algorithm, when an agent carrying surplus food visits
a node v, the agent feeds replicas on node v with the surplus
food. If the total amount of surplus food the replica, say
replica ih, is fed reaches RF, one new replica of resource i
(i.e., a copy of replica ih) is created. If the agent feeds all
the surplus food, it kills itself.

Now, we consider the amount of food F that each agent
should supply. Since each node creates one agent every CY-
CLE time units, the amount of food supplied on the whole
network at time t can be approximately estimated to be
F · n(t). The goal of the replica density control problem is
to adjust the total number r(t) of replicas to δ · n(t). Remind
that the single species population model shows that the num-
ber of individuals converges to and stabilizes at the carrying
capacity fa(t)/ f . Thus, the algorithm tries to adjust r(t) to
δ · n(t) by adjusting the carrying capacity to δ · n(t). Since
fa(t) corresponds to the total amount of supplied food on the
whole network n(t) · F and f corresponds to the amount of

IZUMI et al.: REPLICA DENSITY CONTROL
1129

Fig. 2 Behavior of node v in the first algorithm.

Fig. 3 Behavior of agent p in the first algorithm.

food RF, the following equation should be satisfied:

fa(t)
f
=

n(t) · F
RF

= δ · n(t).

From this equation, the amount of food F each agent should
supply is determined to be F = δ · RF.

4.2 Simulation Results

In this subsection, we present simulation results to show that
the proposed algorithm can adjust the replica density.

The following values are initialized randomly:

1130
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

• the initial number and locations of agents
• the initial locations of replicas
• the initial values of the local clocks (i.e., timev, timep(<

CYCLE))
• the creation time of replicas on each node v (i.e.,

create time(ih)(< timev))

The initial amounts of food that agents have (i.e.,
foodp) and replicas have fed on in the current time inter-
val (i.e., eat food(ih)) are set to the value based on the local
clocks and creation times: foodp = (1 − timep/CYCLE) ·
δRF and eat food(ih) = (create time(ih)/CYCLE) · RF.
The initial amounts of surplus food that agents have (i.e.,
surplus foodp) and the initial amounts of surplus food that
replicas have fed (i.e., eat surplus food(ih))are set to 0.

Our algorithm can be combined to any allocation pro-
tocols since the algorithm can control the replica density in-
dependently from replicas’ allocation. In the simulations, a
new replica created by a node is allocated to the node se-
lected randomly with probability proportional to their de-
grees. The random allocation based on nodes’ degrees is
one of the simplest allocations to guarantee search perfor-
mance since a node with high degree is likely to be accessed
by many nodes to search resources. The random allocation
can be realized in a real system as follows: an agent with a
replica traverses the network by a random walk during ran-
domly long time units.

We present the simulation results for random networks
and scale-free networks. Scale-free networks are a specific
kind of networks whose degree distribution follow a power
law. A scale-free network is said to be a realistic model of
actual network structures [17], [18]. In the simulation, the
stay time of an agent at a node is set to one time unit and
the migration delay between any pair of neighboring nodes
is set to two time units.

To show the adaptiveness of the proposed algorithm,
we also show the difference ratio of the number of replicas:
the ratio is defined by |δ · n(t)− r(t)|/(δ · n(t)) and represents
the ratio of difference between the adjusted and the target
numbers of replicas to the target number.

Simulation results for static networks. Figure 4 shows
the experimental results for “static” networks. That is, the
number n(t) of nodes is fixed at 5,000 during the simula-
tion. Random graphs with n nodes are generated as fol-
lows: each pair of nodes is connected with probability of
5.0/(n − 1). Scale-free networks are generated using the
incremental method proposed by Balabasi and Albert [17].
More precisely, starting with 3 fully connected nodes, we
add new nodes one by one. When a new node is added,
three links are also added to connect the node to three other
nodes, which are randomly selected with probability propor-
tional to their degrees.

Figure 4 shows transition of the number r(t) of replicas
with time t. In Fig. 4, the x-axis is a time scale and the y-axis
is the total number of replicas in the network at the time. It
shows the results for four combinations of two values of δ

(0.02 and 0.01), and two initial number r(0) of replicas (200
and the half of the target number). The length CYCLE of the
time interval is set to 1,000 time units. From Fig. 4, we can
see that the number of replicas is decreased sharply during
the early period in the case that the initial number of repli-
cas is much larger than the target number. The reason of
this is that most replicas can eat a small amount of food but
the amount is not enough to survive. The number of repli-
cas converges to the equilibrium point after a configuration
where some replicas can eat the amount RF of food. These
simulation results show that the number of replicas has small
perturbation after the convergence. In addition, the average
of the difference ratios, which is calculated by the sum of
difference ratios at time t(0 ≤ t ≤ 30, 000) divided by the
runtime, is about 0.06 after convergence of the replica den-
sity.

Simulation results for dynamic networks. Figure 5 shows
the results for “dynamic” networks where some nodes join
in the network and some nodes leave from the network con-
stantly. When a new node joins in the network, the new
node is connected to other nodes with probability 5.0/n(t)
for each other node on random networks, and the new node
is connected to three other nodes randomly selected with
probability proportional to their degrees on scale-free net-
works. On joining in the network, the new node creates a
new agent and sets the local clock to 0. When a node v
leaves from the network, the links connecting to v, and repli-
cas and agents on v or these links are also removed from the
network. In the simulations, each node leaves from the net-
work with a constant probability for random networks. For
scale-free networks, the leave of a hub node having tremen-
dous number of connections is undesirable for us since a lot
of partitions will be caused. Therefore, for scale-free net-
works, a node v leaves from the network with probability
avg deg · pl/degv(0 < pl < 1), where avg deg is the aver-
age degree of the network. Notice that we keep the networks
connected in the simulations: if a network is partitioned into
some connected components due to leave of a node, we add
a link randomly between two components.

In this simulation, the initial network size n(0) is 5,000,
and the following dynamical changes occur every 200 time
units. In the first quarter term (from time 0 to 7,500) of the
simulation, a single new node joins with probability 0.1 and
each node leaves with probability 0.01 for random networks
and with probability avg deg · 0.01/degv for scale-free net-
works, that is, the network size is decreasing in this term.
In the second quarter term (from time 7,500 to 15,000) and
the fourth quarter term (from time 22,500 to 30,000), a sin-
gle new node joins with probability 0.2 and each node leaves
with probability 0.0001 for random networks and with prob-
ability avg deg ·0.0001/degv for scale-free networks, that is,
the network size stays about the same in these terms. In the
third quarter term (from time 15,00 to 30,000), 40 nodes
joins with probability 1.0 and no node leaves from the net-
work, that is, the network size is increasing in this term.

Figure 5 shows transition of the number r(t) of replicas

IZUMI et al.: REPLICA DENSITY CONTROL
1131

a. Random networks (n(t) = 5000) b. Scale-free networks (n(t) = 5000)

Fig. 4 Simulation results of the first algorithm on static networks.

a. Random networks (n(0) = 5000, r(0) = 50, δ = 0.01) b. Scale-free networks (n(0) = 5000, r(0) = 50, δ = 0.01)

Fig. 5 Simulation results of the first algorithm on dynamic networks.

and the network size n(t) with time t. The x-axis in the fig-
ure is a time scale and the y-axes on the left and the right are
the total number of replicas and nodes in the network at the
time respectively. The vertical scale of the network size is
marked so that the transition of the network size corresponds
to the target number. In the simulation results of Fig. 5, the
length CYCLE is set to 1,000 time units, the value of δ is
set to 0.01 and the initial number r(0) of replicas is set to
50. The simulation results show that the number of replicas
is adaptively adjusted in response to changes in the network
size. In addition, the average difference ratio is 0.11. The
total number of replicas is smaller than the target number
for most of simulation time. The cause is the deletions of
replicas and agents on nodes that leave from the networks
and the delay until convergence of the replica density. Due
to a leave of a node, replicas and agents with food on the
node are also deleted. Since the amount of food supplied to
replicas is decreased, the number of replicas in the network
becomes smaller than the target number. When the network
size is increasing, the amount of supplied food is also in-
creasing, but new replicas cannot be created immediately.
It takes a time to converge, but the number of replicas con-
verges to the target number after a certain time as shown in
Fig. 4.

Simulation results on lifetime of replicas. The goal of the
replica density control problem is to adjust the number of
replicas to a given ratio of the network size. A straightfor-

ward algorithm to achieve the goal is one based on prob-
ability: at a time interval, each node deletes all replicas it
has and creates a replica with a probability δ. This naive
algorithm has high adaptability, however, it causes frequent
creations and deletions of replicas. From the point of ap-
plication view, a frequency of creations and deletions of
replicas should be low since copy and allocation cost of a
replica is not ignored. Moreover, in terms of searching per-
formance, locations of each replica should not be changed
frequently. In real applications, if there is almost no change
of locations of each replica, the searching performance can
be improved. On the other hand, algorithms that do not cre-
ate and delete replicas have low adaptability. Thus, we show
our algorithm achieves a balance between adaptability and
stability by showing that lifetime of replicas is sufficiently
long.

Lifetime ltx of replica x is defined to be the time length
from its creation to its deletion, i.e., ltx = tdx − tcx, where
tdx is the time when x is deleted and tcx is the time when x is
created. Table 1 shows the average lifetime of replicas of ten
trials. To focus on the lifetime of replicas after convergence
of the number of replicas to the target number, we count
lifetimes of only replicas that are deleted the last half of the
runtime. In the simulations, the value of δ is set to 0.01.
The simulation results show that lifetime quickly becomes
longer when the length of the time interval CYCLE becomes
longer. The reason of this is that each replica with long CY-
CLE can meet more agents in CYCLE time units than with

1132
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Table 1 Average lifetime of replicas.

a. Random networks
CYCLE

500 1000 1500
2000 1447 7825 16123

n 5000 1398 7740 17012
10000 1393 8286 18084

b. Scale-free networks
CYCLE

500 1000 1500
2000 2275 5545 10267

n 5000 2143 6202 12830
10000 2043 6817 12317

short CYCLE. That is, replicas with long CYCLE are more
likely to survive by being supplied food from many agents.
Therefore, by setting an appropriate value to CYCLE, it is
strongly expected that lifetime of each replica becomes suf-
ficiently long.

Replica density algorithm by using smaller number of
agents. In the algorithm presented in Sect. 4.1, n(t) agents
are created and traverse the network every CYCLE time
units. When the number of replicas stabilizes to the tar-
get number, most of agents should feed all food for CYCLE
time units since the average lifetime of replicas is long. In
the simulation setting, it is expected that n(t)/CYCLE nodes
create agents at a time t. Thus, there are about n(t) agents
traversing the network at any time.

Although the size of the agent is so small since the
agent has only information of food, the number n(t) of
agents may be large for the system. To reduce network traf-
fic, we can modify the algorithm so that each node can cre-
ate an agent every c·CYCLE time units for some constant c
(c > 1). This method reduces network traffic of agents by
1/c. Since the number of agents on the whole network is
roughly reduced to 1/c · n(t), each agent has to be created
with the initial amount of food c · δ · RF to keep the total
amount of food to be supplied. In this regard, however, the
length of the time interval CYCLE needs to become longer
depending on the value of c. The reason is that agents with
larger amount of food must visit more nodes to supply food
to more replicas.

We have verified by simulations that the network traf-
fic of agents can be reduced to 1/c · n(t) without sacrificing
accuracy of the replica density control.

5. Algorithm for Replica Densities Control of Multiple
Resources

For the objective of controlling multiple resources, the
straightforward algorithm is to apply independently the al-
gorithm presented in Sect. 4.1 to each resource. In this case,
the number of agents on the network is also proportional to
the number of resources. Moreover, each node needs the ex-
act knowledge about all resources on the network, since it
must create agents for each resource.

The goal of the algorithm presented in this section is
to adapt the total number of replicas of all resources to δ ·
n(t) and the number of replicas of each resource equally.
This algorithm is based on the algorithm in Sect. 4.1. In
this algorithm, however, only n(t) agents are created every
CYCLE time units regardless of the number of resources.
Each node needs to know only the rough number (instead of
the exact number) of resources.

5.1 Algorithm

We consider how each agent should supply food to repli-
cas. To adjust the total number of replicas to δ · n(t), each
agent should supply food of amount δ · RF as the first al-
gorithm. However, since the initial replica density of each
resource may be different from that of every other resource,
each replica density cannot be adjusted appropriately by the
same way as the first algorithm. That is, the replicas in larger
number can be fed more food than the replicas in smaller
number, and keep the larger number.

To balance the replica densities of all resources, we in-
troduce an additional condition for food supply: each agent
tries to supply a same amount of food to replicas of each re-
source. However, each agent cannot know the number of re-
sources on the network. Therefore, in the algorithm, we set
an upper limit of the amount of food each agent can supply
to a replica based on the amount of food the agent has sup-
plied. Each agent p has information s fp(i) about the amount
of food the agent p supplies to replicas of each resource i.
Let S Fp be the maximum amount of food agent p has sup-
plied to replicas of resources, that is, S Fp = max{s fp(i)}. At
the agent p arriving at a node v, the agent p can supply the
replica of resource i the following amount Fp(i) of food.

Fp(i) =

{
f oodp if ∀ j S Fp = s fp(j)
S Fp − s fp(i) Otherwise

The expression Fp(i) represents that the upper limit of the
amount of food an agent supplies is the maximum amount
of food the agent has supplied to replicas of a resource. That
is, in the case that the maximum amount of food an agent p
has supplied is x to replicas of a resource i, p will supply
less than amount x of food to a replica of other resources
while p will supply no food to a replica of the resource i.
When p has supplied the same amount of food to replicas of
all resources p knows, p will supply the amount of food p
has to a next replica.

In this way of food supply, it is important for each
agent to supply food to replicas of many resources. How-
ever, when the value δ is much smaller than the number of
resources, each agent can supply food to only replicas of
δ resources before it kills itself. In this case, the replicas
that exist in large number can keep its large number since
many agents can meet the replicas. Therefore, the amount
of food each agent can supply at once should be limited to a
little amount. The more resources exist in the network, the
less amount of food each agent should supply to a replica
to guarantee that the agent supplies food to replicas of many

IZUMI et al.: REPLICA DENSITY CONTROL
1133

a. Random networks (n(t) = 5000) b. Scale-free networks (n(t) = 5000)

Fig. 6 Simulation results of the second algorithm on static networks.

resources. On the other hand, the larger amount of food each
agent has, the larger amount of food each agent should sup-
ply to a replica since each agent has to supply the amount
δ · RF of food during CYCLE time units. Thus, in the pro-
posed algorithm, the amount of food each agent supplies to
a replica on a visited node is less than RF · δ/(C · kind(t)),
where kind(t) is the number of resources at time t and C is a
positive value.

Based on the above discussion, the amount of food
each agent p supplies to a replica ih of resource i on a visited
node is represented by

min{RF − eat food(ih), foodp, Fp(i),

RF · δ/(C · kind(t))}.
In the above method, it is necessary for each node to

know the number kind(t) of resources at time t. To estimate
the number kind(t), each node v has the set rsc listv of re-
source identifiers believed to exist in the network. The node
v can obtain the information about existing resources from
the agents visiting v, that is, the identifiers of resources the
visiting agent has fed food are added to the set rsc listv.

Another problem we should consider is deletion of re-
sources from the network. We consider dynamic networks
that resources may be deleted by their original node. When
an original node of a resource i decides deletion of i, the
replicas of resource i also need to be deleted from the net-
work. To feed no food to the replicas of the deleted resource,
an original node keeps the set of identifiers of resources the
node has deleted. Each agent p has the set del listp and col-
lects the identifiers of the deleted resources on the visited
nodes. If agent p finds the replica of the resource included
in the set del listp, the replica is deleted from the network.

5.2 Simulation Results

Now, we show simulation results of the second algorithm.
In the simulation, the behavior and the initial locations of
agents are determined in the same way as that in Sect. 4.2.
The positive value C is set to 1.0.

Simulation results for static networks. Figure 6 shows the
results for “static” networks. The network is created by the

way presented in Sect. 4.2. In the simulation, the length CY-
CLE of the time interval is set to 1,000. The network size
n(t) is fixed at 5,000 during the simulation. The number of
resources is set to 5,000, and the value δ is set to 50 and 100.
That is, the number of replicas of each resource should be
kept to 50 and 100 respectively. The initial number of repli-
cas of each resource is set to a random value from 1 to 200.
In Fig. 6, we show the transition of the replica density of
two resources chosen randomly from the 5,000 resources on
each case of δ is 50 and 100. The x-axis is a time scale and
the y-axis is the number of replicas of the chosen resources
in the network at the time in Fig. 6.

The simulation results in Fig. 6 show that the number
of replicas converges to and stabilizes at the target number
respectively. The average difference ratio of 5,000 resources
at the end of the simulation is less than 0.07. In the case
that the initial number of replicas is large, the number of
replicas is not decreased as much as Fig. 4. This is caused
by difference of the amount of food an agent supplied. In
this simulation, each replica can eat enough amount of food
by meeting only one agent since a created agent initially has
50·RF amount of food while each replica must meet many
agents to survive in the simulation of Fig. 4.

Simulation results for dynamic networks. Figure 7 shows
the simulation results for “dynamic” networks in which the
network size n(t) varies with time. The networks change in
the same way as the simulation in Sect. 4.2. Note that the
number of resources remains unchanged: when the origi-
nal node v of resource i leaves from the network, node v
sends the original resource i to one of its neighbors, and the
neighbor becomes the original node of the resource i. In the
simulation, the length CYCLE of the time interval is set to
1,000, the number of resources is set to 5,000, and the value
δ is set to 50. Since the network size varies with time, the
target number of replicas of each resource also varies with
time. The target number of replicas of each resource is 50 at
time 0, about 35 at time 7,500 and about 48 at the end of the
simulation. The initial number of replicas of each resource
is set to 50.

In Fig. 7, we show the transition of the number of repli-
cas of a resource chosen randomly from 5,000 resources.
The y-axes on the left and the right are the number of repli-

1134
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

a. Random networks (n(0) = 5000, r(0) = 50, δ = 50) b. Scale-free networks (n(0) = 5000, r(0) = 50, δ = 50)

Fig. 7 Simulation results of the second algorithm on dynamic networks with changes of the network
size.

a. Random networks (n(0) = 5000, r(0) = 50, δ = 50) b. Scale-free networks (n(0) = 5000, r(0) = 50, δ = 50)

Fig. 8 Simulation results of the second algorithm on dynamic networks with changes of the number
of resources.

cas of the chosen resource and nodes in the network at the
time respectively. These simulation results also show the
replica density is adaptively adjusted in response to changes
in the network size.

In the simulations presented on Fig. 8, the number of
resources changes. When the number of resources becomes
larger, the target number of replicas of each resource be-
comes smaller. On the other hand, when the number of re-
sources becomes smaller, the target number becomes larger.
In the simulation results of Fig. 8, the network size n(t) is
fixed at 5,000, the length CYCLE is set to 1,000 time units,
the value of δ is set to 50 and the initial number of replicas
of each resource is set to 50. The initial number of resources
is 5,000 (the target number is 50), and about 1,550 resources
are deleted from the network at time 10,000 of the simula-
tion (the target number becomes about 73), and about 1,550
resources are added to the network at time 20,000 of the
simulation (target number becomes about 50). The deleted
resources are chosen randomly.

In Fig. 8, the y-axis is the number of replicas of the
chosen resources in the network at the time. The simulation
results show the adaptation of the replica density to changes
in the number of resources. In addition, these results also
show that replicas of deleted resources quickly deleted from
the network because of no supplied food. When new re-
sources are adding in the networks, the target number of
replicas of each resource is decreasing. In the simulation,

however, the number of replicas of a preexisting resource
cannot be decreased immediately. The reason of this is that
immediately after a new resource is added, the number of
replica of the new resource is small and the replicas of the
preexisting resource are supplied food for the new resource.

6. Conclusions

In this paper, we have proposed two distributed algorithms
for the replica density control problem. The problem re-
quires us to adapt the total number of replicas to a given
constant fraction of the current network size and adapt the
number of replicas of each resource equally. The algorithms
are inspired by the single species population model. The
first algorithm is very simple and easily understandable. The
algorithm can adapt the current density of a single resource
to the current network size. To control multiple resources
by using the first algorithm, a large number of agents and
the identifiers of every resource are required at each node.
The second algorithm controls densities of all resources. As
a result, the number of agents created periodically is n(t)
regardless of the number of resources. Moreover, in the sec-
ond algorithm, each node estimates the number of resources
to supply food at an amount corresponding to the number
of resources, but does not need to have the exact knowledge
about all resources. The simulation results show that the
proposed algorithms can adequately adjust the number of

IZUMI et al.: REPLICA DENSITY CONTROL
1135

replicas in dynamic networks. In addition, from the simula-
tion results, the lifetime of each replica becomes sufficiently
long by setting an appropriate value to algorithm parameter
CYCLE.

By applying our algorithms, it is also possible to con-
trol the number of replicas of each resource depending on its
popularity if a popularity distribution of resources is given.
One of the methods to realize popularity-based control is
that some copies of an original resource are created depend-
ing on its popularity and identified as different resources
(e.g., each copy is assigned a different resource ID). Since
our algorithm keeps the number of replicas of each resource
equally, the method can keep the number of replicas of a
resource proportional to its popularity.

In this paper, we focus on only the number of replicas.
In real systems that provide resource replication, allocation
of replicas is also very important. Our future work is to de-
velop the replica allocation algorithm for improving system
performance: agents determine allocations of new replicas
from network conditions that agents can learn by traversing
over the network. Another future work is to propose a mi-
gration pattern of an agent for supplying food efficiently. In
this paper, each agent makes a random walk independently.
It remains possible that agents can supply food efficiently
by using higher technical migration pattern such as a walk
based on the amounts of food neighbor nodes have or the
degree of neighbor nodes.

Acknowledgements

This work is supported in part by Grant-in-Aid for Scien-
tific Research((B)19300017, (B)17300020, (B)20300012)
of JSPS, Grant-in-Aid for Young Scientists ((B)18700059,
(B)19700058) of JSPS, Global COE (Centers of Excellence)
Program of MEXT, the Hori Information Science Promotion
Foundation, and the Kayamori Foundation of Informational
Science Advancement.

References

[1] “The bio-networking architecture,”
http://netresearch.ics.uci.edu/bionet/

[2] “The anthill project,” http://www.cs.unibo.it/projects/anthill/
[3] O. Babaoglu, H. Meling, and A. Montresor, “Anthill: A framework

for the development of agent-based peer-to-peer systems,” Proc.
22th International Conference on Distributed Computing Systems,
pp.15–22, 2002.

[4] J. Suzuki and T. Suda, “Design and implementation of a scalable
infrastructure for autonomous adaptive agents,” Proc. 15th IASTED
International Conference on Parallel and Distributed Computing and
Systems, pp.594–603, Nov. 2003.

[5] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A
distributed anonymous information storage and retrieval system,”
Proc. Workshop on Design Issues in Anonymity and Unobservabil-
ity, pp.46–66, July 2000.

[6] Gnutella.com. http://www.gnutella.com
[7] K. Miura, T. Tagawa, and H. Kakugawa, “A quorum-based protocol

for searching objects in peer-to-peer networks,” IEEE Trans. Parallel
Distrib. Syst., vol.17, no.1, pp.25–37, 2006.

[8] Y. Drougas and V. Kalogeraki, “A fair resource allocation algo-

rithm for peer-to-peer overlays,” Proc. 24th Conference on Com-
puter Communications, pp.2853–2858, March 2005.

[9] M.R. Korupolu, C.G. Plaxton, and R. Rajaraman, “Placement al-
gorithms for hierarchical cooperative caching,” Proc. 10th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp.586–595, Jan.
1999.

[10] S. Tewari and L. Kleinrock, “Proportional replication in peer-to-peer
networks,” Proc. 25th IEEE International Conference on Computer
Communications, April 2006.

[11] E. Cohen and S. Shenker, “Replication strategies in unstruc-
tured peer-to-peer networks,” Proc. 2002 SIGCOMM Conference,
pp.177–190, Oct. 2002.

[12] T. Suzuki, T. Izumi, F. Ooshita, and T. Masuzawa, “Self-adaptive
mobile agent population control in dynamic networks based on
the single species population model,” IEICE Trans. Inf. & Syst.,
vol.E90-D, no.1, pp.314–324, Jan. 2007.

[13] T. Suzuki, T. Izumi, F. Ooshita, H. Kakugawa, and T. Masuzawa,
“Bio-inspired replica density control in dynamic networks,” Proc.
2nd International Workshop on Biologically Inspired Approaches to
Advanced Information Technology, Jan., 2006.

[14] V.A. Pham and A. Karmouch, “Mobile software agents: An
overview,” IEEE Commun. Mag., vol.36, no.7, pp.26–36, July 1998.

[15] A.R. Silva, A. Romao, D. Deugo, and M. Mira, “Towards a reference
model for surveying mobile agent systems,” Autonomous Agents
and Multi-Agent System, vol.4, no.3, pp.187–231, 2001.

[16] R. Haberman, Mathematical Model: Population Dynamics, Prentice
Hall, 1977.

[17] R. Albert and A.L. Barabasi, “Statistical mechanics of complex net-
works,” Reviews of Modern Physics, vol.74, no.1, pp.47–97, Jan.
2002.

[18] A.L. Barabasi and E. Bonabeau, “Scale-free networks,” Scientific
American, vol.288, pp.50–59, May 2003.

Tomoko Izumi received the B.E., M.E. and
D.I. degrees in computer science from Osaka
University in 2003, 2005 and 2008. She is now
a postdoctoral researcher of Center for Social
Contribution and Collaboration, Nagoya Insti-
tute of Technology. Her research interests in-
clude distributed algorithms. She is a member
of IEEE.

Taisuke Izumi received the M.E. and D.I.
degrees in computer science from Osaka Uni-
versity in 2003 and 2006. He is now an Assistant
Professor of Graduate School of Engineering,
Nagoya Institute of Technology. His research
interests include distributed algorithms. He is a
member of ACM and IEEE.

1136
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Fukuhito Ooshita received the M.E. and
D.I. degrees in computer science from Osaka
University in 2002 and 2006. Since 2003, he
has been an Assistant Professor in the Graduate
School of Information Science and Technology
at Osaka University. His research interests in-
clude parallel algorithms and distributed algo-
rithms. He is a member of ACM, IEEE, and
IPSJ.

Hirotsugu Kakugawa received the B.E.
degree in engineering in 1990 from Yamaguchi
University, and the M.E. and D.E. degrees in
information engineering in 1992, 1995 respec-
tively from Hiroshima University. He is cur-
rently an associate professor of Osaka Univer-
sity. His research interests include distributed
algorithms. He is a member of IEEE Computer
Society and Information Processing Society of
Japan.

Toshimitsu Masuzawa received the B.E.,
M.E. and D.E. degrees in computer science from
Osaka University in 1982, 1984 and 1987. He
had worked at Osaka University during 1987–
1994, and was an associate professor of Grad-
uate School of Information Science, Nara Insti-
tute of Science and Technology (NAIST) during
1994–2000. He is now a professor of Gradu-
ate School of Information Science and Technol-
ogy, Osaka University. He was also a visiting
associate professor of Department of Computer

Science, Cornell University between 1993–1994. His research interests in-
clude distributed algorithms, parallel algorithms and graph theory. He is a
member of ACM, IEEE, EATCS and the Information Processing Society
of Japan.

