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Computational Complexities of University Interview Timetabling∗

Naoyuki KAMIYAMA†a), Yuuki KIYONARI††b), Nonmembers, Eiji MIYANO††c),
Shuichi MIYAZAKI†††d), and Katsuhisa YAMANAKA††††e), Members

SUMMARY This paper introduces a new timetabling problem on uni-
versities, called interview timetabling. In this problem, some constant num-
ber, say three, of referees are assigned to each of 2n graduate students. Our
task is to construct a presentation timetable of these 2n students using n
timeslots and two rooms, so that two students evaluated by the same referee
must be assigned to different timeslots. The optimization goal is to mini-
mize the total number of movements of all referees between two rooms.
This problem comes from the real world in the interview timetabling in
Kyoto University. We propose two restricted models of this problem, and
investigate their time complexities.
key words: timetable, scheduling, optimization, computational complexity

1. Introduction

The problem discussed in this paper is based on a real-world
problem appeared in university time-scheduling. In the De-
partment of Intelligence Science and Technology, Graduate
School of Informatics, Kyoto University, there are approx-
imately 20 professors, and 40 graduate course students in
each year. In the final year of the course, every student sub-
mits a research thesis, and presents his/her work in twenty
minutes to obtain a master degree. This presentation meet-
ing is scheduled in parallel using two rooms. All professors
are required to attend a presentation in either room.

For each student, three professors are assigned as refer-
ees basically according to the presentation topic and profes-
sors’ research fields. It is mandatory for referees to attend
and evaluate the assigned students’ presentations. Hence, if
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a professor evaluates two or more students and if their pre-
sentations are scheduled in different rooms, the professor
needs to move from one room to the other. Our goal is to
construct a time-schedule minimizing the cost of the sched-
ule, that is, the total number of movements of all professors.

For the time-schedule to be feasible, no two students
must be assigned to the same timeslot if they share a com-
mon referee. Observe that a feasible solution can be found
in polynomial time (if any): What we have to do is only con-
struct the following graph G, and find its maximum match-
ing: Each vertex vi of G corresponds to a student si. There
exists an edge between vi and v j if and only if si and s j do
not share a common referee. Then, it is not hard to see that
a perfect matching in G gives a feasible solution (assuming
that the number of students is even).

So, if we do not care about the cost, obtaining a feasible
schedule is somehow easy. Hence, we consider the problem
of finding a minimum cost schedule, given an initial feasible
solution. We will consider the following two problems, de-
noted by Room and Order (see Sect. 2 for their formal defi-
nitions). Room takes an initial feasible solution as an input,
as well as an assignment of referees to students. We are al-
lowed only to exchange the rooms of two students assigned
to the same timeslot by the given initial solution, but are not
allowed to change the assigned timeslot. The second prob-
lem, called Order, takes the same input as Room. It allows
only to exchange the timeslots of two pairs of students, but
does not allow to change the assigned rooms. (Note that, in
each problem, an application of the operation does not break
the feasibility of a schedule.) It is natural to assume that the
number of students assigned to each referee and the number
of referees assigned to each student are bounded by some
constants, say s and t, respectively. We call such an instance
(s, t)-bounded. The problem Room(s, t) is Room whose in-
stances are (s, t)-bounded, and Order(s, t) is defined simi-
larly. The purpose of this paper is to investigate the time
complexity of Room(s, t) and Order(s, t).

Our Contributions. By definition, Room(1, t) can be
solved in polynomial time for any t. This paper
shows that (i) Room(2, 1) is also polynomial-time solvable,
(ii) Room(2, 2) is NP-hard, and (iii) Room(3, 1) is NP-
hard. Note that for s ≥ s′ and t ≥ t′, Room(s, t) in-
cludes Room(s′, t′), and thus Room(3, 1) and Room(2, 2) are
minimal superclasses of Room(2, 1). So, the complexity of
Room(s, t) is determined for any s and t by the above results.
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As for the complexity of Order, Order(2, t) can be
solved in polynomial time for any t by definition. We
show that (iv) Order(3, 1) can be solved in polynomial
time, (v) Order(6, 1) is NP-hard, and (vi) Order(4, 2)
is NP-hard. This leaves the complexity of Order(4, 1),
Order(5, 1), and Order(3, t) (t ≥ 2) open.

Related Work. In educational timetabling, a set of re-
sources such as teachers, students, rooms, and lectures must
be assigned to a set of timeslots subject to certain hard and
soft constraints. There are three main categories in educa-
tional timetabling, namely, school (or class-teacher), univer-
sity course, and exam timetabling (e.g., see [9]). There are a
large number of researchers investigating in detail the com-
plexity of university timetabling [2]–[6], [10].

The interview timetabling problem treated in this pa-
per can be regarded as the classical examination timetabling
problem by considering students and referees in the former
problem as exams and students in the latter problem, respec-
tively. However, interesting parameter setting where we can
derive a boundary between P andNP-hard is the case when
s and t are small. For such settings, it is natural to interpret
the problem as the interview timetabling rather than exami-
nation timetabling.

2. Problem Definition

We formally define the problem Room and Order. Let S =
{s1, s2, . . . , s2n} be a set of students, and P = {p1, p2, . . . , pm}
be a set of professors, where n and m are positive integers.
A referee-assignment A is a subset of S × P. Intuitively,
(si, p j) ∈ A means that professor p j is assigned to student si

as a referee by A. For integers s and t, a referee-assignment
A is called (s, t)-bounded if every professor appears at most
s times, and every student appears at most t times in A. R =
{r1, r2} is a set of rooms, and T = {t1, t2, . . . , tn} is a set of
timeslots. A schedule C is a one-to-one mapping from S to
T × R. Intuitively, if si is mapped to (t j, rk), si will give a
presentation at timeslot t j in room rk. A schedule C is called
infeasible if there are two students si and s j, and a professor
p such that both (si, p) and (s j, p) are in A, and si and s j are
mapped to the same timeslot under C. If C is not infeasible,
it is called feasible.

Let C be a feasible schedule, and p be a professor who
appears k times in a referee-assignment A, namely, (si j , p) ∈
A (1 ≤ j ≤ k). Suppose that C maps si j to room rx j and
timeslot ty j for each j. Without loss of generality, assume
that ty1 < ty2 < · · · < tyk . Then, the cost of a professor
p in a schedule C, denoted by cost(C, p), is the number of
alternations between r1 and r2 in the string rx1 rx2 · · · rxk . The
cost of a schedule C is

∑
p∈P cost(C, p).

For example, see a referee-assignment illustrated in
Fig. 1: There are six students s1 through s6 and six profes-
sors p1 through p6. Student s1 is evaluated by two profes-
sors p1 and p2, and so on. One example of a schedule, say
C1, is illustrated in Fig. 2. In C1, students s1 through s3, and
students s4 through s6 are scheduled to rooms r1 and r2, re-

Fig. 1 Example of referee-assignment.

Fig. 2 Schedules C1, C2 and C3.

spectively, in this order of timeslots. Then the cost of p1 in
the schedule C1 is 2 since p1 has to move twice, from r1 to
r2 and then from r2 to r1. The costs of p2 and p3 are 1 and
0, respectively. As a result, the cost of the schedule C1 is
2 + 1 + 0 + 1 + 0 + 0 = 4.

Now, we are ready to formally define the problems
Room and Order.

Problem Room(s, t)
Input: S , P, R, T , A, and a feasible schedule C,

where A is (s, t)-bounded.
Output: A feasible schedule C′ such that every

student is assigned to the same timeslot by C and
C′.

Optimization criteria: Minimize cost(C′).

Problem Order(s, t)
Input: S , P, R, T , A, and a feasible schedule C,

where A is (s, t)-bounded.
Output: A feasible schedule C′ such that for any

pair of students si and s j, if si and s j are assigned
to the same timeslot by C, then they are assigned
to the same timeslot by C′. Also, every student is
assigned to the same room by C and C′.

Optimization criteria: Minimize cost(C′).

For example, C2 in Fig. 2 is one possible output of Room
when C1 in Fig. 2 is an input schedule. C2 is the result of
exchanging rooms of s2 and s5, by which we can improve
the cost of schedule to 3. C3 in Fig. 2 is one possible output
of Order when C1 is an input, and its cost is 3.

3. Complexity of Room

It is trivial that Room(1, t) can be solved in polynomial time
for any t because no professor needs to move and hence the
cost is 0 for any schedule.

3.1 Polynomial-time Solvability of Room(2, 1)

Let us call two students who are assigned to the same times-
lot by an input schedule a student-pair (or simply, a pair).
In the algorithm described later, if we write a student-pair
[si, s j], it means that si and s j are assigned to rooms r1 and
r2, respectively, by the current schedule. By “flip a student-
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pair [si, s j]”, we mean to exchange the rooms of si and s j,
namely, we change [si, s j] to [s j, si].

Without loss of generality, we assume that each stu-
dent is evaluated by exactly one professor (namely, there is
no student to whom no referee is assigned). So, if professor
p is assigned to student s by A, we write A(s) = p for con-
venience. For a student s, room(s) denotes the room which
s is assigned by the current schedule.

Starting from an initial schedule C, our algorithm de-
cides, for each student-pair, whether to flip it or not, in a se-
quential manner. It first selects an arbitrary pair, say [u, v],
and fix the rooms of this pair. It next selects a pair [x, y]
such that either x or y is evaluated by A(u). If it is x, namely
A(u) = A(x), we leave the rooms of x and y unchanged,
so that the professor A(u) does not have to move, and the
next target professor is A(y). If it is y, then we flip the pair
[x, y], so that A(u) does not need to move, and the next tar-
get professor is A(x). In this way, it continues determining
the rooms of pairs, so that a target professor does not have
to move. If there is no pair to be selected, we go back to
the initial pair [u, v], and start the same operations from the
other professor A(v). When there is no pair to be selected,
the algorithm closes this “chain”, and starts the next phase
by selecting another initial pair.

During the execution, a pair takes one of two statuses,
processed and unprocessed. Initially, all pairs are unpro-
cessed, and eventually every pair turns processed. Once it
becomes processed, it never becomes unprocessed again.
The whole description of our algorithm GREEDY Flip is
given in Fig. 3.

Theorem 1: Algorithm GREEDY Flip runs in polynomial
time, and outputs an optimal solution for Room(2, 1).

Proof. Its time complexity is clearly polynomial. We show
that it outputs an optimal solution. Call the set of pairs pro-
cessed during the same round of the while-loop of lines 3
through 22 a block. It is not hard to see that if students si

and s j are in different blocks, then A(si) � A(s j). For, sup-
pose not, i.e., si and s j are in different blocks, say B and B′,
respectively, and A(si) = A(s j)(= p). Then, since A is (2, 1)-
bounded, p appears once in B and once in B′. Without loss
of generality, suppose that B was created before B′. Then,
when the algorithm completes the block B, any pair in B′ is
unprocessed. This means that there is a pair satisfying the
condition at line 6 or 14, a contradiction. So, there arises no
cost between blocks, and hence, we only have to care about
the cost within each block.

Consider an arbitrary block B. Let [u, v] be the pair
selected at line 3 to start constructing this block. Let
[sa

1,1, s
a
1,2], [sa

2,1, s
a
2,2], · · · , [sa

�,1, s
a
�,2] be pairs added to B in

this order during the execution of the while-loop at lines 6
through 13. Then, it is not hard to see that A(u) = A(sa

1,1),
A(sa

1,2) = A(sa
2,2), A(sa

2,1) = A(sa
3,1), · · ·, and A(sa

�−1,1) =
A(sa
�,1) if � is odd, and A(sa

�−1,2) = A(sa
�,2) if � is even. Simi-

larly, let [sb
1,1, s

b
1,2], [sb

2,1, s
b
2,2], · · · , [sb

�′,1, s
b
�′,2] be pairs added

in this order to B, during the execution of the while-loop at
lines 14 through 21. Then, A(v) = A(sb

1,2), A(sb
1,1) = A(sb

2,1),

Fig. 3 Algorithm GREEDY Flip.

A(sb
2,2) = A(sb

3,2), · · ·, and A(sb
�′−1,1) = A(sb

�′,1) if �′ is even,
and A(sb

�′−1,2) = A(sb
�′,2) if �′ is odd. It results that the cost

arising from this block is at most one.
Now, let C be the schedule obtained by the algorithm

GREEDY Flip, and let B be any block which causes the cost
of one in C. By the above observation, we can list pairs in
B as [s1,1, s1,2], [s2,1, s2,2], · · · , [s�,1, s�,2] such that A(s1,2) =
A(s2,2), A(s2,1) = A(s3,1), A(s3,2) = A(s4,2), · · · , A(s�−1,1) =
A(s�,1), and A(s�,2) = A(s1,1), where � is odd. Namely, the
professor A(s�,2) has to move once. One can easily see that
in any schedule, this set of pairs causes the cost of one,
which proves the optimality of C. �

3.2 NP-hardness of Room(2, 2)

Theorem 2: Room(2, 2) is NP-hard.

Proof. Let us consider the following problem, called MAX
E2LIN2: We are given n variables x1, x2, · · · , xn and m equa-
tions each with exactly two variables, xi1 ⊕ xi2 = ai (1 ≤ i ≤
m), where ai ∈ {0, 1}. We are asked to assign 0 or 1 to vari-
ables so that the number of satisfied equations is maximized
(we denote by cost(C) the number of satisfied equations by
an assignment C). MAX E2LIN2(3) is a restriction of MAX
E2LIN2 where each variable appears at most three times in
the given equations. It is known that MAX E2LIN2(3) is
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NP-hard [1]. NP-hardness of Room(2, 2) is proved by a
polynomial-time reduction from MAX E2LIN2(3).

Given an instance I of MAX E2LIN2(3) with n vari-
ables and m equations, we construct an instance I′ of
Room(2, 2). For each variable xi (1 ≤ i ≤ n), we create a
timeslot ti and a student-pair [si,1, si,2] who are assigned to
the timeslot ti, and for each equation e j : x j1 ⊕ x j2 = a j

(1 ≤ j ≤ m), we create a professor p j. Referee-assignment
A is constructed as follows. Consider the j-th equation e j

(1 ≤ j ≤ m). If it is of the form x j1 ⊕ x j2 = 0, then either
(a1) add (s j1,1, p j) and (s j2,1, p j) to A, or (a2) add (s j1,2, p j)
and (s j2,2, p j) to A. (We will later show which one should be
selected. For a while, consider to take an arbitrary one.) If
x j1 ⊕ x j2 = 1, then either (b1) add (s j1,1, p j) and (s j2,2, p j) to
A, or (b2) add (s j1,2, p j) and (s j2,1, p j) to A.

For example, consider the following instance of MAX
E2LIN2(3), consisting of five variables and seven equations:
x1 ⊕ x5 = 1, x2 ⊕ x3 = 0, x1 ⊕ x3 = 0, x4 ⊕ x5 = 1, x2 ⊕
x4 = 1, x1 ⊕ x2 = 1, and x3 ⊕ x5 = 0. Then, Fig. 4 is
one possible instance constructed from these equations. For
example, since the equation e1 contains two variables x1 and
x5, the corresponding professor p1 is assigned to students in
the first and the fifth timeslots. Furthermore, since e j is of
the form x1 ⊕ x5 = 1, p1 is assigned to different rooms.
(Recall that we have another choice, namely, p1 could be
assigned to s1,1 and s5,2.)

Observe that each professor appears twice in I′ since
each equation contains two variables. However, three ref-
erees may be assigned to one student since a variable can
appear three times (see s3,2 of Fig. 4). Hence at this mo-
ment, a constructed instance is (2, 3)-bounded. We will later
show that it can be modified to (2, 2)-bounded.

We will show that an optimal solution for I can be com-
puted from an optimal solution for I′ in polynomial time.
Let C′ be an optimal schedule for I′. We will construct a
solution C for I. For a pair of students si,1 and si,2, if they
are scheduled as [si,1, si,2] (i.e., their assigned rooms are the
same as the initial schedule), set xi = 0. Otherwise, set
xi = 1. We show that cost(C) + cost(C′) = m: Consider
a professor pj. We see that p j contributes exactly once to
cost(C) or cost(C′). There are four possible ways to de-
termine students he/she evaluates by the reduction, namely,
(a1), (a2), (b1), and (b2). Here we check only (a1), namely,
the j-th equation is x j1 ⊕ x j2 = 0, and p j evaluates s j1,1 and
s j2,1; other cases can be checked similarly. Assume that
p j has to move in schedule C′, i.e., he/she contributes to
cost(C′). Then students s j1,1 and s j2,1 are assigned to dif-

Fig. 4 An example of the translated instance of Room(2, 3).

ferent rooms by C′, namely, one of them is assigned to the
same room as the initial schedule, and the other to the dif-
ferent room. By the construction of C, x j1 = 1 and x j2 = 0,
or x j1 = 0 and x j2 = 1 under C, namely, the equation e j is
unsatisfied, and p j does not contribute to cost(C). By a sim-
ilar observation, if pj does not need to move, then equation
e j is satisfied. To show the optimality of C by contradic-
tion, assume that there is an assignment C0 for I such that
cost(C0) > cost(C). Then, it is not hard to see that we can
construct a schedule C′0 for I′ such that cost(C0)+cost(C′0) =
m by the reverse operation of the above construction. Then,
cost(C′0) = m − cost(C0) < m − cost(C) = cost(C′), which
contradicts the optimality of schedule C′.

It remains to show that the above reduction can be mod-
ified so that I′ is (2, 2)-bounded. Recall that when we con-
struct a referee-assignment, we have two choices.

For x j1 ⊕ x j2 = 0, (a1) (s j1,1, p j), (s j2,1, p j) ∈ A, or
(a2) (s j1,2, p j), (s j2,2, p j) ∈ A.

For x j1 ⊕ x j2 = 1, (b1) (s j1,1, p j), (s j2,2, p j) ∈ A, or
(b2) (s j1,2, p j), (s j2,1, p j) ∈ A.

Consider a student-pair [si,1, si,2]. Since each variable
appears at most three times, the number of professors who
evaluates si,1 or si,2 is at most three in total. If, for example,
two and one referees are assigned to si,1 and si,2, respec-
tively, then the condition is satisfied. However, it is possible
that, for example, three and zero referees are assigned to si,1

and si,2, respectively, if we choose (a1) or (a2) ((b1) or (b2))
arbitrarily. Using the following problem, called Modified-
NAE 3SAT, we will resolve this problem and guarantee the
resulting instance to be (2, 2)-bounded.

Modified-NAE (Not-All-Equal) 3SAT is a modification
of NAE 3SAT [8]. We are given a set of clauses, where each
clause contains at most three literals. A clause with three
literals is unsatisfied if and only if all three literals have the
same value. A clause with one or two literals is satisfied
by any assignment. Modified-NAE 3SAT(2) is a special
case of Modified-NAE 3SAT where each variable appears
exactly twice. Now, construct an instance f of Modified-
NAE 3SAT(2) as follows: A variable y j of f corresponds to
an equation e j of instance I of MAX E2LIN2(3). A clause
Ci of f corresponds to a variable xi of I. If the j-th equation
of I is x j1 ⊕ x j2 = 0, then add y j to both C j1 and C j2 . If the
j-th equation of I is x j1 ⊕ x j2 = 1, then add y j to C j1 and
its negation y j to C j2 . It is not hard to see that each clause
contains at most three literals since each variable of I ap-
pears at most three times. Also, note that each variable of f
appears twice since each equation of I contains exactly two
variables. As will be shown in Lemma 1, f is always satis-
fiable and a satisfying truth assignment, say P, can be found
in polynomial time. We decide which of (a1) and (a2) ((b1)
and (b2)) to select according to this satisfying assignment
P. For a variable x, we denote by P(x) the value assigned
to x by P. Suppose that the j-th equation is x j1 ⊕ x j2 = 0.
If P(y j) = 0 then select (a1), otherwise select (a2). Suppose
that the j-th equation is x j1⊕ x j2 = 1. If P(y j) = 0 then select
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(b1), otherwise select (b2).
The above construction results in a (2, 2)-bounded in-

stance. For, suppose not, and assume that there is a pair of
students [si,1, si,2], where, for example, three referees are as-
signed to si,1. Then, by the construction of the above f , all
literals in clause Ci have value 0, contradicting the fact that
P is a satisfying assignment. Similarly, if si,2 receives three
referees, then all literals in Ci are 1, and again, a contradic-
tion. �

Lemma 1: Any instance of Modified-NAE 3SAT(2) is sat-
isfiable, and furthermore, there is a polynomial-time algo-
rithm to find a satisfying assignment.

Proof. We give a rough idea of the algorithm finding a satis-
fying assignment. Note that clauses with one or two literals
are always satisfied. So, we first remove these clauses. We
will determine the value of variables one by one. Select a
clause C, and select any two variables in C, say, x and y.
Decide the value of these two variables so that they satisfy
C, namely, so that corresponding two literals in C take 0 and
1. Consider arbitrary one of these two variables, say x. If
there is no clause having x, stop. Otherwise, let C1 be the
clause that contains x. If other two variables of C1 are un-
determined yet, then select one of these two variables, say
z, and determine the value of z so that x and z satisfy C1. If
there is no clause having z, stop. Otherwise, select the clause
having z, regard this clause as new C1, and continue. Sup-
pose, at some moment, we encounter a clause such that one
variable has already been determined, namely, two variables
in total are determined currently. If the clause is satisfied by
these two variables, then we stop. If two literals have the
same value, take the third variable, and determine its value
so that it satisfies this clause, and continue. If we encounter
a clause whose two literals are already determined, then we
can see that it is already satisfied by those two literals. (For,
during this procedure, we never leave a clause having two
determined literals with the same value. In such a case, we
determine the value of the third variable instantly, as stated
above.) In this case, we stop. In this way, we will either find
a new clause, or stop.

If this “chain” stops, then we start a new chain from
the other variable y of C. If it also stops, then remove all
clauses we have already seen (those clauses are satisfied by
variables already determined). It is easy to see that all the
remaining clauses have three undetermined literals. We will
start a new chain by selecting an arbitrary clause, and repeat
the same procedure. �

3.3 NP-hardness of Room(3, 1)

Theorem 3: Room(3, 1) is NP-hard.

Proof. We use a similar reduction to the proof of Theorem 2.
Given an instance I of MAX E2LIN2(3), we construct an in-
stance I1 of Room(2, 3). This part is exactly the same to the
proof of Theorem 2. Again, consider an example instance of
MAX E2LIN2(3) we have used in the proof of Theorem 2.

Following Fig. 5 is one possible instance constructed from
MAX E2LIN2(3). (Only the assignment of professor p2 dif-
fers from Fig. 4.)

We then construct a (3, 1)-bounded instance I2 from I1,
and show that an optimal solution for I1 can be computed
in polynomial time from an optimal solution for I2, which
completes the proof of Theorem 3.

Consider two students s and s′ in I1, who are assigned
to the same timeslot ti. Recall that they are evaluated by at
most three professors in total. If the total number of profes-
sors assigned to s and s′ are exactly three, and if two and one
professors are assigned to s and s′, respectively, then we call
the professor assigned to s′ critical in timeslot ti. For exam-
ple, in Fig. 5, p2 is critical in t3. (Notice that neither p4 nor
p5 is critical in t4 because only two professors are assigned
to this timeslot.) If a professor p is critical in both times-
lots he/she appears, then p is called critical. For example, in
Fig. 5, p6 is critical. We will first modify I1 so that there is
no critical professor. This can be easily done as follows: If
p is critical, assign p to the student of the other room in both
timeslots p appears (see Fig. 6 (a)). Recall that we had two
choices in assigning each professor, (a1) and (a2) ((b1) and

Fig. 5 An example of the translated instance of Room(2, 3).

Fig. 6 (a) A modified Room(2, 3) instance obtained from Fig. 5, and (b) a
Room(3, 1) instance constructed from Fig. 6 (a).
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(b2)), from which we took arbitrary one in the previous sub-
section. The above operation means to replace the one with
the other possibility, which resolves the criticalness of p but
effects nothing to the reduction. We do this operation for all
critical professors independently, and let I′1 be the resulting
instance, (which is still only (2, 3)-bounded).

Next, we modify I′1, so that each student is evaluated
by at most one professor: Consider a timeslot ti. Recall that
at most three professors are assigned to this timeslot in total.

Case (1): If each student assigned to ti is evaluated by
at most one professor (as the timeslot t4 in Fig. 6 (a)), then
we leave this timeslot as it is.

Case (2): Suppose that three professors are assigned to
ti, all three for one student, say si,1, and zero for the other
student, say si,2 (as the timeslots t1 and t2 in Fig. 6 (a)). We
divide the timeslot ti into three timeslots ti1 , ti2 and ti3 , and
replace the student si,1 by three students si1,1, si2,1, and si3,1,
and the student si,2 by si1,2, si2,2, and si3,2 (see Fig. 6 (b)).
Assign each si j,k to the timeslot ti j and the room rk. Three
professors originally assigned to si,1 will be re-assigned to
three students si1,1, si2,1, and si3,1 introduced instead of si,1,
one professor for each student, in an arbitrary way. We then
introduce a new professor, say pi, independently of other
timeslots, and he/she is assigned to three students si1,2, si2,2,
and si3,2.

Case (3): Suppose that three professors are assigned to
ti, two of them for one student, say si,1, and one for the other
student, say si,2 (as the timeslot t3 in Fig. 6 (a)). We divide
the timeslot ti into two timeslots ti1 and ti2 , and replace the
student si,1 by two students si1,1 and si2,1, and the student si,2

by si1,2 and si2,2 (again, see Fig. 6 (b)). Assign each si j,k to
the timeslot ti j and the room rk. Two professors originally
assigned to si,1 will be re-assigned to two students si1,1 and
si2,1, one professor for each student, in an arbitrary way. One
professor originally assigned to si,2 will be re-assigned to
both students si1,2 and si2,2.

Case (4): Suppose that two professors are assigned to
ti, two of them for one student, say si,1, and zero for the other
student, say si,2. We will do a similar operation: Divide
the timeslot ti into two timeslots. Replace students si,1 and
si,2 by new (four) students. Assign two professors originally
assigned to si,1 to two new students for si,1, one professor for
one student, in an arbitrary way. Introduce a new professor
pi, and assign pi to both of two new students introduced for
si,2.

Now the translation is completed. It is not hard to see
that the modified instance is now (3, 1)-bounded: Each stu-
dent is evaluated by exactly one professor. Since we have al-
ready removed “critical professors”, who would appear four
times if we apply the above transformation, there can be no
professor appearing more than three times in the current in-
stance. It then remains to show that an optimal solution for
I1 can be computed by an optimal solution for I2 in polyno-
mial time.

Let C be a feasible solution for I2. Consider a timeslot
ti of I1, which is divided into two or three timeslots by the

above transformation. If, in C, all students in these times-
lots (created from ti) are scheduled in the same rooms as
the initial schedule, or all of them are scheduled in rooms
different from the initial schedule, we say that block i of C
is consistent. We show that consistency is the best policy;
namely, given any feasible solution C for I2, we can modify
C in polynomial time without increasing the cost, so that all
of its blocks become consistent. If this claim is true, we can
compute an optimal solution for I1 from an optimal solution
for I2 in the following way: Given an optimal solution C2

for I2, we make all blocks of C2 consistent without increas-
ing the cost. Then, we naturally translate C2 into a solution
C1 for I1. Namely, for each timeslot t j of I1, we consider
its corresponding timeslots (a block) in C2. Under C1, we
assign two students in t j to the same rooms as the initial
schedule of I1 if and only if all students in the correspond-
ing block are scheduled under C2 in the same rooms as the
initial schedule of I2. Then, it is not hard to see that the costs
of C1 and C2 are the same. (Note that professors newly in-
troduced in I2 do not cause any cost since each block of C2

is consistent and hence they do not need to move.) To show
the optimality of C1 in I1, suppose that there is a feasible so-
lution whose cost is smaller than cost(C1). Then, using the
reverse operation of the above one, we can construct a solu-
tion for I2 whose cost is smaller than cost(C2), contradicting
the optimality of C2.

Now, we will prove the above claim. We have three
cases to consider, corresponding to Cases (2) through (4).
We start from the easiest case, Case (4).

Case (4): Let si,1 and si,2 be students assigned to the
timeslot ti, and p1 and p2 be the professors assigned to si,1.

room r1 room r2

ti si,1 p1, p2 si,2

Suppose that, by the above transformation, ti is divided
into ti1 and ti2 , students are replaced, and professors are re-
assigned as the following table. (pi is the newly introduced
professor.)

room r1 room r2

ti1 si1,1 p1 si1,2 pi

ti2 si2,1 p2 si2,2 pi

Let C be a solution for I2, and suppose that the block i of C
is not consistent. Without loss of generality, assume that the
assignment looks like the following:

room r1 room r2

ti1 si1,1 p1 si1,2 pi

ti2 si2,2 pi si2,1 p2

Then, by exchanging the rooms of two students assigned to
ti2 , the cost decreases by at least one (since the cost of pi de-
creases by one), but the cost increases by at most one. (Note
that pi does not appear in other places. Also, p2 cannot ap-
pear in both before and after ti2 , since p2 appeared twice in
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I1, including in the timeslot ti. So, the cost increase caused
by p2 is at most one.) So, in this case, we can make the
block i consistent without increasing the cost.

Case (3): The corresponding block looks as follows.
(All of p1, p2 and p3 are professors originally existed in I1.)

room r1 room r2

ti1 si1,1 p1 si1,2 p3

ti2 si2,1 p2 si2,2 p3

If the block is inconsistent, then, without loss of generality,
we only need to consider the following case:

room r1 room r2

ti1 si1,1 p1 si1,2 p3

ti2 si2,2 p3 si2,1 p2

If we flip two students in ti2 , then we can similarly decrease
the cost of schedule by one, but this time, we may increase
the cost by two; this can happen when p3 is assigned to the
room r1 at the timeslot after ti2 , and p2 is assigned to r2 at
any timeslot. In such a case, however, we can claim that
p3 is not assigned to a timeslot before ti1 since p3 has al-
ready appeared three times. Then, we flip two students in
the timeslot ti1 , which decreases the cost of schedule by at
least one, but may increase the cost of p1 by at most one.

Case (2): We can treat this case similarly. By symme-
try, the inconsistent situations are the following two types:

room r1 room r2

ti1 si1,1 p1 si1,2 pi

ti2 si2,2 pi si2,1 p2

ti3 si3,1 p3 si3,2 pi

room r1 room r2

ti1 si1,1 p1 si1,2 pi

ti2 si2,1 p2 si2,2 pi

ti3 si3,2 pi si3,1 p3

In the former case, flipping two students in ti2 will decrease
the cost by at least two, but increases the cost by at most one.
In the latter case, flipping two students in ti3 will decrease
the cost by at least one, but increases the cost by at most one
(since p3 does not appear both before and after ti3 ).

�

4. Complexity of Order

Recall that the operation we are allowed in this problem is
only to decide the timeslots of student-pairs. Hence, as the
simplest example, if each professor evaluates at most two
students, any exchange operation of student-pairs does not
change the cost of the schedule. It follows that Order(s, t)
can be solved in polynomial time for s ≤ 2 and any t since
any solution is optimal.

4.1 Polynomial-time Solvability of Order(3, 1)

In this section we present a polynomial-time algorithm
to find an optimal solution for Order(3, 1). Note that if
a professor p appears at most twice in an input referee-
assignment, cost(C, p) is the same for any schedule C
as mentioned previously. Even if p appears three times,
cost(C, p) = 0 for any C if all three students are assigned
to the same room by the input schedule. These professors
are called non-potential professors. If p appears three times,
and if two of his/her students are assigned to one room, and
the other one is assigned to the other room, his/her cost can
be one or two depending on the schedule. We call these pro-
fessors potential professors. As in the case of Room(2, 1),
let A(s) denote the referee assigned to student s.

Similarly to the algorithm GREEDY Flip, a student-
pair takes one of two statuses, processed and unprocessed.
Our algorithm constructs several blocks of student-pairs.
Starting from an arbitrary initial student-pair [u, v] (line 3),
it selects a student-pair [x, y] where A(u) = A(x) and A(u) is
a potential professor, if any. It schedules [x, y] to the times-
lot next to [u, v], so that two students evaluated by professor
A(u) are assigned at continuous timeslots in the same room.
Next, it selects a pair [w, z] such that A(y) = A(z) and A(y)
is a potential professor, if any, and schedules [w, z] to the
timeslot next to [x, y], and so on (lines 6 through 10). When
there is no pair to be selected, it then goes back to [u, v], and
performs the same operations by starting from A(v). How-
ever, this time, it schedules new pairs to previous timeslots
of [u, v], one by one (lines 11 through 16). When there is no
pair to be selected, the algorithm completes the block, and
proceeds to the next while-loop (line 3) to construct a new
block. Finally, blocks are scheduled in an arbitrary order.
Figure 7 describes Algorithm GREEDY Select.

Theorem 4: Algorithm GREEDY Select runs in polyno-
mial time, and outputs an optimal solution for Order(3, 1).

Proof. It is easy to see that GREEDY Select runs in poly-
nomial time. Recall that non-potential professors cause the
same cost in any schedule. Hence, we are interested in only
potential professors. Also, recall that each potential profes-
sor causes a cost of one or two. We show that every poten-
tial professor causes cost one in our output schedule, which
completes the optimality proof.

To see this, consider an arbitrary potential professor p,
and suppose that p evaluates three students sp1, sp2, and sp3.
Without loss of generality, suppose that two students, say sp1

and sp2 are scheduled in the same room. First, assume that
it is r1. Then three student-pairs must be [sp1, sx], [sp2, sy],
and [sz, sp3] for some students sx, sy, and sz. Without loss of
generality, assume that [sp1, sx] is processed before [sp2, sy].

First, suppose that [sp1, sx] is processed at line 4. Then,
[sp2, sy] is selected right after this process (line 6), and
scheduled to the timeslot next to [sp1, sx] (line 7), namely,
[sz, sp3] is not assigned to the timeslot between those of
[sp1, sx] and [sp2, sy]. Next, observe that [sp1, sx] is not pro-
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Fig. 7 Algorithm GREEDY Select.

cessed at line 7 since for this to happen, [sp2, sy] must be
processed just before this execution, a contradiction. Now,
suppose that [sp1, sx] is processed at line 9. Then, at the next
execution of line 6, [sp2, sy] is selected, and scheduled to the
timeslot next to [sp1, sx] at line 7. By a similar discussion, if
[sp1, sx] is processed at line 13, then [sp2, sy] is scheduled to
the timeslot previous to [sp1, sx] at line 15. Finally, [sp1, sx]
is never processed at line 15. Hence, the cost of p is one.
For the case that sp1 and sp2 are assigned to room r2, we can
do a similar argument. �

4.2 NP-hardness of Order(6, 1)

Theorem 5: Order(6, 1) is NP-hard.

Proof. Recall that we used NAE 3SAT in the proof of The-
orem 2. In NAE 3SAT, we are given a set of clauses, where
each clause contains exactly three literals. A clause is un-
satisfied if and only if all literals it contains have the same
value. It asks if there exists an assignment satisfying all
clauses. This problem is known to be NP-hard [8].

Here we use another modification of NAE 3SAT. Al-
though the modification here is different from what we
used in the proof of Theorem 2, we abuse the notation
and write the problem used here as Modified-NAE 3SAT(3).
In Modified-NAE 3SAT(3), each clause contains two or
three literals, each variable appears exactly three times,
and for each variable x, each of x and x̄ appears at least
once (namely, twice positively and once negatively, or
vice versa). It is not difficult to prove that Modified-
NAE 3SAT(3) is NP-hard by a reduction from NAE 3SAT:
The proof is the same to the NP-hardness proof for SAT

where the appearance of each variable is restricted to three
(e.g., see Proposition 9.3 of [7]). Given a NAE 3SAT in-
stance I, we replace each occurrence of variable xi (that
appears k times) by yi,1, yi,2, . . . , yi,k. Then, we add clauses
(yi,1 + yi,2)(yi,2 + yi,3) · · · (yi,k−1 + yi,k)(yi,k + yi,1). Observe that
each variable appears exactly three times, positively at least
once, and negatively at least once. Note that to satisfy ad-
ditional clauses, all variables yi, j (1 ≤ j ≤ k) must take the
same value.

Before showing a reduction, we give a few remarks. In
Order(6, 1), each student is evaluated by one professor. So,
we ignore students in the reduction: If we write “create a
professor-pair [p1, p2]”, it means that we create one times-
lot and two students, and we assign professors p1 and p2 to
students assigned to rooms r1 and r2, respectively. Further-
more, in Order, the relative order of timeslots in an input
schedule is not important. So, in the following construction,
we do not specify the timeslot.

Now we start the reduction. Let I be an instance of
Modified-NAE 3SAT(3). We will construct an instance I1 of
Order(6, 1). For each literal in I, we create one professor;
for the j-th literal of the i-th clause, we introduce professor
pi, j. For professor-pairs, we create two types of gadgets:

Variable gadgets. Consider variable x in I. It appears
three times, and hence associated with x, three professors,
say pa,b, pc,d, and pe, f , have been introduced. (Namely, x
appears as b-th, d-th, and f -th literals of a-th, c-th, and e-th
clauses, respectively.) Suppose, without loss of generality,
that pa,b and pc,d correspond to the same polarity of the lit-
eral, and pe, f the other (i.e., pa,b and pc,d correspond to x
and pe, f corresponds to x, or vice versa). Then, we create
four professor-pairs [pa,b, pe, f ], [pe, f , pa,b], [pc,d, pe, f ], and
[pe, f , pc,d].

Clause gadgets. Consider clause ci in I, and first sup-
pose that it contains two literals. Then professors pi,1 and
pi,2 have been introduced. We create two professor-pairs
[pi,1, pi,2] and [pi,2, pi,1]. Next, suppose that ci contains
three literals. Then three professors pi,1, pi,2, and pi,3 have
been introduced. We create three professor-pairs [pi,1, pi,2],
[pi,2, pi,3], and [pi,3, pi,1].

Now the reduction is completed. It is not hard to see
that each professor appears at most six times; twice or four
times in variable gadgets, and exactly twice in the clause
gadgets. As an example, consider the following instance
of Modified-NAE 3SAT(3) consisting of three clauses: c1 =

(x1+x2+x3), c2 = (x1+x2+x3), and c3 = (x1+x2+x3). Then,
Fig. 8 is the instance constructed from these clauses. As de-
scribed above, we omit students. Timeslots t1 through t12

correspond to variable gadgets; t1 through t4, t5 through t8,
and t9 through t12 correspond to x1, x2, and x3, respectively.
Timeslots t13 through t21 correspond to clause gadgets; t13

through t15, t16 through t18, and t19 through t21 correspond to
c1, c2, and c3, respectively.

Note that in the instance I1, every professor is assigned
to both rooms r1 and r2. Thus, the optimal cost of I1 is
at least the number of professors. We will prove that I is
satisfiable if and only if the optimal value of I1 is equal to
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Fig. 8 An example of translated instance of Order(6, 1).

the number of professors. Notice that if the optimal value
of I1 is equal to the number of professors, every professor
moves once, either from r1 to r2 or from r2 to r1.

If-part: Suppose that we are given a schedule C whose
cost is equal to the number of professors. Then, as men-
tioned above, each professor moves exactly once. If profes-
sor pi, j moves from r1 to r2 (from r2 to r1, respectively), we
set the value of literal corresponding to pi, j (namely, the j-th
literal in the i-th clause) 0 (1, respectively). We will show
that, under this assignment, (i) all literals corresponding to
the same variable receive the consistent values, and (ii) each
clause is satisfied.

(i) Consider variable xi in I, and suppose that three pro-
fessors pa,b, pc,d, and pe, f have been introduced for xi, where
pa,b and pc,d correspond to the same polarity. Then, we have
four professor-pairs [pa,b, pe, f ], [pe, f , pa,b], [pc,d, pe, f ], and
[pe, f , pc,d]. Observe that under the condition that each pro-
fessor moves only once, if pe, f moves from r1 to r2 (from r2

to r1, respectively), then both pa,b and pc,d must move from
r2 to r1 (from r1 to r2, respectively).

(ii) Consider clause ci in I, and suppose that it con-
tains three literals. Then three professors pi,1, pi,2, and pi,3

have been introduced, and we have three professor-pairs
[pi,1, pi,2], [pi,2, pi,3], and [pi,3, pi,1]. Note that all these three
professors cannot move in the same direction, which implies
that ci is satisfied by the above construction. The same ar-
gument holds when ci contains two literals.

Only if-part: Suppose that we are given a satisfying
assignment D of I. We will construct a schedule C such
that each professor moves only once. Roughly speaking,
the construction is the reverse operation of the “If-part”: A
professor moves from r1 to r2 (from r2 to r1, respectively),
if and only if its corresponding literal has the value 0 (1,
respectively) under D. We show that this construction is
possible. (As an example, we give in Fig. 9, a schedule for
the instance in Fig. 8 corresponding to x1 = 1, x2 = 1, and
x3 = 0.)

Suppose, for example, that xi appears twice positively
(corresponding professors are pa,b and pc,d) and once neg-
atively (corresponding professor is pe, f ). Then we have
four professor-pairs [pa,b, pe, f ], [pe, f , pa,b], [pc,d, pe, f ], and

Fig. 9 An example solution for the instance of Fig. 8.

[pe, f , pc,d]. If xi = 0 under D, then we determine the or-
der of timeslots corresponding to these four professor-pairs
as [pa,b, pe, f ], [pc,d, pe, f ], [pe, f , pa,b], and [pe, f , pc,d]. Oth-
erwise, the order is determined as [pe, f , pa,b], [pe, f , pc,d],
[pa,b, pe, f ], and [pc,d, pe, f ]. Note that each professor’s move-
ment simulates the value of each literal. We call the former
two timeslots (among four) an upper part of xi, and the latter
two timeslots a lower part of xi. Since variable gadgets cor-
responding to different variables do not share the same pro-
fessor, we can do this construction independently for each
variable.

Next, we determine the order of timeslots associated
with clause gadgets. Consider a clause ci containing three
literals. Then, associated with ci, three professor-pairs
[pi,1, pi,2], [pi,2, pi,3], and [pi,3, pi,1] must have been con-
structed. There are 3! = 6 possibilities of determining the
order of these three professor-pairs. Also, note that ci is sat-
isfied under D, and there are six ways of satisfying ci. One
can easily see that there is a one-to-one correspondence be-
tween the order of professor-pairs and the way of satisfying
ci; for example, if ci is satisfied as ci = (0 + 1 + 0), then the
corresponding order is [pi,1, pi,2], [pi,3, pi,1], and [pi,2, pi,3].
If ci contains two literals, then there are two professor-pairs
[pi,1, pi,2] and [pi,2, pi,1]. Similarly, we have two possibili-
ties of the order of these professor-pairs, and two possibil-
ities of satisfying ci, between which, there is a one-to-one
correspondence again. We determine the order of timeslots
depending on how ci is satisfied. Different clauses introduce
different professors, and hence we can do this operation in-
dependently for each clause.

Finally, we combine clause gadgets and variable gad-
gets to obtain a complete schedule. We first schedule upper
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parts of all variable gadgets in any order, then clause gad-
gets of all clauses in any order of clauses, and finally lower
parts of all variable gadgets in any order. We show that each
professor needs to move only once.

Consider an arbitrary professor p. When determining
the order of timeslots of variable gadgets and clause gad-
gets, p was processed differently. However, the movement
of p was determined according to the value of the literal
corresponding to p under D. So, p must move in the same
direction within variable gadgets and within clause gadgets.
Notice also that in variable gadgets, p does not move within
upper parts, or within lower parts. p moves when the time
passes from upper parts to lower parts. Since the clause gad-
gets are sandwiched by upper and lower parts, it is not hard
to see that he/she needs to move only once. �

4.3 NP-hardness of Order(4, 2)

Theorem 6: Order(4, 2) is NP-hard.

Proof. The reduction is almost the same to the proof of The-
orem 5. The only difference is the construction of variable
gadgets.

Consider variable xi in I. Suppose that professors
pa,b, pc,d, and pe, f are introduced for xi, and pa,b and
pc,d correspond to the same polarity of the literal, and
pe, f the different polarity. Then we created professor-pairs
[pa,b, pe, f ], [pe, f , pa,b], [pc,d, pe, f ], and [pe, f , pc,d] in the pre-
vious reduction. This time, instead of these four, we create
two professor-pairs, [(pa,b, pc,d), pe, f ] and [pe, f , (pa,b, pc,d)],
where (pa,b, pc,d) means that these two professors are as-
signed to the same student. This time, each professor ap-
pears exactly twice in variable gadgets, and hence four times
in total. The correctness proof is obtained by a slight modi-
fication of the proof of Theorem 5. �

5. Concluding Remarks

In this paper, we have investigated the time complexity of
Room(s, t) and Order(s, t). The apparent next step in this
research is to investigate the time complexity of Order(s, 1)
for s = 4, 5 and Order(3, t) for t ≥ 2. Further, we may
consider the problem allowing both operations for Room and
Order, or more generally, the problem without receiving an
initial schedule. Finally, considering approximability and
inapproximability of these problems would be interesting.
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