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SUMMARY Traditional frequent pattern mining algorithms do not con-
sider different semantic significances (weights) of the items. By consider-
ing different weights of the items, weighted frequent pattern (WFP) mining
becomes an important research issue in data mining and knowledge dis-
covery area. However, the existing state-of-the-art WFP mining algorithms
consider all the data from the very beginning of a database to discover the
resultant weighted frequent patterns. Therefore, their approaches may not
be suitable for the large-scale data environment such as data streams where
the volume of data is huge and unbounded. Moreover, they cannot extract
the recent change of knowledge in a data stream adaptively by considering
the old information which may not be interesting in the current time period.
Another major limitation of the existing algorithms is to scan a database
multiple times for finding the resultant weighted frequent patterns. In this
paper, we propose a novel large-scale algorithm WFPMDS (Weighted Fre-
quent Pattern Mining over Data Streams) for sliding window-based WFP
mining over data streams. By using a single scan of data stream, the WFP-
MDS algorithm can discover important knowledge from the recent data el-
ements. Extensive performance analyses show that our proposed algorithm
is very efficient for sliding window-based WFP mining over data streams.
key words: data mining, large-scale data, data streams, weighted frequent
pattern mining

1. Introduction

Data mining discovers hidden and potentially useful infor-
mation from databases. Frequent pattern mining [1], [2],
[9]–[12] plays an important role in data mining and knowl-
edge discovery techniques such as association rule mining,
classification, clustering, time-series mining, graph min-
ing, web mining etc. A large number of research works
have been done to find frequent patterns using Apriori-
based algorithms [1], [2], FP-tree based algorithms [9], [10]
and other algorithms [11], [17], [29]. However, those algo-
rithms are working on the databases where each item has the
same importance/weight and they find out only those pat-
terns occurred frequently. Weighted frequent pattern min-
ing [3]–[8], [28] was proposed to discover more important
knowledge considering different weights of each item which
plays an important role in the real world scenarios. For ex-
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ample, in a real world business database, frequency of gold
ring is very low compared to the frequency of pen sold. As
a result, knowledge about the patterns having low frequency
but high weight remains hidden by finding only frequent
patterns. The main contribution of the weighted frequent
pattern mining is to retrieve this hidden knowledge from
database.

Even though there have been a number of algorithms
proposed for WFP mining, they consider all the data from
the very beginning of a database. Therefore, they can-
not be applied for mining the large-scale data such as data
streams [13]–[16], [23]–[27], where data flows in the form
of continuous stream. A data stream is a continuous, un-
bounded and ordered sequence of items that arrive in or-
der of time. Due to this reason, it is impossible to maintain
all the elements of a data stream. Moreover, the existing
algorithms do not differentiate recently generated informa-
tion from the old information which may be unimportant or
obsolete in the current time period. As a result, they can-
not extract the recent change of knowledge in a data stream
adaptively.

Another major limitation of the existing algorithms is
to scan a database multiple times for finding the resultant
weighted frequent patterns. To find weighted frequent pat-
terns from a data stream, we no longer have the luxury
of performing multiple data scans. Once the streams flow
through, we lose them. Therefore, single-pass and sliding
window-based mechanism [16], [23]–[27] is required to find
out the recent important knowledge from a data stream. In
recent years, many applications generate data streams in real
time, such as sensor data generated from sensor networks,
transaction flows in retail chains, web click streams in web
applications, performance measurement in network moni-
toring and traffic management, call records in telecommuni-
cations, and so on.

Motivated by these real world scenarios, in this pa-
per, we propose a novel large-scale algorithm WFPMDS
(Weighted Frequent Pattern Mining over Data Streams) for
sliding window-based WFP mining over data streams. It
can discover useful recent knowledge from a data stream
by using a single scan. Our algorithm exploits a pattern
growth mining approach to avoid the level-wise candidate
generation-and-test problem. Besides retail market data,
our algorithm can be well applied for the area of mining
weighted web path traversal patterns. By considering dif-
ferent importance values for different websites, our algo-

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



1370
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.7 JULY 2009

rithm can discover very useful knowledge about weighted
frequent web path traversals in real time using only one scan
of data stream. Moreover, it is also useful in the area of
bio-medical and DNA data analysis as different biological
gene has different importance, so, by detecting the combi-
nation of weighted gene patterns special gene patterns can
be detected for a particular disease and drugs can be made
based on that criterion using only one scan of data stream.
Other application areas are telecommunication data, data
feeds from sensor networks and stock market data analysis.

The remainder of this paper is organized as follows. In
Sect. 2, we describe background. In Sect. 3, we develop our
proposed WFPMDS algorithm for weighted frequent pat-
tern mining over data streams. In Sect. 4, our experimental
results are presented and analyzed. Finally, in Sect. 5, con-
clusions are drawn.

2. Background

2.1 Frequent Pattern Mining

Let I = {i1, i2, . . . , im} be a set of items, and let D be a
transaction database, {T1,T2, . . . ,Tn}, where each transac-
tion, Ti ∈ D, is a subset of I. The support/frequency of a
pattern, X{ip, . . . , iq}, (where p ≤ q; 1 ≤ p, q ≤ m and
X ⊆ I) is the number of transactions containing the pat-
tern in the transaction database. The goal of frequent pat-
tern mining is to find the complete set of patterns satisfying
a minimum support in the transaction database. The down-
ward closure property [1], [2] is used to prune the infrequent
patterns. This property says that if a pattern is infrequent,
then all of its super-patterns must be infrequent.

The Apriori [1], [2] algorithm is the initial solution of
the frequent pattern mining problem, but it suffers from
the level-wise candidate generation-and-test problem and
requires several database scans. FP-growth [9] solves this
problem by using an FP-tree-based solution without any
candidate generation and using only two database scans.
FP-array [10] technique was proposed to reduce the FP-
tree traversals and it efficiently works especially in sparse
datasets. One interesting measure h-confidence [18] was
proposed to identify the strong support affinity frequent pat-
terns. CP-tree [29] calculates all the frequent patterns us-
ing a single pass of database. There has been a signifi-
cant amount of research into finding frequent patterns [11],
[12], [17]. This traditional frequent pattern mining consid-
ers equal profit/weight for all items.

2.2 Weighted Frequent Pattern Mining

We have adopted definitions similar to those presented in the
previous works [3]–[5].

Definition 1 (Weight of a pattern): The weight of an item
is a non-negative real number which is assigned to reflect
the importance of each item in the transaction database. For
a set of items, I = {i1, i2, . . . , in}, the weight of a pattern,

Table 1 An example of retail database.

Item
Price Support Normalized
($) (frequency) Weight

Personal computer 800 500 0.8
Laser printer 450 320 0.45
Bubble jet printer 250 450 0.25
Digital Camera 600 700 0.6
Memory stick 200 825 0.2
Hard disk 130 350 0.13
DVD drive 100 450 0.1
CD drive 50 250 0.05

P{x1, x2, . . . , xm}, is given as follows:

Weight(P) =

∑length(P)
q=1 Weight(xq)

length(P)
(1)

Definition 2 (Weighed support of a pattern): A weighted
support of a pattern is defined as the value that results from
multiplying the pattern’s support with the weight of the pat-
tern. So the weighted support of a pattern, P, is given as
follows:

Wsupport(P) = Weight(P) × Support(P) (2)

Definition 3 (Weighed frequent pattern): A pattern is
called a weighted frequent pattern if the weighted support of
the pattern is greater than or equal to the minimum threshold
(δ).

Table 1 shows an example of a retail database in which
normalized weight values are assigned to items based on
their prices. A normalization process is required to adjust
the differences between data from various sources to create
a common basis for comparison [3]–[5]. According to the
normalization process, the final item weights can be deter-
mined to be within a specific weight range. For example, in
Table 1 the weight values of the items are in the range from
0.05 to 0.8.

Some weighted frequent pattern mining algorithms
(MINWAL [6], WARM [7], WAR [8]) have been devel-
oped based on the Apriori algorithm using the candidate
generation-and-test paradigm. Obviously, these algorithms
require multiple database scans and result in poor mining
performance.

WFIM [3] is the first FP-tree-based weighted frequent
pattern algorithm using two database scans over a static
database. It makes use of a minimum weight and a weight
range. Items are assigned fixed weights randomly from
within the weight range. The FP-tree is arranged in weight
ascending order and maintains the downward closure prop-
erty. The WLPMINER [4] algorithm finds weighted fre-
quent patterns using length decreasing support constraints.
The WCloset [28] algorithm is proposed for the calculation
of the closed weighted frequent patterns. The WIP [5] algo-
rithm is proposed to discover weighted interesting patterns
with a strong weight and/or support affinity.

The existing algorithms [3]–[5] show that the main
challenge of weighted frequent pattern mining is that the
weighted frequency of an itemset (or a pattern) does not
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Fig. 1 Example of a transaction data stream with weight table.

have the downward closure property. Consider that item X
has weight 0.6 and frequency 4, item Y has weight 0.2 and
frequency 5, and itemset XY has frequency 3. According to
Eq. (1), the weight of itemset XY will be (0.6 + 0.2)/2 = 0.4,
and according to Eq. (2) its weighted frequency will be 0.4
× 3 = 1.2. The weighted frequency of X is 0.6 × 4 = 2.4,
and of Y is 0.2 × 5 = 1.0. If the minimum threshold is 1.2,
then pattern Y is weighted infrequent but XY is weighted
frequent. As a result, the downward closure property is not
satisfied here. WFIM and WIP maintain the downward clo-
sure property by multiplying each itemset’s frequency by
the maximum weight. In the above example, if item X has
the maximum weight of 0.6, then by multiplying it with the
frequency of item Y, 3.0 is obtained. So, pattern Y is not
pruned at this early stage, and pattern XY will not be missed.
At the final stage, this overestimated pattern Y will finally be
pruned by using its actual weighted frequency.

Several single-pass mining algorithms [17], [29]–[31]
have been developed in the context of traditional frequent
pattern mining. Some other mining algorithms [13]–[15]
have been developed to find out frequent patterns over a data
stream. Sliding window-based algorithms [16], [23]–[27],
[33] have also been developed for mining recent frequent
patterns over a data stream. However, all these algorithms
are not applicable for weighted frequent pattern mining.

The existing weighted frequent pattern mining methods
consider all the transactions of a database from the very be-
ginning and require at least two database scans. Hence, they
are not suitable for stream data mining. Moreover, they can-
not find important knowledge from the recent data. There-
fore, we propose a sliding window-based novel algorithm
for single-pass weighted frequent pattern mining in order
to extract the recent change of knowledge in a data stream
adaptively.

3. WFPMDS: Our Proposed Algorithm

3.1 Preliminaries

Transaction stream is a kind of data stream which occurs
in retail chain or web click analysis. It may have infinite
number of transactions. A batch of transactions contains a

nonempty set of transactions. Figure 1 shows an example
of transaction stream divided into four batches with equal
length. A window consists of multiple batches. In our ex-
ample, we assume that one window contains three batches
of transactions. That is, window1 contains batch1, batch2
and batch3. Similarly window2 contains batch2, batch3 and
batch4.

Definition 4: The support/frequency of a pattern P over a
batch j is defined by the number of occurrences of that pat-
tern in that batch and denoted as S upport j(P). For example,
S upport3(ab) = 2, i.e. the support of pattern “ab” in batch3
is 2.

Definition 5: The weighted support of a pattern P over a
window W, is defined by

WsupportW (P)=

⎛⎜⎜⎜⎜⎜⎜⎝
M∑

j=1

S upport j(P)

⎞⎟⎟⎟⎟⎟⎟⎠×Weight(P) (3)

Here M is the number of batches in Window W. For
example, the weighted support of pattern “ab” in window2
is Wsupport2(ab) = (1+2+1) × 0.55= 4 × 0.55 = 2.2 in
Fig. 1. The weight of the pattern “ab” ((0.6 + 0.5)/2 = 0.55))
is calculated by using Eq. (1).

Definition 6: A pattern P is weighted frequent in window
W if its weighted support in W is greater than or equal to the
minimum weighted threshold (δ). For example, if the min-
imum weighted threshold is 2.0, pattern “ab” is a weighted
frequent pattern in window2 since its weighted support is
2.2 in window2 (Fig. 1).

3.2 Tree Construction

In this section, we describe the construction process of our
tree structure to capture stream data using a single pass. The
header table is maintained to keep an item order in our tree
structure. Each entry in a header table explicitly maintains
item-id, frequency and weight information for each item.
However, each node in a tree only maintains item-id and
frequency information for each batch. To facilitate the tree
traversals adjacent links are also maintained (not shown in
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Fig. 2 Tree construction for window1.

the figures for simplicity) in our tree structure.
Consider the example data stream of Fig. 1 (a). At first

we create the header table and keep all the items in weight
ascending order. After that, we scan the transactions one by
one, sort the items in a transaction according to header table
item order and then insert into the tree. The first transaction
T1 has the items “a”, “b”, “c”, “d”, “g” and “h”. After sort-
ing, the new order will be “c”, “d”, “h”, “g”, “b” and “a”.
Figure 2 (a) shows the tree and the header table after insert-
ing batch1. Figure 2 (b) shows the tree and the header table
after inserting batch2. In the same way batch3 is inserted
into the tree. Figure 2 (c) shows the final tree for window1.

When the data stream moves to batch4, it is necessary
to delete the information of batch1 because batch1 does not
belong to window2 and therefore the information of batch1
becomes garbage in window2. We delete the information
of batch1 as shown in Fig. 3 (a). Some nodes which do not
have any information for batch2 and batch3 can be deleted
from the tree. In the case of other nodes, the frequency coun-
ters are shifted one position left to remove the frequency in-
formation of batch1 and include the frequency information
for batch4. As a result, now the three frequency information
of each node represents batch2, batch3 and batch4. Fig-
ure 3 (b) shows the tree after inserting batch4.

3.3 Mining Process

In this section, we describe the mining process of our pro-
posed WFPMDS algorithm. As discussed in Sect. 2.2, we
use the global maximum weight to utilize the downward
closure property. The global maximum weight, denoted by

GMAXW, is the maximum weight among all the items in the
current window. For example, in Fig. 1 (b), item “a” has the
global maximum weight of 0.6 for window1 and window2.

Local maximum weight, denoted by LMAXW, is
needed when we are doing the mining operation for a par-
ticular item. As the tree is sorted in weight ascending or-
der, we can get the advantage of the bottom up mining op-
eration. For example, after mining the weighted frequent
patterns prefixing the item “a”, when we go for mining op-
eration prefixing the item “b”, then the item “a” will never
come in any prefix and conditional trees. As a result, now
we can easily assume that the item “b” has the maximum
weight. This type of maximum weight in mining process is
known as LMAXW. For the mining operation prefixing item
“b”, LMAXW is equal to the weight of “b”. As LMAXW is
reducing from bottom to top, the probability of a pattern to
be a candidate is also reduced. In the next section we will
show the analysis regarding the measure of LMAXW.

Suppose we want to mine the recent weighted frequent
patterns in the data stream presented at Fig. 1. It means we
have to find out all the weighted frequent patterns in win-
dow2. Consider the minimum threshold = 1.8. Here the
GMAXW = 0.6 and after multiplying the frequency of each
item with GMAXW, the weighted frequency list is <c:1.2,
f :0.6, d:1.8, h:0.6, g:2.4, e:1.2, b:3.0, a:3.0>. As a result,
the candidate items are “d”, “g”, “b” and “a”. Now we con-
struct the prefix and conditional trees for these items in a
bottom up fashion and mine the weighted frequent patterns
in window2.

At first, the prefix tree of the bottom-most item “a”
is created by taking all of the branches prefixing item “a”
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Fig. 3 Tree construction for window2.

Fig. 4 Mining process.

shown in Fig. 4 (a). For the mining purpose, we add all the
frequency values of a node in the prefix tree to indicate its
total frequency value in this current window. For example,
the first node of the leftmost branch of the prefix tree pre-
sented in Fig. 4 (a) stores “c:2” instead of “c:0, 1, 1”.

To create the conditional tree for item “a”, we have to
delete the nodes from its prefix tree containing items which
cannot be candidate patterns with it. For item “a”, LMAXW
= 0.6 and we can get its weighted frequency list by multiply-
ing the other item’s frequency with LMAXW. Obviously this
weighted frequency is the maximum possible weighted fre-

quency of an itemset prefixing item “a”. So, we have to take
all the patterns as a candidate having maximum weighted
frequency greater than or equal to minimum threshold. As a
result, the weighted frequency list for the item “a” is <d:1.8,
g:1.8, b:2.4> (we should not consider global non-candidate
items “c”, “f ”, “h” and “e”). The weighted frequency list
shows that items “d”, “g” and “b” can be candidate patterns
with item “a”. Therefore, the conditional tree for item “a” is
constructed from its prefix tree by deleting the nodes which
do not contain items “d”, “g” and “b” (shown in Fig. 4 (b)).
After creating the conditional tree, candidate patterns “ad”,
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Table 2 Wsupport calculations of the candidate patterns for window2.

No.
Candidate Wsupport Weight Wsupport

Result
Patterns (maximum) (actual) (actual)

1 ad 0.6 × 3 = 1.8 ((0.6+0.35)/2)= 0.475 0.475 × 3 = 1.425 Pruned
2 ag 0.6 × 3 = 1.8 ((0.6+0.4)/2)= 0.5 0.5 × 3 = 1.5 Pruned
3 ab 0.6 × 4 = 2.4 ((0.6+0.5)/2)= 0.55 0.55 × 4 = 2.2 Pass
4 a 0.6 × 5 = 3.0 0.6 0.6 × 5 = 3.0 Pass
5 abd 0.6 × 3 = 1.8 ((0.6+0.5+0.35)/3)= 0.483 0.483 × 3 = 1.45 Pruned
6 abg 0.6 × 3 = 1.8 ((0.6+0.5+0.4)/3)= 0.5 0.5 × 3 = 1.5 Pruned
7 bg 0.5 × 4 = 2.0 ((0.5+0.4)/2)= 0.45 0.45 × 4 = 1.8 Pass
8 b 0.6 × 5 = 3.0 0.5 0.5 × 5 = 2.5 Pass
9 g 0.6 × 4 = 2.4 0.4 0.4 × 4 = 1.6 Pruned
10 d 0.6 × 3 = 1.8 0.35 0.35 × 4 = 1.4 Pruned

“ag”, “ab” and “a” are generated.
The prefix-tree of itemset “ab” is created from the con-

ditional tree of item “a” (shown in Fig. 4 (c)). Its weighted
frequency list is <d:1.8, g:1.8>. As both the items “d” and
“g” can be candidate patterns with itemset “ab”, we cannot
delete any node from this prefix tree. Therefore, the pre-
fix tree of itemset “ab” is considered as its conditional tree
and candidate patterns “abd” and “abg” are generated. Fig-
ure 4 (d) shows the prefix tree of itemset “abg” created from
the conditional tree of itemset “ab”. However, its weighted
frequency list is <d:1.2> and not considered for further cal-
culations.

For item “b” the LMAXW = 0.5 as the item “a” will
not come out here. Figure 4 (e) shows the prefix tree for
item “b” and its weighted frequency list is <d:1.5, g:2.0>.
The key point is that, the maximum weighted frequency of
item “d” with item “b” is 3 × 0.5 = 1.5, as LMAXW reduces
from 0.6 to 0.5. Now without further calculation we can
prune “d”. But if LMAXW is 0.6 at this place, the weighted
frequency of “d” is 3 × 0.6 = 1.8 and as a result it becomes
a candidate. This is one big advantage of our algorithm.

The conditional tree of item “b” contains only one item
“g” (shown in Fig. 4 (f)) and the candidate patterns “bg” and
“b” are generated. For item “g”, the LMAXW = 0.4 and its
frequency value is 4. As a result, item “g” cannot form any
candidate pattern with the remaining candidate item “d”.
Therefore, we do not have to create any prefix tree for the
item “g” and we can stop the candidate generation process.
We have to test all the candidate patterns with their actual
weighted frequencies by using Eq. (3) and mine the actual
weighted frequent patterns in window2. Table 2 shows that
the actual weighted frequent patterns in window2 are <a:3.0,
b:2.5, ab:2.2, bg:1.8>.

3.4 Algorithm Description and Analysis

The pseudo-code of the WFPMDS algorithm is shown in
Fig. 5. In this section, we describe the algorithm and ana-
lyze its complexity. In line 2, WFPMDS creates a global
header table H to keep all the items in weight ascending or-
der. In Sect. 3.1 and Fig. 1, it is explained that we have con-
sidered one window contains some batches. Moreover, we
have used the sliding window-based approach. Therefore,
after the first window, a new window is formed whenever

a new batch of transactions arrives. For example, in Fig. 1
window1 contains batch1 to batch3. After that, window2 is
formed when batch4 arrives. It consists of batch2, batch3
and batch4. Hence, batch1 has to be deleted from the tree
before inserting batch4. In line 4, WFPMDS deletes this
type of obsolete batches from the current window.

The “for loop” described in line 5 to line 9 inserts each
transaction of the current batch into the tree. Our tree struc-
ture always maintains the order of its header table which is
arranged in a fixed item order (weight ascending order of
items). Accordingly, in line 6, WFPMDS arranges the items
in a transaction in that order. Frequency values of the items
are updated in line 7 and finally transaction is inserted into
the tree in line 8. Our tree structure satisfies the following
properties.

Property 1: The ordering of items is unaffected by the
changes in frequency caused by incremental updating.

Proof: Let X and Y be two items with weight Wx and Wy

respectively. Consider Wx < Wy and their frequency values
are Fx and Fy respectively. When a window slides from one
to another, the values of Fx and Fy may vary based on the
occurrences of the items in the new window. But it can not
create any effect on Wx and Wy. As the items in the tree are
ordered in their weight ascending order, X always comes
before Y in any branch of the tree. �

Property 2: The total count of frequency values of any
node in the tree is greater than or equal to the sum of to-
tal counts of frequency values of its children.

Proof: In the WFPMDS algorithm, every transaction is
inserted according to the weight ascending order of items.
Consider X is the parent node of Y in path P1 of the tree and
frequency value of X and Y are Fx and Fy respectively. The
frequency value of Y is increased when a transaction con-
tains items αXYβ. Here α and β are the set of other items
before X and after Y respectively in P1 (β can be NULL).
Hence, Fx is incremented before Fy and Fy cannot be greater
than Fx. On the other hand, if at least one transaction con-
tains αX, then only Fx is incremented and Fx becomes larger
than Fy. Therefore, Fx ≥ Fy. �

Property 3: The tree structure can be constructed in a sin-
gle scan of data stream.
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Fig. 5 The WFPMDS algorithm.

Proof: In the WFPMDS algorithm, all items in a transaction
are inserted into the tree according to weight ascending or-
der. Moreover, frequency of every node is divided into sep-
arate counters to indicate individual batch frequency. Let
the sliding window is moving from old window Winold to
new window Winnew. At this time, frequency value of every
node can easily be updated for obsolete panes without res-
canning the data stream and transactions of the new batches
of Winnew are added by scanning them exactly one time.
Hence, a single scan of data stream is required always. �

The above described properties are very useful in the
WFPMDS algorithm. As WFPMDS is a stream data min-
ing algorithm, Property 1 of the tree structure is very useful.
Without this property we cannot guarantee that the order of
item x and y will remain same in the next window and there-
fore tree restructuring operations may be required in each
window. Property 2 is very essential for pattern growth min-
ing operation [9]. As discussed in Sect. 1, we cannot scan
stream data twice and therefore single-pass data capturing
property (Property 3) is very essential for WFPMDS.
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After updating the tree for the current batch, WFP-
MDS algorithm can mine weighted frequent patterns for
the current window. It starts mining operation if there is
any mining request from the user (line 10). In line 11, a
minimum threshold δ is taken from the user. It calculates
the global maximum weight (GMAXW) among all the items
in line 12. The “for loop” described in line 13 to line 19
performs top-level of mining operation, i.e. it starts with
each distinct item. This loop uses GMAXW to prune the
non-candidate items (line 14). As discussed in Sect. 2.2,
downward closure properly is not satisfied here. Therefore,
single-element candidate patterns are tested finally by call-
ing the Test Candidate procedure (line 15). A prefix tree for
a particular item is created in line 16 and the Mining pro-
cedure is called to generate candidate patterns prefixing that
item in line 17.

The Mining procedure recursively mines the candidate
patterns. It receives a pattern α, prefix tree T of α, header
table H of prefix tree T and LMAXW of α. It creates the
conditional tree CT of α and header table HC of CT by
eliminating the non-candidate items from T and H respec-
tively (line 25 to line 29). After that for each item β in
HC, it creates a new candidate pattern αβ by joining item
β with pattern α and tests this candidate pattern by calling
the Test Candidate procedure (line 33). Finally, it creates
the prefix tree PTαβ of pattern αβ, header table HTαβ for
PTαβ and makes a recursive call to itself. As discussed in
Sect. 3.3, for a particular distinct item x, LMAXW is always
equal to the weight of x during the mining operation prefix-
ing x. For example, for the mining operation prefixing item
“b”, LMAXW= 0.5 always. As the header table and tree
is arranged in weight ascending order, no pattern prefixing
item “b” can have larger weight than 0.5.

Lemma 1: If N1 is the number of candidate patterns gen-
erated by using LMAXW and N2 is the number of candidate
patterns generated by using GMAXW, then N1 ≤ N2.

Proof: Let a data stream has n items and their weight as-
cending sort-order is i1, i2, . . . , in. If all these items have
the same weight then always GMAXW = LMAXW during
the mining operation. At this time, N1 = N2. Otherwise,
GMAXW is equal to LMAXW only for the bottom-most
item and in the case of other items LMAXW reduces from
bottom to top while GMAXW remains fixed. Therefore,
LMAXW can prune more patterns compared to GMAXW;
hence, N1 ≤ N2. �

Lemma 2: In the mining operation for prefixing item x, no
pattern can have greater weight compared to LMAXW.

Proof: The WFPMDS algorithm arranges the header table
and tree in weight ascending order of items. It also uses the
bottom-up mining approach. Therefore, items in the upper
portion of the tree cannot have greater weight compared to
the items in the lower portion. Consider the weight of item
x is Wx and LMAXW = Wx. Any other item, for example y,
participating in the bottom-up mining operation for prefix-
ing item x, can have maximum weight equal to Wx. Hence,

Fig. 6 Mining process for item “b” in window1.

according to Eq. (1) the maximum weight of pattern xy can
be equal to LMAXW. �

Lemma 1 shows that LMAXW is more useful measure
compared to GMAXW for pruning candidate patterns during
the mining process. Moreover, Lemma 2 shows that no pat-
tern can be erroneously pruned by using LMAXW as a max-
imum weight during mining operation prefixing a particular
item. However, Observation 1 shows that actual weighted
frequent patterns may be pruned erroneously by using the
measures of MinW and MaxW adopted by the existing algo-
rithms.

Observation 1: The existing algorithm WFIM uses MinW
in each step of mining operation. It represents the mini-
mum weight of a conditional pattern. When we perform the
mining operation prefixing a pattern (for example “ab”), it is
called a conditional pattern. Consider window1 in the exam-
ple data stream of Fig. 1 and tree constructed for this win-
dow in Fig. 2 (c). Let minimum threshold (δ) = 1.24. Now
we perform the mining operation prefixing item “b”. The
prefix tree of item “b” is shown in Fig. 6 (a). The conditional
database for prefix “b” (conditional pattern “b”) contains
{<gd:3>, <g:1>, <d:1>}. The existing WCloset algorithm
uses MaxW (maximum weight of items within a conditional
database) in each mining step. Hence, MaxW of the condi-
tional database for prefix “b” is 0.4. However, “bg” and “bd”
are actual weighted frequent patterns in window1 with ac-
tual weight of 1.8 (0.45×4) and 1.7 (0.425×4) respectively.
Even though MaxW(0.4) can discover these patterns for δ
= 1.24, it cannot discover them or their super-patterns (if
any) for δ = 1.65 (as 0.4 × 4 = 1.6). However, MinW(0.5)
and LMAXW(0.5) measures can successfully mine these pat-
terns (as 0.5 × 4 = 2.0). The conditional tree of item “b” is
shown in Fig. 6 (b). For conditional pattern “bg”, MinW =
0.4 and LMAXW = 0.5. The conditional database for prefix
“bg” contains {<d:3>} and therefore MaxW = 0.38. As a
result, both MaxW and MinW measures prune item “d” for
δ = 1.24 (as 0.38 × 3 = 1.14 and 0.4 × 3 = 1.2) and miss
pattern “bgd” and all its super-patterns (if any) as a con-
sequence. Note that “bgd” is an actual weighted frequent
pattern in window1 with actual weight of 1.25 (0.41666 ×
3). On the other hand, LMAXW can successfully discover
this pattern (as 0.5 × 3 = 1.5). The conditional tree of pat-
tern “bg” is shown in Fig. 6 (c). In summary, the measures
of MaxW and MinW may erroneously prune some actual
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weighted frequent patterns while LMAXW can successfully
discover all of them.

The Test Candidate procedure receives a candidate pat-
tern X and its frequency in a particular window. In line 41
to line 45 it calculates the actual weight of X. In line 46, it
calculates the actual weighted frequency of X and compares
with the minimum threshold δ. If the actual weighted fre-
quency of X is greater than or equal to the minimum thresh-
old, it is stored in the actual weighted frequent pattern list.

4. Experimental Results and Analysis

4.1 Experimental Environment and Datasets

To evaluate the performance of our proposed algorithm,
we have performed several experiments on IBM syn-
thetic dataset (T10I4D100K) [19], real life datasets (BMS-
WebView-1, BMS-WebView-2, BMS-POS, kosarak) [19],
[20], [22] using synthetic weights, and a real dataset (Chain-
store) [21] using real weight values. Our programs were
written in Microsoft Visual C++ 6.0, and run with the Win-
dows XP operating system on a Pentium dual core 2.13 GHz
CPU with 1 GB main memory.

The IBM synthetic dataset T10I4D100K and real life
datasets BMS-WebView-1, BMS-WebView-2, BMS-POS and
kosarak do not provide the weight values of each item. Most
of the previous weight-based frequent pattern mining re-
search [3]–[5], [7], [8], [28] generated random numbers for
the weight values of each item, but when observing real
world datasets, most items are in the low weight range.
Therefore, the weight value of each item was heuristically
chosen to be between 0.1 and 0.9, and randomly generated
using a log-normal distribution. Figure 7 shows the weight
distribution of 2000 distinct items using the log-normal dis-
tribution.

4.2 Performance Analysis of the WFPMDS Algorithm

4.2.1 Effect of Window Size Variation

Our proposed algorithm WFPMDS performs window-based
stream data mining. It always keeps the current window in-
formation in the tree structure and mines the weighted fre-
quent patterns in the current window by using the informa-
tion kept in the tree structure. Hence, its runtime and mem-
ory requirement are dependent on the window size. A win-
dow consists of M batches and a batch consists of N trans-
actions. Therefore, window size may vary depending on the
number of batches in a window and the number of transac-
tions in a batch. In this section, we analyze the performance
of WFPMDS by varying both of these two parameters over
T10I4D100K and BMS-POS datasets. We will use W and B
to represent the window size and batch size respectively.

The T10I4D100K dataset was developed by the IBM
Almaden Quest research group and obtained from the fre-
quent itemset mining dataset repository [19]. This dataset

Fig. 7 Weight generation for 2000 distinct items using lognormal distri-
bution.

Fig. 8 Effect of window size variation on the T10I4D100K dataset (δ =
2%).

contains 100,000 transactions and 870 distinct items. Its av-
erage transaction size is 10.1. Figure 8 shows the effect of
different window sizes changing the number of batches in
a window and the number of transactions in a batch. The
x-axis of Fig. 8 shows different window sizes containing 2,
3 and 4 batches. Three curves show the effects of three dif-
ferent sizes of batches. The mining operation is performed
at each window with a minimum threshold (δ) value of 2%.
The y-axis of Fig. 8 shows the total runtime (tree construc-
tion, tree update and mining) of WFPMDS.

The BMS-POS dataset [19], [22] contains several years
worth of point-of-sale data from a large electronics retailer.
Since this retailer has so many different products, product
categories are used as items. The transaction in this dataset
is a customer’s purchase transaction consisting of all the
product categories purchased at one time [22]. The goal
for this dataset is to find associations between product cat-
egories purchased by customers in a single visit to the re-
tailer. It contains 515,597 transactions and 1,657 distinct
items. Its average transaction size is 6.53. Our algorithm
can efficiently mine this dataset by using a single-pass and
sliding-window based mechanism. Figure 9 shows the effect
of different window sizes changing the number of batches in
a window and the number of transactions in a batch. The x-
axis shows different window sizes containing 2, 3, 4 and 5
batches. Four curves show the effects of four different sizes
of batches. The mining operation is performed at each win-
dow with a minimum threshold (δ) value of 3%. The y-axis
shows the total runtime of WFPMDS.
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Fig. 9 Effect of window size variation on the BMS-POS dataset (δ =
3%).

The memory usage of WFPMDS depends on the win-
dow size. WFPMDS needs to keep more information when
the number of batches in a window is increased and/or the
number of transactions in a batch is increased. For the
T10I4D100K dataset, the maximum size of the constructed
tree for a window of 2 batches (B=20 K) is 4.34 MB. The
tree size linearly increases when the number of batches is in-
creased. It takes 6.482 MB and 8.63 MB memory for W=3B
and W=4B respectively. The similar results are obtained
from the BMS-POS dataset. The maximum sizes of the con-
structed trees for a window of 2, 3, 4 and 5 batches (B=50K)
are 7.82 MB, 11.258 MB, 14.631 MB and 18.352 MB re-
spectively.

4.2.2 Effect of Employing LMAXW

Our proposed algorithm WFPMDS can efficiently reduce
the number of candidate patterns by using the LMAXW mea-
sure instead of GMAXW in the bottom-up mining process.
Section 3.3 and Sect. 3.4 show the example and analysis
to explain the effectiveness of LMAXW. In this section, we
show the effect of employing LMAXW over BMS-WebView-
1 and BMS-WebView-2 datasets.

The BMS-WebView-1 and BMS-WebView-2 [19], [22]
datasets contain several months worth of click-stream data
from two e-commerce web sites. Each transaction in these
datasets is a web session consisting of all the product detail
pages viewed in that session. That is, each product detail
view is an item. The goal for both of these datasets is to
find associations between products viewed by visitors in a
single visit to the web site [22]. These two datasets con-
tain 59,602 and 77,512 transactions respectively (with 497
and 3,340 distinct items). The average transaction sizes of
them are 2.5 and 5.0 respectively. Single-pass and sliding
window-based algorithms are needed for mining these types
of web click-stream datasets in real time.

The effect of employing LMAXW depends on the dis-
tribution of weights of the items. If the variation of weights
is not significant, effect of employing LMAXW instead of
GMAXW is also not significant. However, as discussed in
Sect. 4.1, in the real world datasets this variation is signifi-
cant. We tested the WFPMDS algorithm (W=3B, B=10K)

Table 3 Number of candidate comparison.

Dataset
Minimum

LMAXW GMAXW
threshold(%)

0.1 6124 11237
0.3 3821 7231

BMS-WebView-1 0.5 2178 4156
0.7 874 1335
0.9 356 479
0.1 28567 76784
0.3 12891 35282

BMS-WebView-2 0.5 5289 16781
0.7 2567 7569
0.9 862 3781

Fig. 10 Effect of employing LMAXW on the BMS-WebView-1 dataset.

Fig. 11 Effect of employing LMAXW on the BMS-WebView-2 dataset.

over these datasets by using both of LMAXW and GMAXW
measures. Table 3 represents the comparison of number of
candidates with different minimum thresholds. As shown
in Table 3, the smaller the minimum threshold the larger
the number of candidate patterns. Moreover, the differ-
ence between the number of candidate patterns generated by
GMAXW and LMAXW also increases when the minimum
threshold decreases. Due to this difference of number of
candidate patterns, the runtime also varies significantly. Fig-
ure 10 and Fig. 11 show the runtime performance curves for
BMS-WebView-1 and BMS-WebView-2 datasets respectively.

4.2.3 Runtime Distribution

In this section we show the runtime distribution of the WFP-
MDS algorithm. For the first window, WFPMDS constructs
the tree by inserting the transactions for the batches of this
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Table 4 Runtime distribution (sec.).

Dataset(batch and window size) Tree Tree Mining time Total time
(minimum threshold) construction time update time δ1 δ2 δ1 δ2

BMS-WebView-1(B=10 K,W=3 B)
8.56 0.672 3.14 37.439 12.372 46.671

δ1 = 0.9%, δ2 = 0.3%
BMS-WebView-2(B=10 K,W=3 B)

28.549 1.87 15.204 156.41 45.623 186.829
δ1 = 0.9%, δ2 = 0.3%

T10I4D100K(B=15 K,W=2 B)
46.281 1.53 5.82 149.905 53.631 197.716

δ1 = 5%, δ2 = 2%
BMS-POS(B=30 K,W=4 B)

173.58 3.641 12.076 198.15 189.297 375.371
δ1 = 7%, δ2 = 3%

window. For other windows, WFPMDS deletes the trans-
actions of the obsolete batches and then inserts the transac-
tions of the new batches. It also performs mining operation
based on user given minimum thresholds. It is shown in
Table 4 that the runtime of WFPMDS is divided into three
parts. The tree construction time is the total time needed to
insert all the new batches inside the tree. Similarly, the tree
update time is the total time needed to delete all the obsolete
batches inside the tree for each window. The mining time
is the addition of all the mining time in each window. As
WFPMDS captures all the transactions in the tree structure,
its tree construction and tree update time do not vary for
a particular window while mining operations are performed
for different minimum thresholds. However, the overall run-
time varies due to the variation of mining time for different
minimum thresholds. Table 4 reports runtime distribution
for two minimum threshold values (one high and one low)
with different datasets.

4.3 Comparison with the Existing Algorithms

The existing algorithms are not suitable for stream data min-
ing due to scanning a database at least twice. Moreover, they
cannot keep batch by batch information in the tree for slid-
ing window-based stream data mining. The existing WFIM
needs two database scans to mine the weighted frequent
patterns. In the first scan it finds all single-element can-
didate patterns and in the second scan it performs the tree
creation and mining operation. The existing WCloset al-
gorithm also needs two database scans to discover all the
closed weighted frequent patterns. As it finds only closed
patterns, their resultant patterns are not similar compared
to that of WFPMDS. Extra computations will be required
for WCloset to mine all the weighted frequent patterns from
closed weighted frequent patterns. Therefore, in this sec-
tion we have compared the performance of WFPMDS with
WFIM.

As the WFIM algorithm is not a sliding window-
based weighted frequent pattern mining algorithm over data
stream, multiple executions (i.e. one execution in each win-
dow) are needed in order to compare it with WFPMDS.
WFIM needs two database scans to mine the resultant pat-
terns in the current window, for example window1, accord-
ing to a user given threshold. Their tree structure is de-
signed to represent information with respect to a particular
user given minimum threshold. As a consequence, their tree

structure cannot be used when the window slides from win-
dow1 to window2. Hence, to mine the results in window2 it
has to be started from the very beginning, i.e. WFIM needs
to build its tree structure by scanning window2 twice.

On the other hand, our WFPMDS performs all the op-
erations by using a single scan of data stream. It keeps sepa-
rate information for each batch inside the tree nodes. Hence,
when the current window slides to a new window it can eas-
ily discard the information of obsolete batches from the tree
nodes to update the tree. After that, it inserts the information
of the new batches into the tree. Therefore, it does not need
to traverse any batch twice. Due to these reasons, it out-
performs the existing WFIM algorithm in sliding window-
based stream data mining with respect to execution time.

As discussed in Sect. 4.2.3, tree construction and tree
update time of WFPMDS do not vary for a particular win-
dow while mining operations are performed for different
minimum thresholds. In contrast, tree construction time of
WFIM varies for different minimum thresholds as it keeps
candidate items from each transaction into the tree with re-
spect to a particular minimum threshold. Therefore, in slid-
ing window-based stream data mining, the overall runtime
difference between WFPMDS and WFIM increases when
the minimum threshold decreases.

At first, we compare our algorithm with the existing
WFIM algorithm by using the kosarak dataset. The dataset
kosarak was provided by Ferenc Bodon and contains click-
stream data of a Hungarian on-line news portal [19]. It con-
tains 990,002 transactions and 41,270 distinct items. Its av-
erage transaction size is 8.1. Figure 12 shows the runtime
comparison between WFIM and WFPMDS algorithms in
this dataset. Window size W=4B, batch size B=50 K and
minimum threshold range of 2% to 6% are used in Fig. 12.
This figure shows that WFPMDS outperforms WFIM sig-
nificantly with respect to execution time.

We have used a real-life dataset adopted from NU-
MineBench 2.0, a powerful benchmark suite consisting of
multiple data mining applications and databases [21]. This
dataset called Chain-store was taken from a major chain in
California and contains 1,112,949 transactions and 46,086
distinct items [21]. Its average transaction size is 7.2. We
have taken real weight values for items from their profit ta-
ble. Figure 13 shows the runtime comparison between the
existing WFIM algorithm and our proposed WFPMDS al-
gorithm in this dataset. Window size W=4B, batch size
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Fig. 12 Runtime comparison on the kosarak dataset.

Fig. 13 Runtime comparison on the Chain-store dataset.

B=50 K and minimum threshold range of 0.15% to 0.35%
are used in Fig. 13. This figure also shows that WFPMDS
outperforms WFIM significantly with respect to execution
time in stream data mining.

WFPMDS keeps all the transactions in a batch by
batch fashion into the tree to achieve the single-pass sliding
window-based stream data mining. In contrast, the WFIM
algorithm is designed for static databases and therefore it
keeps only candidate items from each transaction into the
tree with respect to a particular user given minimum thresh-
old. As a consequence, WFIM needs less memory compared
to WFPMDS. However, with modern technology, main
memory space is no longer a big concern [16], [17], [30],
[31]. Research into prefix-tree-based frequent pattern min-
ing [16], [17], [29]–[33] has shown that the memory require-
ment for the prefix trees is low enough to use the gigabyte-
range memory now available. In the recent years, reducing
the execution time is a major challenging issue of research.
Therefore, in this paper, our main goal is to achieve a faster
algorithm for stream data mining. Moreover, in Sect. 4.2.1,
we have shown that our tree structure can be efficiently kept
within this memory range. Hence, WFPMDS can be effi-
ciently applied for the sliding window-based weighted fre-
quent pattern mining over data streams using the recently
available gigabyte-range memory.

5. Conclusions

The main contribution of this paper is to provide a novel
large-scale algorithm for sliding window-based weighted
frequent pattern mining over data streams. Our proposed al-
gorithm WFPMDS can capture the recent change of knowl-
edge in a data stream adaptively by using a novel tree struc-
ture. It requires only a single-pass of data stream for tree
construction and mining operations. Therefore, it is quite
suitable for data stream applications which need to discover
valuable recent knowledge. Moreover, since our algorithm
exploits a pattern growth mining approach we can easily
avoid the problem of the level-wise candidate generation-
and-test approach. It also saves a huge amount of mem-
ory space by keeping the recent information very efficiently
in a tree structure. Extensive performance analyses show
that our algorithm is very efficient for sliding window-based
weighted frequent pattern mining over data streams.
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