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The Online Graph Exploration Problem on Restricted Graphs

Shuichi MIYAZAKI™®, Member, Naoyuki MORIMOTO™, Nonmember,

SUMMARY  The purpose of the online graph exploration problem is to
visit all the nodes of a given graph and come back to the starting node with
the minimum total traverse cost. However, unlike the classical Traveling
Salesperson Problem, information of the graph is given online. When an
online algorithm (called a searcher) visits a node v, then it learns informa-
tion on nodes and edges adjacent to v. The searcher must decide which node
to visit next depending on partial and incomplete information of the graph
that it has gained in its searching process. The goodness of the algorithm
is evaluated by the competitive analysis. If input graphs to be explored
are restricted to trees, the depth-first search always returns an optimal tour.
However, if graphs have cycles, the problem is non-trivial. In this paper
we consider two simple cases. First, we treat the problem on simple cy-
cles. Recently, Asahiro et al. proved that there is a 1.5-competitive online
algorithm, while no online algorithm can be (1.25 — €)-competitive for any
positive constant €. In this paper, we give an optimal online algorithm for

this problem; namely, we give a #(: 1.366)-competitive algorithm, and
1+V3

prove that there is no (=5~ —¢€)-competitive algorithm for any positive con-
stant €. Furthermore, we consider the problem on unweighted graphs. We
also give an optimal result; namely we give a 2-competitive algorithm and
prove that there is no (2 — €)-competitive online algorithm for any positive
constant €.

key words: the graph exploration problem, online algorithm, competitive
analysis

1. Introduction

In the Traveling Salesperson Problem (TSP)[14], we are
given a graph and non-negative weights (lengths) on edges.
Our task is to find a tour visiting all the nodes and com-
ing back to the starting node with minimum cost. The cost
of a tour is the total length of the tour. This problem is
a well-known NP-hard problem, and there have been in-
tensive studies such as heuristics and approximation algo-
rithms. Apparently, TSP has plenty of practical applications,
which includes determining a pickup or delivery tour for de-
livery companies or minimizing the total movement cost of
robot arms in LSI wiring.

In TSP, all information on the graph is given to the al-
gorithm in advance. However, in some cases of real ap-
plications, the terrain may be unknown until the algorithm
visits the place, and the algorithm learns the local environ-
ment when it actually visits there. For example, suppose
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that we wish to gather complete information of an unknown
environment using a robot searcher. At the beginning, the
robot has no knowledge of the environment. It should decide
where to visit next depending only on the partial information
of the environment that it has gained through the exploration
so far. This kind of problem is known as the exploration or
the map construction problem and there are several models.
In [13], the problem is formulated in an online problem on
undirected edge-weighted graphs as follows: At the begin-
ning, the searcher is at the starting node o, called the origin,
and it knows the local information, namely, the labels of the
nodes adjacent to o, and the weights of edges incident to o.
When the searcher visits a node v, then it learns the labels of
nodes adjacent to v and the weights of edges incident to v.
When the searcher moves from u to v along the edge (u, v),
it costs the weight of (u,v). The task of the searcher is to
visit all the nodes and return to the origin with as small cost
as possible. The goodness of the algorithm is evaluated by
the competitive analysis [5],[10].

The most natural algorithm one may consider is the
greedy type Nearest Neighbor algorithm (NN), which al-
ways visits a node nearest to the current node, among those
that have not yet been visited. Howeyver, it has been shown
that NN is not competitive even for planar graphs; there ex-
ists a planar graph G with n nodes such that the compet-
itive ratio of NN is Q(logn)[15]. Kalyanasundaram and
Pruhs [13] proposed a modified version of NN, called Short-
Cut, and proved that it is 16-competitive for planar graphs.

Note that if input graphs to be explored are restricted to
trees, the depth-first search always returns an optimal tour
because to visit all nodes and come back to the origin, each
edge must be traversed at least twice, and the depth-first
search traverses each edge exactly twice. Hence, the sim-
plest non-trivial case is probably cycles. Recently, Asahiro
et al. [2] considered the graph exploration on cycles. They
proved that NN achieves the competitive ratio of 1.5 and
showed that no online algorithm can have the competitive
ratio better than 1.25.

Our Results.

In this paper we consider the problems on two classes of
graphs and give tight bounds on the competitive ratio for
both cases. First we improve both upper and lower bounds

of the problem on cycles, and give a tight bound %(z
1.366). For improving the upper bound, we propose a new
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algorithm called DIST, which decides the next node to visit
depending on the (weighted) distances between the current
node and each of the unvisited two nodes, the total length
of the exploration so far, and the distance from the origin
to the current node. We also consider the problem on un-
weighted graphs, and give a tight bound of 2; namely, we
prove that algorithm DFS is 2-competitive and that no on-
line algorithm can have the competitive ratio better than 2
(this lower bound holds even when graphs have planarity).

Related Results.

There are several variants of the problem of exploring un-
known environment online. Deng and Papadimitriou [6]
considered the problem of exploring a directed unweighted
graph. This problem requires us to explore not only all
nodes but also all edges, and the cost of the searcher is mea-
sured by the total number of edges traversed. They gave
an online algorithm with d°“m edge traversals, where m
is the number of edges in the graph and d is the minimum
number of edges that have to be added to make the graph
Eulerian. Albers and Henzinger [1] presented an algorithm
that achieves an upper bound of d?!°¢9m, and Fleischer
and Trippen [9] gave an algorithm with an upper bound of
O(d®m). Fleischer and Trippen [8] also made an experi-
mental study of major online graph traversal algorithms and
evaluated their practical performance on various graph fam-
ilies. In the polygon exploration problem (e.g. [7],[12]), an
unknown environment is modeled by a polygon. The task
of a searcher is to see all the boundaries of the polygon
and come back to the starting point. Ausiello et al. [3] and
Ausiello et al. [4] have studied the online traveling sales-
person problem in which requests are presented online, and
the aim of the searcher is to visit each requested point (not
necessarily in the order of requests, unlike the k-server prob-
lem).

2. Preliminaries

The purpose of the Online Graph Exploration problem is to
visit all the nodes of a given graph G = (V, E), where V
and E denote the sets of nodes and edges, respectively. For
each edge (u#,v) € E, a non-negative weight {(u,v), some-
times called the length, is associated. Initially, the searcher
is at the specified node o € V, called the origin. It knows
only the labels of the nodes adjacent to o, and the length of
edges connecting o with those neighborhood nodes. Once
the searcher visits a node v, it learns the labels of nodes adja-
cent to v and the length of edges incident to v. The searcher
has a sufficiently large memory so that it can store all in-
formation obtained so far, namely, the labels of nodes, the
weights of edges, and the topology of the subgraph consist-
ing of nodes and edges it has already learned. The task of
the searcher is to determine the next node to visit, using only
the current knowledge. The goal of the searcher is to visit all
the nodes and return to the origin. The cost of the searcher
for the graph G is the total length of the tour made by the
searcher on G.
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The performance of an online algorithms is evaluated
by the competitive analysis: Let ALG(G) denote the cost of
an algorithm ALG on G, and let OPT(G) denote the cost of
an optimal offline algorithm OPT for G. We say that ALG is
c-competitive for a class of graphs G if ALG(G)/OPT(G) <
¢ for any graph G € G. We may write ALG and OPT instead
of ALG(G) and OPT(G), respectively, when G is clear.

3. A Tight Bound on Cycles

In this section we consider the problem on cycles and give a
tight bound for the competitive ratio. Here is one simple but
important fact [2]. Let £,,,,, be the maximum length of edges
and L = X, yept(u, v) be the sum of the length of all edges.

Fact 1: For any cycle C, OPT(C) = L if {4y < %, and
OPT(C) = 2(L — €pax) if € > %

3.1 A Lower Bound

In this section, we give a lower bound on the competitive
ratio for any online algorithm.

Theorem 1: For any positive constant €, there is no (# -
€)-competitive online algorithm for cycles.

Proof. We will introduce an adversary giving the above

mentioned lower bound. Fix an integer n and a constant

u such that n > g and ¢ < 1. First, the adversary reveals

two edges (o, u;) and (o,v) incident to the origin with the
equal length one. Without loss of generality, assume that the
searcher moves to u;. Then, the adversary reveals an edge
(u1,up) such that £(uy, uy) = 1. If the searcher visits u,, then
a new edge (i, u3) with £(up, usz) = 1 is revealed. Similarly,
as long as the searcher visits a new node u; (i < n — 1), the
adversary gives an edge (u;, u;+1) with €(u;, ui1) = 1.
Suppose that the searcher visits the node v before vis-
iting u,, and suppose that this happens just after it visited u,
where t < n — 1 (i.e. it went back to v when it saw the edge
(uy, ur1)) (Fig. 1 (a)). Then the edge (v, u,,1) with weight ¢
is revealed (Fig. 1 (b)). The only unvisited node is u;,1, and
the best way for the searcher is to go to u;; directly from

Uty

(a) (b)

Fig.1 Lower bound construction for cycles (I).
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Fig.2  Lower bound construction for cycles (II).

v, and go back to the origin by either clockwise or counter-
clockwise direction. The cost of the searcher is then 4¢ + 2.
The optimal tour is to visit all nodes along the cycle, whose
cost is 2¢ + 2. The competitive ratio in this case is then
4t+2)/2t+2) > 15sincet > 1.

Next, suppose that the searcher visits u, before visit-
ing v. Then the adversary gives an edge (u,, w) with length
V3n (Fig.2(a)). We have two cases. First, suppose that
the searcher visits w. Then the adversary reveals the edge
(w, v) such that £(w, v) = u (Fig. 2 (b)). The best way for the
searcher is to visit v and o in this order (note that u < 1). The
cost of the searcher is then n+ V3n+u+1 = (1+ V3)n+u+1.
Note that the edge (u,, w) has the length more than half the
total length of the whole cycle. So, by Fact 1, the optimal

cost is 2(n + p + 1). The competitive ratio is “;(ﬁ% =
1+V3 _ V3(u+1) 1+V3 _ V3(u+) > 1+v3 _ V3(+D > 1+v3 _
2 2t 2 2n > €

Finally, suppose that after the ezdge (unz,nw) is revealed,
the searcher goes back to the node v. In this case, the adver-
sary reveals the edge (v,w) with £(v,w) = ( V3 + Hn-1
(Fig.2(c)). Then the only unvisited node is w, and the
best way for the searcher is now to visit w directly from
v, and then go back to the origin in either clockwise or
counter-clockwise direction. The total cost of the tour is
n+n+1+(V3+Dn—1+(V3+ n = (2V3+4)n. The op-
timal tour is a one along the cycle, whose cost is (2 V3 +2)n.

QV3+4n _ 1+\3 0

The competitive ratio in this case is Vi = 2
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(b)

Fig.3  Description of the algorithm.

3.2 An Upper Bound

In this section, we give an online algorithm DIST and ana-
lyze its competitive ratio.

3.2.1 Algorithm DIST

Since a given graph is a cycle, there are always two choices
for the searcher: (except for the Ist step), either to go for-
ward or to go back. (See Fig.3 (a). The visited nodes are
surrounded by a dotted curve, and the current position of
the searcher is indicated by the black node.) Before present-
ing the algorithm, we give a few notations. Suppose that
as shown in Fig. 3 (a), the searcher is currently at the node
u, and is to determine which of x and y to visit. For any
two nodes v; and v, let d(vy,v,) denote the distance be-
tween v; and v, along the edges already known. Let X be
the total length the searcher has traversed so far, and define
W = X — d(o, u). The value of W may change as time goes,
so it might be appropriate to express it as e.g. W; for Step
i. However, for conciseness, we use W when there is no
fear of confusion, or we sometimes say as “W-value at this
moment”. Now, we are ready to give our algorithm DIST:

Step 1: The searcher is at the origin o, and there are two
nodes adjacent to o. It moves to the node closer to o. If
both are in the same distance, it chooses arbitrary one.

Step i (i > 2): Suppose that the searcher is at a node u as
shown in Fig.3 (a). If €(u,x) < V3d(u,y) — W, then
the searcher moves to x. Otherwise, i.e., if {(u, x) >
\/gd(u, y) — W, then the searcher moves to y.

Final step: The current situation is like Fig.3 (b). When
the searcher visits a node u, it learns that « is connected
to the unvisited but known node y (since it has seen y
when it was on the node of the other side). Now, it
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knows the entire graph, and there is only one unvisited
node y. The searcher selects the shorter path from u to
v, and then the shorter path from y to o.

3.2.2 Competitive Analysis

In this subsection, we prove the following theorem:

Theorem 2: DIST is 1+T‘B-competitive for cycles.

Proof. Consider any time step of the online game, and sup-
pose that the situation is like Fig. 3 (a). (In the case just be-
fore the final step, x is equal to y as Fig.3(b).) Let W be
the current W-value, namely, the total distance the searcher
has traversed so far minus d(o, u). The following lemma is
crucial in our analysis:

Lemma 3: For anytime before the final step, W < (V3 —
Dd(o, y).

Note: In the case of Fig. 3 (b), d(o, u) is the distance from o
to u in a clockwise direction, and d(o, y) is the distance from
o to y in a counter-clockwise direction.

Proof. The proof is by induction. After Step 1 is per-
formed, the situation is like Fig. 4 (a). Since W = {(o,u) —
{(0,u) = 0, the inequality holds clearly.

Next, we assume that the inequality holds after Step i,
and show that it holds after Step i + 1. Suppose that after the
execution of Step i, the situation is like Fig. 3 (a). We denote
the W-value at this moment by W;. By the induction hypoth-
esis, the following inequality holds: W; < (\/§ — D)d(o,y).
There are two cases to consider depending on whether the
searcher moves to x or y in the next step.

Case 1. The searcher moves to x at Step i + 1. Then
the situation is like Fig. 4 (b). Note that by definition, the
current W-value, denoted by Wiy, is Wi,y = W; + £(u, x) —
€(u, x) = W;. (This means that if the searcher goes forward,
then the W-value remains unchanged. This property will be
sometimes used hereafter.) So Wi1 < (V3 — 1)d(o,y) by
the induction hypothesis, which implies that the inequality
holds after Step i + 1.

Case 2. The searcher moves to y at Step i + 1. Then
the situation is like Fig.4 (c). The total length of the tour
by the searcher increases by d(y,0) + d(o,u) at this step.
The distance from the origin was d(o, u) but is now d(o, y).
Hence, W;,1 = W;+d(y, 0)+d(o,u)—d(o,y)+d(o,u) = W;+
2d(o, u). Since the searcher selected y rather than x, £(u, x) >
\/gd(u, y) — W; holds. Also, by the induction hypothesis,
W; < (\/§ — 1)d(o,y). From these two inequalities and the
equality d(u, y) = d(u, 0)+d(o,y), we have d(o,y) < €(u, x)—
V3d(u, 0). Now using the hypothesis again, we have

Wiv1 = Wi+ 2d(o,u)

(V3 = Dd(o,y) + 2d(o, u)

< (‘/§ - D(u, x) — \/gd(u, 0)) + 2d(o, u)
= (V3 = D)(lu, x) + d(o, u))

= (V3 - 1)d(o, x)

IA
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Fig.4  Proof of Lemma 3.

/,/’/ 0 a
_——O— \\

Fig.5  Final step of DIST.

as required. [

Now, suppose that we are at the moment just before the
final step. Then, the current situation looks like Fig. 5. The
searcher is at the node u, and it just learned that the node
y adjacent to u is the same as the one it saw from v before.
Since the searcher learned £(u, y), it came to know the whole
information on the cycle.

For simplicity, let a, b, ¢, and d denote the lengths
of paths (edges) d(o,u), £{(u,y), d(o,v), and £(v,y), respec-
tively, as depicted in Fig.5. Let W* be the W-value at this
moment. Then, by Lemma 3, W* < (V3 - Dd(o,y) =
(V3 = 1)(c + d) holds. The only unvisited node is y, and the
searcher will visit y in either clockwise or counter-clockwise
direction depending on which route is shorter, and then go
back to o from y in either clockwise or counter-clockwise
direction, again depending on which route is shorter. We
will do a case analysis.

Casel. b > a+c+d. Inthiscase,a+b > c+dholds.
So, the searcher visits y by way of o, in a counter-clockwise
direction, and goes back to o by way of v, in a clockwise
direction. Since the cost of the searcher before the final step
is W* + d(o,u) = W* + a by the definition of the W-value,
the final costis DIST = W +a+(a+c+d)+ (c+d) =
W*+2(a+c+d). Because b >a+c+d, {pyux = b > L/2.
So, the optimal cost is OPT = 2(a + ¢ + d) by Fact 1. The
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competitive ratio is
DIST W'+2a+c+d)

OPT  2a+c+d)
<1, (VB-Derd)
2(a+c+d)
1+\/§_1
- 2
1+ V3
= —

Case 2. b <a+c+danda+b < c+d  The
searcher visits y using the edge (u, y), and goes back to o in
a counter-clockwise direction, i.e., by way of u. So, DIST =
W*+a+b+(b+a) =W +2(a+b). Let e,4, be an edge
with maximum length, namely, €(e;4) = €inax. We consider
subcases according to the length and position of e,,,;.

Case 2-(i). {;yqr < L/2. ByFact1,OPT = a+b+c+d.
Thus,

DIST  W*+2(a+b)
OPT a+b+c+d
(V3= 1)c+d) +2a+Db)

- a+b+c+d
i, 8- V3D
B a+b+c+d
(3= V3)a+Db)
< \/§—1+W
1+ V3

2

Case 2-(ii). €ax > L/2 and epqr = (1, ).
not happen because b < a + ¢ +d.

Case 2-(iii). (4 > L/2 and epoe = (v, ). By
Fact 1, OPT = 2(a + b + ¢). Consider the time when the
searcher was at v (Fig. 6 (a)), and let W’ be the W-value at
this moment. Let w be an unvisited node other than y (this
notation is used sometimes hereafter). Then, by Lemma 3,
W’ < (V3=1)d(o,w) < (V3—1)a. Note that at the next step,
the searcher moved to w because y is the last node visited by
the searcher. Let W be the W-value just after the searcher
moved to w. Then, the total length of the tour increased
by ¢ + d(o,w), and the distance between the origin and the
searcher changed from c to d(o, w). Hence, by a simple cal-
culation, W’ = W +c+d(o,w)+c—d(o,w) = W +2c. Note
that the searcher does not change the direction hereafter un-
til it reaches u. So, the W-value remains unchanged until
the searcher reaches u, namely, W* = W’ = W’ + 2¢ <
(V3 = Da + 2¢ (recall that W* is the W-value when the
searcher is at u). Now,

DIST _ W*+2(a+0b)
OPT  2(a+b+c)
- (V3= 1Da+2c+2(a+b)
- 2(a+b+c)
(V3-1a
2a+b+c)

This does

IEICE TRANS. INF. & SYST., VOL.E92-D, NO.9 SEPTEMBER 2009

(b)

Fig.6  Case 2-(iii) and Case 2-(iv).

A
—
+

Case 2-(iv). x> L/2 and ey, is in the path from
o to v (in a counter-clockwise direction). ~ We can show
that this case does not happen in the following way: Sup-
pose, on the contrary, that this happens. Consider the time
when the searcher was at v (Fig. 6 (b)). Since the searcher
decided to move to w rather than y, it must be the case that
£(v,y) > V3d(v,w) — W where W’ is the W-value at this
time. Also, by Lemma 3, W’ < (\/g—l)d(o, w). So, £(v,y) >
V3d(v,w) = (V3 = Dd(o,w) = V3d(v,0) + d(0,w) > Coax
because d(v,0) > £, by assumption. But this is a contra-
diction. So, we can conclude that this case does not happen.

Case 2-(v). {4 > L/2 and e, is in the path from o to
u (in a clockwise direction). This does not happen because
a+b<c+d.

Case3. b <a+c+danda+b > c+d  The
searcher visits y using the edge (u, y), and goes back to o in
a clockwise direction, i.e., by way of v. So, DIST = W*+a+
b + (c + d). Similarly, we consider the following subcases:

Case 3-(i). {;yqx < L/2. ByFact1,OPT = a+b+c+d.
Thus,

DIST_ W'+a+b+c+d
OPT  a+b+c+d
1+(«/5—1)((:+d)
a+b+c+d
(V3-D(c+d)
erd

<1+
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Fig.7 Case 3-(v).

_1+V3
T
Case 3-(ii). €qx > L/2 and eqr = (u,y). This does
not happen because b < a + ¢ +d.
Case 3-(iii). {0 > L/2 and e,,x = (v,y). This does

not happen because a + b > ¢ + d.

Case 3-(iv). {ax > L/2 and e,y is in the path from
o to v (in a counter-clockwise direction).  This does not
happen because a + b > ¢ + d.

Case 3-(v). {ax > L/2 and e, is in the path from o
to u (in a clockwise direction).  Consider the time when
the searcher was at v. We first show that the searcher had
not yet traversed ey, at this time. On the contrary, sup-
pose that it had already traversed e, (Fig.7 (a)). Since the
searcher visits w at the next step, €(v,y) > \/§d(v, w) - W,
where W’ is the W-value at this moment. Also, by Lemma 3,
W’ < (V3 = Dd(o,w). Hence, £(v,y) > V3d(v,w)— (V3 —
Dd(o,w) = \/gd(o, v) + d(o,w) > €pay, a contradiction. So,
the searcher traversed e,,,, for the first time after it left v.

Now, let e,,,, = (1, u’") and consider the time when the
searcher was at u’ (Fig. 7 (b)). Let W be the W-value at this
moment. Since the searcher visited u”” next,

V3dw!',y) - W”
V3(d(o,u') + d(o,y)) - W
< V3(d(0,u) = Cpax + d(0,y)) = W”.

IA

gmax

The last inequality follows from the fact that d(o, u’)+€,pqx <
d(o,u). From this inequality,
V3(d(o,u) + d(o0,y)) - W”
1+ 3
3 VBa+c+d) -wW”
- 1+1V3

gmax -
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_ VB(L-b)-W”
1+ V3 ’

Here, recall that L is the total length of the cycle. Because
y is the last node visited by the searcher, the searcher does
not change the direction hereafter, until it gets u. Hence
W* = W” (recall that W* is the W-value when the searcher
is at ). By Fact 1, OPT = 2(L — {,,,,)- Hence,

DIST W +a+b+c+d
OPT 2L = bpaz)
W*+ L

- _ \BU=b)-W"
2 (L 1+V3 )

(1+ V3)(W* + L)
2(L+ W* + V3b)

1+ V3
<
2

4. A Tight Bound on Unweighted Graphs

In this section we consider the problem on graphs in which
all edges have the same cost 1. Note that we do not restrict
the topology of graphs.

4.1 An Upper Bound

The Depth-First Search (DFS) gives a good upper bound.
When new edges and nodes are revealed, DFS chooses one
of the unvisited nodes adjacent to the current node arbitrarily
and visits it. If there is no such node, DFS backtracks, i.e.,
it goes back to the previous node through the edge used to
come to the current node for the first time, and does the same
procedure there.

To describe the behavior of DFS precisely, we give a
recursive procedure Search. Inputs of Search are a node x
and a sequence of nodes p (p could be empty). Intuitively,
x is the searcher’s current position and p is the record of the
exploration by the searcher so far.

Procedure Search(x: vertex, p: a sequence of nodes)
The searcher is now at x.

If there is an unvisited node z adjacent to x, go to z
and Search(z, px).

Otherwise,

If p # ¢, let p = p’y where y is the last node of p,
and p’ is a sequence of nodes obtained by
eliminating y from p.

Go back to y, and execute Search(y, p’).

If p = ¢, halt.

Algorithm DFS
Search(o, ¢)

Theorem 4: DFS is 2-competitive for unweighted graphs.
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Proof. For any given graph G, the set of the edges that al-
gorithm DFS traverses is a spanning tree of G. Let n denote
the number of nodes of G. Since DFS traverses each edge
exactly twice, DFS=2(n — 1). On the other hand, OPT > n
holds because any algorithm should traverse at least n edges

in order to visit all the nodes and return to the origin. So,

DFS _ 2(-1)
o S T <2 O

4.2 A Lower Bound

In this section we prove the following theorem. Note that
this theorem holds even when graphs have planarity.

Theorem 5: For any positive constant €, there is no (2 —€)-
competitive online algorithm for unweighted graphs.

Proof. We will introduce an adversary giving the above
mentioned lower bound. Fix an integer n such that n > %
For a path vy, v,..., v, let ((vi,va,...,)) denote its total
length.

First, the adversary reveals two edges (o, u;) and (o, vy)
incident to the origin. If the searcher moves to u;, a new
edge (u;,uy) is revealed. As long as the searcher visits
a new node u; (i < n — 1), the adversary gives an edge
(u;, ui41). Similarly, if the searcher visits v; i < n — 1), a
new edge (v;, v;;1) is revealed. This procedure continues un-
til the searcher reaches u,, or v,,. Without loss of generality
we can assume he reaches u, before v,,.

Now we assume that v;, v, ..., v, have been visited,
and v, 41 has not been visited. Let D, denote the total length
of the exploration so far. Because the searcher visited vy,

before reaching u,,,

2<<07v17"‘7vl1>>+<<0’u17"-’ul‘l>>
n+2t.

D,

\%

Then, new edges (u,, p1) and (u,,q;) are revealed
(Fig.8(a)). When the searcher visits new node p; (i <
n+t — 1), (pi, pir1) Will be revealed, and when the searcher
visits ¢; (i < n+t;—1), (g;, gi+1) Will be revealed (Fig. 8 (b)).
Hereafter, we will do a case analysis depending on the
searcher’s behavior.

First we consider the case that the searcher reaches
Vi, +1 before visiting p,, Or gpiy,. Lettp (S n+1; — 1) and
t3 (< n+t; — 1) be integers such that p,, and ¢,, have been
visited, and p;,+; and g, are unvisited (Fig.8(c)). The
adversary does not reveal new edges anymore. Let D, de-
note the total length of the exploration so far. The searcher
moved from u, to v, 4+ after visiting p;, and ¢,,, so

DC > Da + 2<<un9pl9p2,~ . -’pt3>> +
2Un, q1,q25 - - - q)) +
Qs Un—15 -« o U1, 0, V1, o, Vi)

=D, +2t+2tz3+n+1t; +1
> 2n+ 3t + 2t + 2t3 + 1.

Hereafter, the searcher visits g, and p;,+1, and returns to
o finishing exploration. The total distance is
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Fig.8 Lower bound construction for unweighted graphs.

ALG 2 D 4 (V1415 Viys e e o s Oy ULy« oo Un)) +

2{Uns G152 - - -5 Gry1)) +
2{ttns P1> P25+ -+ Pry1)) +
Kt tn-1,. .., 0))

=D+t +14+n)+2(t+ 1)+
23+ 1) +n

>4dn+t +1 +13)+6,

while OPT =2(n+ 1, + 1, + 3 + 3). So, 52 > 2 — €.
Secondly, we consider the case that the searcher
reaches pyis O gn+r, before visiting v, Without loss of
generality we can assume that the searcher reaches gy, .
Now suppose that p,, has been visited and py,; is unvis-
ited. Let D, denote the total length of the exploration so far.

By a similar observation as before,

Dq = Dy + 2{un, p1, p2s---s Pr,)) +
Kty 152, - -+ s Guan D)
D,+2t4+n+t

2n + 3t + 2ty.

4

Then the adversary reveals (g, vi,+1) (Fig. 8 (d)), and fin-
ishes revealing. Hereafter the best way for the searcher is
to Visit v, 4 traversing (gn+s, V1,+1), and to return to o after
visiting py,+; (the last unvisited node). The total length of
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the tour is

ALG > Dy + €(qnss,> Vi +1) +
V41> Quatys -2 Uns Plo- oo Drys1)) +
{Ptyr1> Pits o+ v s Uny Up 1, ..., 0))
=Dyg+1+(0+n+t;+14+1)+
(I +t4+n)
>4(n+t +t4+ 1)

The total length of an optimal offline tour is

OPT = (0,1, .. s vis1)) + €V 11, Gnay) +
UGnstys s Qs Uns Py oo oy Pys1)) +
UPtyt1s -+ s PloUns - - s UL, 0))
=t+D)+1+(m+H+1+1)+
(ty +1+n)
=2(n+t +1t4+2).
So, &8 > 2 . O

5. Concluding Remarks

In this paper, we have studied the online graph exploration

problem on two graph classes. First, we have given a tight

competitive ratio of % for the problem on cycles. We

have also studied the problem on unweighted graphs and
have given a tight bound of 2.

For planar graphs, the best known upper bound is 16,
as mentioned in Sec. 1. Since Theorem 5 holds for planar
graphs, 2 is the current best lower bound for planar graphs.
There still remains a large gap between these upper and
lower bounds. Narrowing the gap is a challenging problem.
Another future work is to consider randomized algorithms
to break deterministic lower bound.
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