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An LVCSR Based Reading Miscue Detection System Using
Knowledge of Reference and Error Patterns
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and Yonghong YAN†c), Nonmember

SUMMARY This paper describes a reading miscue detection system
based on the conventional Large Vocabulary Continuous Speech Recog-
nition (LVCSR) framework [1]. In order to incorporate the knowledge of
reference (what the reader ought to read) and some error patterns into the
decoding process, two methods are proposed: Dynamic Multiple Pronunci-
ation Incorporation (DMPI) and Dynamic Interpolation of Language Model
(DILM). DMPI dynamically adds some pronunciation variations into the
search space to predict reading substitutions and insertions. To resolve the
conflict between the coverage of error predications and the perplexity of the
search space, only the pronunciation variants related to the reference are
added. DILM dynamically interpolates the general language model based
on the analysis of the reference and so keeps the active paths of decoding
relatively near the reference. It makes the recognition more accurate, which
further improves the detection performance. At the final stage of detection,
an improved dynamic program (DP) is used to align the confusion network
(CN) from speech recognition and the reference to generate the detecting
result. The experimental results show that the proposed two methods can
decrease the Equal Error Rate (EER) by 14% relatively, from 46.4% to
39.8%.
key words: CALL, reading tutor, reading miscues, LVCSR, multiple pro-
nunciation

1. Introduction

Computer Assisted Language Learning (CALL) has been
proved very effective for language learners. Some CALL
systems concentrate on pronunciation assessment or pro-
nunciation training (CAPT) [2], [3] and some concentrate on
improving reading proficiency and comprehension of learn-
ers (reading tutor) [4]–[7]. A reading tutor can listen to the
learner’s reading and provides help when the learner needs
or it thinks the learner needs.

One of the reading tutor’s main tasks is to detect read-
ing miscues, which contain reading omission, insertion, sub-
stitution, etc. Most reading tutors use automatic speech
recognition (ASR) techniques to achieve this goal. The
speech recognizer in a reading tutor should not be consid-
ered as the same as a conventional one because what the
reader ought to read (reference) is known in advance. Its
goal is not to recognize the content of speech in an un-
constrained search space but to calculate the similarity be-
tween the reference and speech and tell where the differ-
ences are. Compared with the conventional ASR, there are
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more knowledge sources available to the speech recognizer
for the reading tutor, such as the reference and error predic-
tions from learning history.

Many research groups have developed reading tutors
with different architectures and algorithms to detect read-
ing miscues. Mostow et al. [4] reconstruct two primary
knowledge sources – the pronunciation dictionary and the
language model (LM) of Sphinx-II [8] based on the refer-
ence. Its dictionary only contains the words in the refer-
ence and some word truncations derived from the original
words which are used to predict some sub-word errors. Its
LM is a very simple bi-gram model which only specifies the
probability of the current word followed by the next correct
word or any other words in the reference. Similarly, Wang
et al. [7] construct a finite state grammar network from the
reference and some predicted errors as the search space for
the recognizer. And, a decision tree is used to balance the
coverage of errors and the perplexity of the search space.

In general, reading miscues are very arbitrary, espe-
cially for beginners. Although some error patterns, such
as word repetitions, can be pre-modeled, it is hard to cap-
ture all of them in the system. The insertion and substi-
tution miscues are especially difficult to predicte because
they can be of any word, even non-word. It is very hard
for the systems with a small vocabulary dictionary [4] or a
finite state grammar network [7] to handle these situations,
because their limited search space may not cover such er-
rors.

Bolanos et al. [5] and Duchateau et al. [6] both use a
two-stage architecture. In the first stage, a sub-word decoder
generates a dense sub-word lattice. The sub-word may be a
syllable or a phone. In the second stage, the extended refer-
ence which models explicitly the expected, frequent reading
miscues is aligned with the lattice to locate the reading mis-
cues. They have not considered the prior miscue distribu-
tion information in the first stage. Moreover, the sub-word
decoder uses rarely high level linguistic information. There-
fore, the accuracy of the sub-word lattice is limited, espe-
cially for the non-fluent speech of beginners. The alignment
of the reference and the recognition result may be disordered
by the recognizing errors and consequently impairs the de-
tection performance. Bolanos et al. used a domain-specific
syllable language model which is only trained on the read-
ing material (usually a passage) to improve the recognition
performance [5]. However, it is highly task-dependent. If
the reading material changes, the LM has to be retrained,
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Fig. 1 The architecture of the reading miscue detection system.

which is very inconvenient.
This paper proposes a novel architecture for detecting

reading miscues based on our LVCSR system [1]. LVCSR
has no constraints for the speech content and can get more
accurate recognizing result than the syllable or phone de-
coder because of the incorporation of high level linguistic
information such as word language model. In order to adapt
the LVCSR system to the new application, three methods
are proposed. Firstly, in order to model some error pat-
terns during the decoding process, we adopt the pronunci-
ation variation model method which is usually used in con-
versational speech recognition [9] and propose an algorithm
of Dynamic Multiple Pronunciation Incorporation (DMPI)
for the new situation. Secondly, in order to improve the rec-
ognizing accuracy, we propose an algorithm of Dynamic In-
terpolation of Language Model (DILM) to dynamically in-
terpolate the LM probability of reference in the original LM
during the decoding process to constrain the search space.
Finally, to further compensate for the inaccuracy of recog-
nition, a confusion network (CN) is used to represent the re-
sult of the recognizer. Using multiple candidate hypotheses
in the CN can help the alignment of the recognizing result
and the reference more exactly. The detection result will be
generated from the aligned path.

The rest of this paper is structured as follows: Sect. 2
describes the architecture of the system; details of DMPI
and DILM are presented in Sects. 3 and 4 respectively;
Sect. 5 presents the algorithm of aligning the reference and
CN; the performance of this system is demonstrated in
Sect. 6; the conclusion is given in Sect. 7.

2. System Architecture

Our reading miscue detection system is designed to help
the Hongkong students to learn Chinese Mandarin. Its ar-
chitecture is shown in Fig. 1. A decoder incorporates the
knowledge sources, including language model (LM), acous-
tic model (AM), pronunciation dictionary (PD), reference
and multiple pronunciation model (MPM), to transform the
input speech into a hypotheses lattice. Then, the lattice is
converted into a confusion network by a lattice processing
module. Finally, the confusion network is aligned with the

reference by an improved DP to locate the reading miscues.
Compared with the conventional LVCSR [1], this system in-
corporates two additional knowledge sources: the reference
and MPM. They are very important prior knowledge in
CALL systems. The focus of this paper is to show how to
apply them to constructing a reading miscue detection sys-
tem.

The pronunciation dictionary in LVCSR provides cor-
rect pronunciations of each word for the decoder. When rec-
ognizing the correct reading, the decoder works well. How-
ever, when recognizing the speech with wrong pronuncia-
tions, the decoder will make mistakes because there are no
appropriate entries in the dictionary. To resolve this prob-
lem, an MPM is used to model these wrong pronunciations.
It is similar to what is used in conversational speech recog-
nition [9]. However, we do not simply add all pronunciation
variants in the MPM to the original dictionary, but use the
algorithm DMPI. Considering that the reference is known in
the CALL system, only pronunciation variants related to the
current reference are added. It is implemented by modifying
the search space online.

A domain-specific LM such as that in [5] can improve
the recognition performance on non-fluent speech with mis-
cues or even accents. Instead of training a complete task-
dependent LM by the reading materials, we will interpolate
the original LM with the reference LM in the decoding pro-
cess dynamically. The reference LM can constrain the active
decoding path near the reference. It is implemented by the
algorithm DILM. It is also an online process and does not
need to modify the original LM.

3. Dynamic Multiple Pronunciations Incorporation

Error predictions are very effective for the detection of read-
ing miscues. We can place models of common errors par-
allel to the reference, and use decoder to see which one is
preferred by the utterance. The error models can be derived
from linguistic analysis [4], from real data or their combina-
tion [7].

In real situations, most reading miscues are substitu-
tions. From the analysis of a corpus of about 600 Hongkong
college students’ reading of Chinese Mandarin, we found
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Fig. 2 An example of multiple pronunciation model.

that the substitutions account for about 78% of all mis-
cues. The substitutions are generally pronunciation vari-
ances caused by accent or misreading. We develop an MPM
to predict the pronunciation variances of readers and pro-
pose an algorithm DMPI to dynamically incorporate it into
the decoder as another knowledge source.

3.1 Multiple Pronunciation Model

The MPM contains all possible pronunciations of words (in-
cluding the normative pronunciation and pronunciation vari-
ances). And it quantifies each pronunciation v of word w
with the probability PMP(v|w). An example of the multi-
ple pronunciation model is shown in Fig. 2. It is very sim-
ilar to the pronunciation variation model in conversational
ASR [9]. There, it is used to model the pronunciation varia-
tions, while here it is used to model the reading errors.

The multiple pronunciation model is trained by data-
driven method. Plenty of second language learners’ read-
ing speech is collected. Then, their actual pronunciations
are transcribed by human experts. After aligning the tran-
scriptions with the references through DP, the pronunciation
probabilities are calculated by maximum likelihood estima-
tion (MLE) as shown in Eq. (1):

PMP(v|w) =
N(w, v)
N(w)

(1)

where, N(w) is the count of word w and N(w, v) is the count
of w with pronunciation v.

3.2 Dynamical Incorporation of Multiple Pronunciation
Model

In ASR, the most usual method of using MPM is to
add all pronunciation variants to the original pronuncia-
tion dictionary which provides correct pronunciations for all
words [9], [10]. However, adding pronunciation variants to
the dictionary usually also introduces new errors because the
acoustic confusability within the lexicon increases. Many
studies are carried out to determine which set of pronunci-
ation variants can balance between solving old errors and
introducing new ones [11]. In our LVCSR system, the size
of the pronunciation dictionary is about 40,000 words. If
all the entries in the MPM are added, the dictionary will
grow to about 60,000 words, which is very large. It will in-
troduce too many new confusions and reduce the accuracy
of the recognizer, which further impairs the performance of

Fig. 3 An example of linear lexicon tree.

miscue detection.
A significant difference between ASR and CALL is

that we know the reference in advance. Therefore, based
on this information we develop an algorithm DMPI. In this
algorithm, we do not add pronunciation variants in the MPM
to the dictionary altogether, but only add pronunciation vari-
ants of those words which pertain to the current reference.
Before decoding, they are extracted from the MPM and then
added to the dictionary. Other words in the dictionary keep
unchanged. Thus, the size of the dictionary is increased as
minimally as possible and the increased confusability within
the dictionary is very slight.

In a practical effective speech recognizer, the pronunci-
ation dictionary with other knowledge sources is often built
to a refined search space. For example, in HDecode of HTK,
it is a tripone-model-based network [12] and in our TDe-
code, it is a memory-efficient state network [1]. In LVCSR
system, the search space is built by putting all the entries
in the pronunciation dictionary together in parallel, and ex-
panding the mono-phones into tri-phones, and operating the
cross-word extension, etc. This is a time-consuming pro-
cess, so it is often done offline beforehand. The change of
the pronunciation dictionary will cause the change of search
space. Therefore, dynamically changing the dictionary re-
quires a re-compilation of the search space, which is very
inconvenient and inefficient. The proposed DMPI algorithm
directly adds some additional paths to the search space to
represent the pronunciation variants and it does not need re-
compiling the original search space.

In our LVCSR system as described in [1], the search
space is a refined state network. It is built from a linear lex-
icon tree and phonetic decision trees. Each edge of the lexi-
con tree represents an entry of the pronunciation dictionary.
An example of the linear lexicon tree is shown in Fig. 3. The
word nodes in the lexicon tree are then substituted by phone
nodes, and after tri-phone expansion, cross-word extension,
the word-based lexicon tree are transferred into a tri-phone
network. The corresponding HMM of each tri-phone can
be found from the phonetic decision tree. After replacing
all the tri-phones by HMM states, the prototype state net-
work is got. The prototype state network is then optimized
by forward and backward node-merging process and finally
generates the final state network, which is shown in Fig. 4.
The details about the state network can be found in [13].

In DMPI, the pronunciation variants are added to the
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Fig. 4 The state network for the linear lexicon tree in Fig. 3. The circles denote real HMM states,
while the rectangles denote dummy nodes for optimizing the network or needed in the decoding process.
The numbers around the circles are state indexes in the state set of the acoustic model and the ones in
the rectangles or circles are node indexes only for description. The FI and FO nodes are used for cross-
word extension. Each of them represents a phone-pair and connects the tri-phones with this phone-pair
at their tails or heads.

Fig. 5 The state network after merging an additional pronunciation path. The grey nodes denote a
new pronunciation of the word北京: Bei3 jin1.

state network as additional paths. They are firstly converted
to HMM state paths, and then merged into the original state
network one by one. The most difficult of this is to deal
with the cross-word extension. We make some change on
the state network described in [1]. In that network, only the
essential fan-in (FI) and fan-out (FO) nodes are added. Each

FI or FO node denotes a connection pair of two phones in
the cross-word extension, such as “b-a3” or “e4-d”. When
we merge a new word to the network, if some corresponding
FI or FO nodes do not exist, it will be very difficult to merge
it in. Therefore, we reserve the whole set of FI and FO nodes
when building the state network, no matter whether it exists
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Fig. 6 The lexicon tree with an additional pronunciation.

in the lexicon tree or not. In Fig. 4, not all FI and FO nodes
are listed due to space reason. The whole set of FI and FO
nodes makes it easy to merge a new pronunciation variant
state path to the state network. We only need to copy the
links at the FI and FO nodes of the pronunciation variant
state path to the corresponding FI and FO nodes of the state
network.

Figure 5 shows the state network after merging a pro-
nunciation variant of北京: Bei3 jin1. The white nodes be-
long to the original state network and the gray ones belong
to the merged state path of the pronunciation variant. For
reference, the corresponding liner lexicon tree is also shown
in Fig. 6, though the final state network is not derived from
it. The gray rectangle denotes the pronunciation variant of
北京. It allows the reader to read 北京 as two pronuncia-
tions: Bei3 jing1 or Bei3 jin1.

All pronunciation variants of the same word share the
same language model probability during the decoding pro-
cess because they stand for the same word identity and the
pronunciation probability PMP(v|w) is incorporated into de-
coding as shown in the following equation:

P(w|o) � PAM(o|v) · PMP(v|w) · PLM(w) (2)

where P(w|o) is the probability of word w given the obser-
vation vector o, PAM(o|v) is the AM probability of the ob-
servation vector o given the pronunciation v, and PLM(w) is
the LM probability of word w.

4. Dynamic Interpolation of Language Model

When using the reading tutor, the reader is supposed to read
the given reference. Though the reader’s real utterance may
not match the reference exactly due to reading miscues, it
is reasonable to assume that most words match. Therefore,
the words in the reference should have higher probabilities
to be read. These words should also have higher probabil-
ities in the decoding process. This can be considered as a
highly domain-specific speech recognition problem. In [5],
a domain-specific LM trained only on the reading materials
is used to constrain the search space. However, we do not
want to replace the whole original LM because it is very in-
convenient when the reading materials change and the over-
constrained search space by the small LM may impede error
recovery [4].

Language model adaption is widely used in domain-

specific speech recognition [14]. Here, this scheme is used
in our application. The original LM of LVCSR is consid-
ered as a background LM and it will be adapted by the ref-
erence for each utterance. The model merging is selected as
the adaption method. Before detecting the current sentence,
the reference LM is calculated and then interpolated in the
background LM. However, we do not modify the values of
the original LM actually. An on-line process is used. The fi-
nal LM probabilities are calculated in the decoding process
dynamically. Only the current sentence is used to adapt the
background LM, hoping to keep the active decoding path
near the reference. This method is called Dynamic Inter-
polation of Language Model (DILM). Using this method, it
does not need to re-train the LM when the reading materials
change and the background LM can provide more opportu-
nities for the recovery of the arbitrary reading miscues.

In DILM, the original language model probability
PLM(w) in Eq. (2) is changed to P̂LM(w) as in Eq. (3) in the
decoding process,

P̂LM(w) = (1 − α)PLM(w) + αPre f (w) (3)

where Pre f (w) is the probability of w in current reference to
be decoded and α is a coefficient between 0 and 1, used to
tune the weight of the reference LM. Pre f (w) is calculated
using Eq. (4),

Pre f (w) =
N(w)∑n

i=1 N(wi)
(4)

where N(w) is the count of word w in the current reference,
and n is the number of individual words in the current refer-
ence.

The calculation of Pre f (w) is very similar to the training
of an n-gram language model. If considering the context of
word w, the unit of the reference model can be bi-gram or tri-
gram, etc. Different n-gram lengths have different character-
istics in improving recognition and detection performance.
The three types of n-grams, tri-gram, bi-gram and uni-gram,
are compared in our experiments below.

5. Alignment of the Reference and the Confusion Net-
work

The final stage of the detecting system is to align the recog-
nizer output and the reference to locate the reading miscues.
Some researches just use the 1-best hypothesis as the recog-
nizer output [4] and some others use more complex output,
such as lattice [5], [6] to compensate for the errors caused
by the recognizer itself. We select the confusion network
(CN) as the object to be aligned with the reference. It is
not only because the confusion network is simpler than the
lattice, but also because it is built based on Minimum Word
Error (MWE) criterion [15], which is more appropriate for
the word miscue detection application.

CN is built from the lattice by merging the equivalent
word (edge) classes using intra-word and inter-word cluster-
ing algorithm based on the time similarity, phonetic similar-
ity and word posterior probabilities [15]. The word posterior
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Fig. 7 An example of confusion network and its alignment with the ref-
erence “bei3 jing1 huan1 ying2 nin2.”

probability is the sum of the posterior probabilities of all lat-
tice paths of which the word is a part. CN can be thought
as a highly compacted representation of the original lattice
with the property that all word hypotheses are totally or-
dered. It has been widely used in many applications, such as
minimization of word error rate, lattice compression, word
spotting, confidence annotation, etc. An example of CN is
shown in Fig. 7. It has many candidates in each alignment
column and each candidate has a posterior probability with
it.

Generally, the minimum miscue detection unit of Chi-
nese Mandarin is syllable (or character). Therefore, the
word lattice from the decoder will be split into a syllable
lattice firstly and the final CN is also a syllable-based one.
A syllable-based CN is shown in Fig. 7, in which each edge
stands for a syllable y with a posterior probability P(y) and
“-” denotes a deletion edge.

The alignment of the reference and CN is implemented
by an improved DP. Because each alignment column in CN
has one or more edges, the cost function of DP should be
re-defined, as in Eq. (5).

Fcost =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 insertion,
1 − P̂(-) deletion,
1 − P̂(r) substitutioan/correction.

(5)

Where,

P̂(∗) =
{

P(∗), ∗ ∈ current slice
0. ∗ � current slice

“∗” denotes “-” or the current reference syllable r.
After the alignment, the miscue detection results can

be acquired from the aligned path. In each position, whether
the actual reading word matches the reference is determined
by a threshold T that balances the detection error and false
alarm rate.

6. Experiment

6.1 Corpus and Evaluation Metrics

The corpus used to evaluate the proposed system is from
Hongkong college students’ reading speech of Chinese
Mandarin. The reading materials are four passages from
“Hongkong Putonghua Shuiping Kaoshi” (PSK) test [16].
Each passage has about 350 characters. There are 664 stu-
dents totally, half of which are male and half are female.
Each of them reads one of the four passages. The speech

Table 1 Reading miscues’ distribution in the development and test sets.

Data set Insertion Omission Substitution Total
DevSet 4.7% 0.41% 18.24% 23.35%
TestSet 5.14% 0.18% 15.9% 21.26%

was recorded in quiet classrooms with head microphones
and stored in the format of 16 K sample rate, 16 bit sample
length, mono channel. All speech was transcribed with syl-
lable sequences (Pinyin) by Chinese native human experts.

The corpus is divided into two parts: 100 students’ data
as test set and the rest as development set. The development
set is used to adjust the acoustic model and train the multiple
pronunciation model. The test set is used to evaluate the per-
formance of the system. The distribution of the three kinds
of reading miscues (insertions, omissions and substitutions)
in the development set (DevSet) and test set (TestSet) are
shown in Table 1.

We use three metrics to measure the performance of
the system: syllable recognition error rate (SER) is used to
evaluate the accuracy of recognition; miscue detection error
rate (DER) and false alarm rate (FAR) are used to evaluate
the detecting performance. SER is computed by compar-
ing the 1-best recognizing result with the transcription using
DP. DER is defined as the number of miscues which have
not been detected divided by the number of all miscues; and
FAR is defined as the number of words erroneously detected
as reading miscues divided by the number of all miscues.
The real miscue information is obtained by aligning the ref-
erence with the transcription. By changing the threshold T
referred to in Sect. 5, different points of DER and FAR can
be obtained. They can be plotted as a detection error tradeoff
(DET) curve. For the convenience of comparison, equal er-
ror rate (EER) is also used, which is the rate when the DER
equals to FAR.

6.2 Experiment Setup

The front end of the system extracts 39-dimension MFCC
features, including 12-dimension static cepstrum and 1-
dimension energy, with their 1st and 2nd derivatives. The
HMM acoustic model was trained on about three hundred
hours of speech from Chinese native speakers, then was
adapted by the development set of the Hongkong corpus re-
ferred to in Sect. 6.1 with a Maximum A Posteriori (MAP)
algorithm [17]. There are about five thousand states in the
final AM and there are 32 Gaussian mixtures in each state.
The language model is a general tri-gram model which was
trained on about 2 gigabytes text materials. There are about
forty thousand words in the dictionary, including all charac-
ters and most words of Chinese Mandarin.

6.3 Experimental Result

6.3.1 Baseline Performance

In order to investigate the performance of the algorithms
DMPI and DILM, we construct a baseline system using a
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Table 2 Performance of the baseline system.

SER EER
baseline 31.0% 46.3%

Table 3 Performance of dynamic multiple pronunciations incorporation.

SER EER
baseline 31.0% 46.3%
AddDict 30.5% 49.1%
DMPI 27.8% 42%

conventional LVCSR decoder followed by a CN alignment
module, without any manipulation on the LM or the pro-
nunciation dictionary. Its performance is shown in Table 2
in terms of SER and EER.

6.3.2 Performance of Dynamic Multiple Pronunciation In-
corporation

In this section, the performance of DMPI is investigated.
The multiple pronunciation model is trained on the develop-
ment set mentioned in Sect. 6.1.

For comparison, the simple method of incorporating
the MPM which adds all pronunciation variants to the pro-
nunciation dictionary (‘AddDict’ for short) was tested. Ta-
ble 3 shows the SER and EER results of AddDict and DMPI
compared with the baseline. Though the AddDict reduces
the SER slightly, it makes the EER much worse. As de-
scribed in Sect. 3.2, AddDict introduces too many new con-
fusions to the original pronunciation dictionary and impairs
the positive effect of MPM. DMPI significantly improves
both the recognition and detection results. The SER and
EER are reduced by relative 9.5% and 9.3% respectively.
DMPI only adds the most useful pronunciation variants to
the original pronunciation dictionary. It exploits the posi-
tive effect of the MPM efficiently and has the minimal new
confusability, thus can achieve a better performance.

6.3.3 Performance of Dynamic Interpolation of Language
Model

In this section, the performance of the algorithm DILM is
investigated. It was implemented on the baseline and DMPI
systems respectively. Table 4 shows the SER and EER re-
sults of the baseline, DILM and combination of DMPI and
DILM.

When DILM is implemented on the baseline system, it
improves the accuracy of the recognizer significantly. The
SER is decreased 25.5% relatively, from 31% to 23.1%,
which proves the effectiveness of using reference to con-
strain the active decoding paths near the reference. While
the recognizing result is improved, the detection result EER
is hence improved. The gain is 3.5% relatively. When
DILM is implemented on DMPI system, the improvement
is still significant. The SER and EER are reduced relative
22.7% and 5.2% respectively. Furthermore, because DMPI
increase the capability of the decoder to recognize the erro-
neous reading words, the gain of DILM on DMPI system is

Table 4 Performance of DILM on baseline and DMPI systems.

SER EER
baseline 31.0% 46.3%

baseline+DILM 23.1% 44.7%
DMPI+DILM 21.5% 39.8%

Fig. 8 DET curves of different methods compared with baseline.

larger than that on the baseline system.
Figure 8 shows the DET curves of the baseline, DMPI,

DILM and combination of DMPI and DILM. It is shown
that DMPI and DILM significantly improve the detection
performance compared with the baseline. The final EER
39.8% is achieved by the combination of DMPI and DILM.

We also investigate the effect of different n-gram
lengths of the reference LM (uni-gram, bi-gram and tri-
gram) and different α value in Eq. (3) in this section.

The performance of different n-gram lengths and dif-
ferent α based on the DMPI system is illustrated in Fig. 9.
Along with the increase of α, both the SER and EER de-
crease significantly. A larger α imposes tighter constraint
on the original LM, which makes the decoding active path
closer to the reference. Therefore, larger α results in bet-
ter recognition accuracy, and thus result in better detec-
tion performance. However, when α is too large, the over-
constrained search space will impair the capability of the
recognizer to recover the reading miscues. It can be ob-
served from Fig. 9 (b) that when α is larger than 1e-2, the
EER begins to become worse. For an extreme example,
when α = 1 (where only the reference LM works actually),
the EER is about 41%, which is lower than the best EER
39.8%.

The different n-gram lengths have a consistent effect on
the detection of reading miscues, though there is a little dif-
ference among their performances. The longer the n-gram
is, the tighter the constraint on the original LM is. Shorter
n-gram allows more words to be recognized and can cap-
ture more reading miscues. However, it also results in more
recognition errors which are adverse for the miscue detec-
tion. The two facets should be balanced. Figure 9 (c) shows
the DET curves of different n-gram lengths. They are close
to each other. Figure 9 (b) shows that the uni-gram is a little
better than others on EER performance. A uni-gram refer-
ence LM is enough for the detection of reading miscues.
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Fig. 9 Performance of dynamic interpolation of language model with dynamic multiple pronunciation
incorporation.

6.4 Discussion

By using DMPI and DILM algorithms, the proposed
LVCSR-based miscue detection system finally achieves the
result EER 39.8%. It is compared with the system described
in [4]. We tested the performance of that system on our cor-
pus and got the EER of 42.8%, which is 7% lower relatively.
The rich search space and background LM in the LVCSR-
based system provide more opportunities for the reading
miscues to be captured than the system in [4]. Therefore,
a better performance can be obtained.

For a practical CALL system, the EER 39.8% is not
very satisfactory. However, among all the detection errors,
more than half of them are caused by tone errors. Chinese
language is a tonal language. There are about 1300 tonal
syllables in Chinese, but the base syllable number is only
about 400. Our current LVCSR system has no special con-
sideration for tone recognition. This is one of the reasons
for the poor detection performance. However, our research
provides a general framework for the reading miscue detec-
tion. Under this framework, many information sources can
be integrated in. It will be a promising framework for the
research of reading miscue detection.

7. Conclusion

In this paper, we described the building of a reading miscue
detection system based on the conventional LVCSR frame-
work. In order to compensate for the poor recognition per-
formance of a conventional LVCSR on non-fluent speech,
we proposed two algorithms: DMPI and DILM. DPMI
trains an MPM on the history reading data to model the com-
mon reading errors and dynamically adds the pronunciation
variants relative to the current reference to the search space.
It provides additional paths in the original search space and
makes the decoding more accurate. The dynamical incor-
poration ameliorates the conflict between the coverage of
error predications and the perplexity of the search space. It
decreases EER by 9.3% relatively. DILM dynamically in-
terpolates the background LM using the online-building ref-
erence LM. By this method, a domain-specific LM obtained

from the current reference is used for each utterance actu-
ally. The using of the background LM also supplies more
opportunities for the reading miscues to be captured. It fur-
ther improves the EER by 5.2% relatively. The experiments
of different n-gram lengths of the reference LM shows that
uni-gram is enough for the detection of reading miscues.

Though the result is not very satisfactory now, it pro-
vides a promising framework for studying reading miscue
detection. In the future, more complex MPM using decision
tree, natural networks, etc. will be investigated and more
confidence information will be also used to help to decrease
the false alarms. For improving tone detection performance,
some tone-based features and methods will also be consid-
ered.
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