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PAPER

Development of an Interactive Augmented Environment and Its
Application to Autonomous Learning for Quadruped Robots

Hayato KOBAYASHI†a), Student Member, Tsugutoyo OSAKI†∗, Tetsuro OKUYAMA†∗∗, Joshua GRAMM††,
Akira ISHINO†∗∗∗, and Ayumi SHINOHARA†, Nonmembers

SUMMARY This paper describes an interactive experimental environ-
ment for autonomous soccer robots, which is a soccer field augmented by
utilizing camera input and projector output. This environment, in a sense,
plays an intermediate role between simulated environments and real en-
vironments. We can simulate some parts of real environments, e.g., real
objects such as robots or a ball, and reflect simulated data into the real en-
vironments, e.g., to visualize the positions on the field, so as to create a
situation that allows easy debugging of robot programs. The significant
point compared with analogous work is that virtual objects are touchable
in this system owing to projectors. We also show the portable version
of our system that does not require ceiling cameras. As an application in
the augmented environment, we address the learning of goalie strategies on
real quadruped robots in penalty kicks. We make our robots utilize virtual
balls in order to perform only quadruped locomotion in real environments,
which is quite difficult to simulate accurately. Our robots autonomously
learn and acquire more beneficial strategies without human intervention in
our augmented environment than those in a fully simulated environment.
key words: augmented reality, autonomous learning, four-legged robot,
robocup

1. Introduction

The experiments on real robots, especially quadruped
robots, take much more time and cost than those on PCs. It
is also an enormous difference since we often need to con-
sume a lot of energy for treating physical objects such as
robots. The use of virtual robots is one of the efficient meth-
ods to avoid those difficulties, and so there are many stud-
ies on dynamic simulated environments [1]–[7]. However,
since simulated environments cannot produce complete, real
environments, we finally need to conduct experiments in
the real environments where basic skills heavily depend on
complex physical interactions.

In this paper, we propose a system for an interactive
augmented environment, which serves as a bridge between
simulated environments and real environments. Aug-
mented environments, also known as Augmented Reality
(AR), involve the real environments combined with some
data generated by computers. By using our system, robots
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can obtain both the precise positions of physical objects and
the imaginary positions of virtual objects despite being in
a real environment. Human programmers can get debug-
ging information overlaid on a soccer field instead of that
in a console terminal, allowing them to concentrate on ob-
serving the behavior of the robots in the field. Moreover,
both robots and human programmers can interactively touch
and move virtual objects. Our augmented environment, in a
sense, plays an intermediate role between simulated envi-
ronments and real environments; considering the fact that
we can simulate some parts of real environments.

Our system is another implementation of the system of
Stilman et al. [8] and promotes their study. They proposed
the novel paradigm for robot experimentation that takes ad-
vantage of augmented reality to enable unified testing of in-
dividual subsystems. The main difference about implemen-
tation is that we utilize camera input and projector output,
while they utilized motion capture input and display out-
put. Projector output is more intuitive than display output,
since some useful data are directly projected on real environ-
ments. Actually, several studies [9], [10] adopted projector
output and developed intuitive augmented environments for
robots, although their motivation is different from ours. The
significant point of this paper is that our system provides us
with touchability of virtual objects owing to projectors, as
well as perceptibility of them.

This paper focuses on the RoboCup Standard Platform
League (SPL) [11] as a target application. RoboCup [12] is
a competition for autonomous robots that play soccer and
is an interesting and challenging research domain because
it has a noisy, incomplete, real-time, multi-agent environ-
ment. SPL is one of the leagues in RoboCup, where all
teams compete with identical robots permitted by the regula-
tion, i.e., the Sony AIBO robots and the Aldebaran Robotics
humanoid Nao robots. Since it is quite difficult to simulate
legged movements completely, SPL should be one of the ap-
plications where our system can make great contributions.

The study of Guerra et al. [13] is closely related to our
study, since they also focus on RoboCup soccer. They pro-
posed the CITIZEN Eco-Be! league (recently, also known
as the mixed reality competitions in the simulation league)
where CITIZEN’s mini robot Eco-Be! plays soccer in an
augmented environment created by a display and a camera.
This league gave new interesting and challenging research
issues in RoboCup. Our augmented environment can be
regarded as a generalization of the technique in the Eco-Be!
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league to the other real robot leagues. We can easily apply
our techniques to different types of robots that are used in
other leagues, although we focus only on AIBO robots in
this paper.

As an application in the augmented environment, we
address the learning of goalie strategies in penalty kicks.
The goalie strategies involve the skills to save an incoming
ball kicked by an opponent player, which is critical to not
lose the game. The learning can be also regarded as the two
dimensional extension of the study of Kobayashi et al. [14].
They studied the autonomous learning to trap a moving ball
by utilizing reinforcement learning. The goal of the learning
was to acquire a good timing in initiating its trapping motion
autonomously, depending on the distance and the speed of
the ball, whose movement was restricted to one dimension.
The two dimensional extension would need the troublesome
programs to find a rebounded ball and return it to the initial
position, as well as an accurate localization system. In con-
trast, our robot in augmented environments can avoid these
difficulties by adopting a virtual ball that can be positioned
and controlled arbitrarily, where the precise positions of the
robot and the ball are measured and calculated by the sys-
tem. The advantage of this method is that we can easily
achieve autonomous learning without human intervention,
despite performing quadruped locomotion in real environ-
ments, which heavily depends on complex physical interac-
tions and is quite difficult to simulate accurately.

Fig. 1 Overview of our system, which is separated into two programs: a recognition program that
recognizes objects with a camera and a virtual application that projects generated data with a projector.

The remainder of this paper is organized as follows. In
Sect. 2, we describe our system to create an augmented en-
vironment for autonomous soccer robots. In Sect. 2.4, we
show the portable version of our system that does not re-
quire ceiling cameras. In Sect. 3, we propose an autonomous
learning method of goalie strategies in penalty kicks and
make our robot learn and acquire goalie strategies on their
own. Finally, Section 4 presents our conclusions.

2. Augmented Soccer Field System

2.1 Overview of Our System

In this section, we describe the Augmented Soccer Field Sys-
tem for our augmented environment. This system consists of
a pair of cameras and a pair of projectors in the ceiling with
one computer to control them. The process in the computer
is separated into two programs: a recognition program and
a virtual application. The recognition program is a program
that recognizes objects, such as robots and balls, in a soccer
field based on the images from the ceiling cameras. The vir-
tual application is a program that calculates real coordinates
in the field based on the results of the recognition program
and then sends the positions of the objects to the robots. It
also detects collisions between the objects.

Figure 1 shows the overview of our whole system.
Each pair of cameras and projectors was set up on the ceil-
ing located in the center of each half of the field so as to
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cover the whole field, since one pair can take images with
a camera and projects generated data with a projector for a
half of the field. We use Dragonfly2 of Point Grey Research
Inc. as a camera and LP-XL45 of Sanyo Electric Co., Ltd.
as a projector. The projector is the only light source in the
room when the system is running, that way humans can
sufficiently recognize projected images on the field. Each
projector projects the farther half of the field, since the dis-
tance from the ceiling to the field, which is about 2.5 meter
height, is too small to cover the whole field.

2.2 Recognition Program

Camera images are captured into the computer by utilizing
the API for Dragonfly2, and then passed to an object recog-
nition process with the Open Source Computer Vision Li-
brary (OpenCV). The processes for two cameras are multi-
threaded, since they are independent of each other.

Captured camera images are quite distorted since our
cameras have wide-angle lenses. The distortion of images
can easily lead to some errors in the object recognition pro-
cess for the images. Thus, we must estimate adjustment
parameters for each camera so as to correct such distortion.

We also need to estimate different adjustment param-
eters (i.e., a projection matrix) for transforming the coordi-
nates of recognized objects in camera images to those in the
field. In our system, we obtain the projection matrix by re-
ferring 8 points that consist of 4 corners of the half field and
4 corners of the penalty area. Since our cameras and projec-
tors are fixed in our room, it is sufficient to estimate those
parameters only once unless their positions are changed.

2.2.1 Recognition Method

We utilize the background subtraction method [15] in order
to recognize objects on the field. The reason comes from the
fact that the object recognition based on colors is usually dif-
ficult because the colors can change depending on lighting
conditions. The background subtraction method is designed
to store a background image without any objects in advance,
judge whether or not each pixel in a target image in process
belongs in the background image, and separate the target
image into a foreground image and the background image.
In this paper, the background image means the image of our
soccer field without any robots and balls.

We create a masked image that indicates the regions
of the objects to be recognized by utilizing the background
subtraction method and then identify each object by extract-
ing the contour of the object. Since our robot has a direc-
tion (or angle), we identify the orientation of each robot by
utilizing template matching.

2.2.2 Calculation of Background Subtraction

The most naive subtraction method is to calculate color
subtraction between a current target image and the back-
ground image for every pixel and then judge whether the

pixel belongs to the background image based on a certain
threshold. In general, however, the criterion for each pixel
should be changed depending on its location, since bright-
ness varies with location. Thus, we suppose that the degree
of color change for each pixel follows a normal distribu-
tion N(μ, σ2). We calculate the mean μ and variance σ2 of
each pixel by capturing 100 background images and regard
the pixel as background if the difference between μ and the
color value of the pixel is greater than cσ with some con-
stant c. Each image has 3 color channels (RGB), and so we
separately treat each channel, in the way that the constant
c of a channel is independent of those of the others. We
define that the pixels regarded as background must satisfy
the above condition in every channel.

2.2.3 Extraction of Contour

We extract the contour of each object from a masked image
calculated by the background subtraction method in order
to identify the object. Since there can be unknown objects
other than robots and balls in the masked image, we utilize
the length of a contour line and the size of a contour area
for eliminating unknown objects. Then we can obtain the
minimum bounding box covering each identified contour as
shown in Fig. 2 (a).

2.2.4 Identification of the Orientation of Robots

Although each robot is specified by a bounding box shaped
like a non-regular rectangle, the orientation of the robot can
face either forward or backward. We capture the overhead
image of the robot as a template and find a better matching
orientation based on the template image. This make it so
that we can recognize multiple robots simultaneously with-
out any markers as shown in Fig. 2 (b). Even if we must
use different kinds of robots, we only have to exchange the
template.

2.3 Virtual Application

The virtual application carries out physical simulations,
such as collision detection based on the results of the recog-
nition program and then projects the simulation results on
the field. Thus, the real robots can play a soccer game even
with a virtual ball. In addition, the virtual application can
communicate with real robots, and so the robots can receive
the ideal positions of real objects without an accurate local-
ization system.

2.3.1 Simulator

Our simulator is based on Haribote [7], the dynamic simula-
tor for AIBO, developed by utilizing the Open Dynamic En-
gine (ODE) and the Open Graphical Library (OpenGL). Al-
though Haribote has a virtual robot represented as the exact
model of AIBO, in order to represent the robots recognized
by the ceiling cameras, we utilize the minimum rectangular
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Fig. 2 (a) Results extracting robots as small rectangles and other objects as large rectangles. (b)
Results of template matching. An arrow shows the orientation of each robot.

solid for covering the robot. The reason is that the rectan-
gular model can more easily synchronize real robots so that
the real robot can manipulate a virtual ball in our simulator.
Of course, we can utilize the exact model in order to verify
some physical motions in the simulator as well.

2.3.2 Sending of the Positions of Objects

The virtual application always sends the precise positions of
the physical objects recognized by the recognition program
to real robots through UDP. The robots can receive the posi-
tions of the ball and the other robots and replace noisy inputs
with precise ones in their programs. This indicates that we
can focus only on debugging of developed strategies in ideal
situations in spite of using real robots. We may partially use
those precise positions so that the augmented environment
can get closer to real environments.

2.3.3 Projection of the Simulator on the Field

The virtual application projects the simulator on the field
in order to visualize the positions of objects in the simula-
tor. In addition, if we display some debugging information
in the simulator, we can see the debugging information (e.g.,
the robot’s position, the ball’s position, and the robot’s state)
overlaid on the field instead of that in a console terminal. Al-
though our projector projects data from an oblique perspec-
tive, this fact does not cause problems at all by utilizing the
automatic trapezoidal correction in the projector. Figure 3
shows our simulator projected on the field by the projector.
The upper robot is real, and the lower robot and the ball are
virtual. In our system, both of the real robot and the virtual
robot can manipulate the virtual ball.

2.4 Portable System

In this section, we show the portable version of our system

Fig. 3 Our simulator that is projected on the field.

that does not require ceiling projectors. The portable version
allows us to take advantage of our system even in the situa-
tion that we cannot set up ceiling projectors, i.e., when we
are at the competition site of RoboCup. The idea to achieve
portability is by overlaying virtual objects with the soccer
field not in the real world, but instead on the image cap-
tured by a web camera using ARToolKit [16]. We develop
the position visualizer system as an instance of the portable
version and then discuss its advantages and disadvantages.

2.4.1 ARToolKit

ARToolKit is a program library written in the C program-
ming language that can be imported and used by Microsoft
Visual Studio. It is used in creating Augmented Reality
programs. Using a computer vision algorithm and through
the utilization of OpenGL and a web camera it uses pattern
recognition to display 3D objects onto designated markers
stored within ARToolKit in real time. However, a user is
not limited to using only these default patterns. ARToolKit
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can calibrate itself to recognize custom patterns and save
them. The only requirements are that the pattern be black
with a white background, with a black border followed by a
white border. Also to make it easier to detect, it is recom-
mended to use patterns that are asymmetric and do not have
fine detail on them.

ARToolKit can be programmed to use the markers to
display 3D objects upon, or it can be programmed to use
the markers to create a grid in which to display 3D objects
within. In the case of using the markers as a grid, ARToolKit
can treat the area between all markers as a coordinate system
and then 3D objects can be placed at coordinates specified
in the program.

2.4.2 Position Visualizer System

The position visualizer system uses ARToolKit’s mutli-
marker functionality to create a planar system using 6 mark-
ers and displays 3D objects onto the virtual field, which is
overlaid with the real soccer field. Cones are used to rep-
resent the robots and a sphere is used to represent the ball.
Since the robots send out data through User Datagram Pro-
tocol (UDP) the program listens to the port used in order to
get field information, such as the robot positions and ball
position. Using that data the 3D objects are placed onto
the virtual field created by the 6 markers. When those 6
markers are placed around the soccer field, the virtual field
will match the soccer field and the 3D objects will be placed
where the robot believes it is positioned and where it thinks
the ball is.

This position visualizer system has its advantages and
disadvantages. One advantage is that it is portable since all
it requires is a terminal, a web camera, and the printed mark-
ers. Also, having the virtual data overlaid in real time with
reality makes it very easy to see how close the robot’s data
is to reality; whereas before a person would need to look
at a screen with only the data and then visually compare
that with the soccer field. However, it is sometimes difficult
to see the whole field from the perspective of a single web
camera. Therefore analyzing and debugging the positions
and data of just a small section of the field would probably
be more useful e.g., the goalie box as shown in Fig. 4. It was
also determined that as long as there is one visible marker,
the virtual field can still be created and the 3D objects dis-
played correctly. This is useful when other markers are ob-
structed from view for any number of reasons. On the other
hand, this system is essentially a visual representation of
data, so currently it does not have a way to easily recognize
a robot’s position on its own or a way to know the robot’s
current state or action. There is also more functionality that
could be added to the program to make it more beneficial,
such as having more data visually represented e.g., particles
in the particle filter algorithm.

2.5 Contributions

The main merit of our system is that we can easily find

Fig. 4 Here the cone represents the estimated position the robot and the
dark sphere represents the estimated position of the ball as the robot per-
ceives it.

which program exerts a bad influence to the whole program.
For example, if we simulate the robot’s position and ball’s
position, we can verify the validity of strategy programs by
utilizing the precise output of localization programs. In the
same way, if we simulate the beacons’ positions, we can
verify the validity of localization programs by utilizing the
precise output of vision programs.

Another merit of our system is the visualization of de-
bugging information by the projector. For example, we can
visualize the particles in localization programs using a par-
ticle filter algorithm as well as the objects recognized by
vision programs. We can also visualize the current state of
strategy programs and even the error messages of programs
as strings.

3. Autonomous Learning of Goalie Strategies

In this section, we address the learning of goalie strategies
in a penalty kick in SPL as an application of our system.
We first describe the rule of penalty kicks and the learning
method of goalie strategies. Next, we experiment in our
simulator to ensure the validity of the method, and finally
experiment in our augmented environment using the learn-
ing results from the simulation.

3.1 Penalty Kick

In the rules for SPL, the penalty kick is carried out with one
attacker and one goalie. If the ball goes into the goal within
the time limit (1 minute), the penalty kick is deemed suc-
cessful. If the time limit expires or if the ball leaves out the
field, the penalty kick is deemed unsuccessful. In addition,
if the attacker enters the penalty area then the penalty kick
is deemed unsuccessful; if the goalie leaves the penalty area
then a goal will be awarded to the attacker. The aim of our
goalie is to acquire the best strategy to save the goal.
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3.2 Learning Method

In this paper, we apply reinforcement learning algo-
rithms [17]. Since reinforcement learning requires no back-
ground knowledge, all we need to do is to give the robots
some appropriate rewards so that they can successfully learn
goalie strategies.

The reinforcement learning process is described as a
sequence of states, actions, and rewards,

s0, a0, r1, s1, a1, r2, . . . , si, ai, ri+1, . . . ,

which is a reflection of the interaction between a learner and
an environment. Here, st ∈ S is a state given from the envi-
ronment to the learner at time t (t ≥ 0), and at ∈ A(st) is an
action taken by the learner for the state st, whereA(st) is the
set of actions available in the state st. One time step later,
the learner receives a numerical reward rt+1 ∈ R, in part as a
consequence of its action, and finds itself in a new state st+1.

• State The state of our learner is represented by a list
of 6 scalar variables (r, φ,Vv,Vh, X,Y). The variables r
and φ represent the position of the ball on a polar coor-
dinate and refer to the distance and angle from the robot
to the ball estimated by our vision system. The vari-
ables Vv and Vh represent the velocity of the ball and
refer to the vertical and horizontal velocity from the
robot. The variables X and Y represent the relative po-
sition of the robot from its own side’s goal and refer to
the values of x-axis and y-axis on a right handed Carte-
sian coordinate system with its origin at the center of
the goal, i.e., an absolute position (2700 mm , 0 mm),
and a positive x-axis toward the center of the field, i.e.,
an absolute position (0 mm, 0 mm). In order to allocate
the required minimum state space for our problem, we
empirically limited the range of those state variables
such that r, φ, Vv, Vh, X, and Y are in [0 mm, 1000 mm],
[-π/2 rad, π/2 rad], [-50 mm, 0 mm], [-50 mm, 50 mm],
[-500 mm, 1000 mm], and [-700 mm, 700 mm], respec-
tively.

• Action The action of our learner takes one of the fol-
lowing 10 exclusive actions. One is save to stop an
incoming ball, which performs the motion to spread
out robot’s front legs. The action save cannot be in-
terrupted for 350 ms until the motion finishes. Another
is stay to prepare for an opponent’s shooting, which
moves its head to watch the ball without walking. The
others are 8 directional walking actions (i.e., vertically,
horizontally, or diagonally) to intercept an opponent’s
shooting.

• Reward Our learner receives one of the following 5
kinds of rewards. A negative reward is also called a
punishment.

– save punishment The punishment is -0.02, if the
robot performs save action, since the time during
save motion has the risk losing the ball.

– passive punishment The punishment is -0.0000001,
if the robot performs an action other than save ac-
tion, since the robot should take various actions in
the initial phase of learning.

– lost punishment The punishment is -10, if the ball
goes into the goal.

– save reward The reward is 0.5, if the robot stops
the ball by save action, since it may be safest to
save the goal.

– dist reward The reward is 1− |ydist| /112.5, if the
robot saves the goal during a penalty kick, since
it may be the safest saving. The variable ydist is
the y-axis distance of the ball, which is limited in
[-225 mm, 225 mm] based on the covering range
450 mm of save action. That is, dist reward takes
a value in [-1, 1] based on ydist.

Algorithm 1 shows the autonomous learning algorithm
of goalie strategies used in our study. It is a combination
of the episodic SMDP Sarsa(λ) with the linear tile-coding
function approximation (also known as CMAC). This is one
of the most popular reinforcement learning algorithms, as
seen by its use in Kobayashi et al. [14]. In our experiments,
we define the period from the starting to the ending of a
penalty kick as one episode.

Here, Fa is a feature set specified by tile coding with
each action a. In this paper, we use 6-dimensional tiling,
where we set the number of tilings to 32 and the number of
tiles to about 400000. We also set the tile widths of r, φ, Vv,
Vh, X, and Y to a quarter of the ranges, i.e., 250 mm, π/4 rad,
12.5 mm, 25 mm, 375 mm, and 350 mm, respectively. The
vector −→θ is a primary memory vector, also known as a learn-
ing weight vector, and Qa is a Q-value, which is represented
by the sum of −→θ for each value of Fa. The policy ε-greedy
selects a random action with probability ε, and otherwise,
it selects the action with the maximum Q-value. We set
ε = 0.001. Moreover, −→e is an eligibility trace, which stores
the credit that past action choices should receive for cur-
rent rewards. λ is a trace-decay parameter for the eligibility
trace, and we set λ = 0.9. We set the learning rate parame-
ter α = 0.18 and the discount rate parameter γ = 1.0.

3.3 Experiments in Simulated Environments

We experiment in the simulated environment (or simulator)
to ensure the validity of the algorithm in the previous sec-
tion. In our simulator we do not treat the dynamics of robots,
while the scales of the field, ball, and robots are set to the
same values in real environments. Our virtual robot is repre-
sented as a rectangular solid, and if save action is performed
then the width of the rectangular solid stretches out. State
inputs have their ideal values without any noise, and action
outputs are set to almost the same values as real robots. In
experiments from now on, we assume that the attacker drib-
bles the ball to any point and then shoots it to the goal so as
to confuse the goalie. Thus, we set the ball in the simulator
to perform such behavior in the beginning of penalty kicks.
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Algorithm 1: Algorithm of the autonomous learning
of goalie strategies.

while still not acquiring goalie strategies do
initialize penalty shootout settings.;
s← a state observed in the environment;
forall a ∈ A(s) do

Fa ← set of tiles for a, s;
Qa ← ∑i∈Fa θ(i);

end
lastAction← an optimal action selected by ε-greedy;−→e ← 0;
forall i ∈ FlastAction do e(i)← 1;
reward ← 0;
while during a penalty kick do

do lastAction;
if lastAction = guard then

reward ← save punishment;
else

reward ← passive punishment;
end
δ← reward − QlastAction;
s← a state observed in the environment;
forall a ∈ A(s) do

Fa ← set of tiles for a, s;
Qa ← ∑i∈Fa θ(i);

end
lastAction← an optimal action selected by ε-greedy;
δ← δ + QlastAction;−→
θ ← −→θ + αδ−→e ;
QlastAction ← ∑i∈FlastAction

θ(i);−→e ← γλ−→e ;
forall a ∈ A(s) s.t. a � lastAction do

forall i ∈ Fa do e(i)← 0;
end
forall i ∈ FlastAction do e(i)← 1;

end
if lost the goal then

reward ← lost punishment;
else

reward ← dist reward;
if lastAction = guard then

reward ← reward + save reward;
end

end
δ← reward − QlastAction;−→
θ ← −→θ + αδ−→e ;

end

We made our robot on the simulator learn goalie strate-
gies in 2000 episodes, and the experiment took about 20
minutes. Figure 5 (a) shows the learning process in the sim-
ulated environment in terms of the success rate of saving.
The success rate of saving means how many times the robot
saved the goal in the past 200 episodes. The figure indi-
cates that the success rate reached more than 90% at 2000
episode. Actually, we repeated the same experiment 5 times
and got the average (and standard deviation σ) of the fi-
nal success rates, 93.32% (σ=2.13). This result indicates
that our virtual robot can successfully acquire a better goalie
strategy in penalty kicks.

Figure 6 shows an acquired goalie strategy (i.e., a state-
action mapping) after 2000 episodes. This intuitively visu-
alizes all of the better actions that the learner will select at
each state in the environment. The figure indicates that save

actions shown by squares are mostly on the way to the des-
tination of a kicked ball so as to intercept the incoming ball.
Although walking actions shown by arrows have seemingly
no regularity, looking at the arrows only around the squares,
we find that the directions of the walking actions mostly face
to the states with save actions, so that the robot can move to
intercept the ball if possible. The states with the other walk-
ing actions (far from the squares) seem not to be learned
yet. The reason is that our virtual robot never loses the ball
in the simulator, and so it cannot go through the experience
of those states. In the case of the penalty kick, this may
not be a big problem, since the robot knows the fixed initial
positions of the attacker and the ball in advance.

3.4 Experiments in Augmented Environments

In this section we experiment in our augmented environ-
ment, where we set the ball as simulated and project to the
field. Since a virtual ball is easily manipulated by our sys-
tem, our robot does not need to perform troublesome tasks
such as restoring the ball, and this advantage easily enables
the autonomous learning of goalie strategies. Moreover, our
robot can receive the ideal positions of the ball and the robot
itself from our system. This also means that we can exper-
iment using real robots in real environments, even if some
basic programs such as vision and localization systems are
premature or unfinished.

We made our robot learn goalie strategies in 200
episodes, starting from the strategy acquired in the previous
section, since it takes a lot of time and cost for real robots to
perform a lot of actions. The experiment took about 45 min-
utes with 1 battery. Figure 5 (b) shows the learning process
in the augmented environment in terms of the success rate
of saving. In the initial phase of the process, the success rate
was only about 50% despite the initial strategy whose suc-
cess rate was more than 90% in the simulator. This suggests
that there is a certain gap between simulated environments
and real environments, especially in terms of quadrupedal
locomotion. In the latter phase of the process, the success
rate increased to about 80%, which may be the maximum
value since real robots cannot walk as smoothly as virtual
robots. This also suggests that our system can fill in such a
gap. We repeated the same experiment 5 times and got the
average success rates (and standard deviations σ) in the first
20 episodes and the last 20 episodes in 200 episodes, which
were 50.0% (σ=10.0) and 77.0% (σ=7.48), respectively.

Although our system filled in a gap in terms of
quadruped locomotion, there should be a gap in terms of
ball and robot positions. This means that the strategies ac-
quired in the augmented environment might not be work
well in real environments. However, we take a stance that
we should improve the estimation methods of those posi-
tions such as the Kalman filter. That is because the latter gap
becomes smaller as the estimation methods become better,
while the former gap tends to become bigger as quadruped
locomotion becomes better, that is faster.
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(a) In the simulated environment (b) In the augmented environment

Fig. 5 Experimental results in our simulated environment and augmented environment, whose suc-
cess rates indicate how many times the robot saved the goal in the past 200 episodes and 20 episodes,
respectively.

Fig. 6 State-action mapping that was acquired by the learning in the simulator. Each figure shows the
left half field, and its coordinate shows the relative position of the robot from the goal, (i.e., X and Y in
the state of our learner). Each pair of a circle and arrow shows the velocity of a ball, and each figure
indicates which action our robot selects in the situation. A square, cross, and arrow show save, stay, and
walking actions, respectively. In the area enclosed with a dashed circle in each figure, better actions are
selected so as to intercept the incoming ball.

4. Conclusion

In this paper, we presented an interactive experimental envi-

ronment to bridge the gap between simulated environments
and real environments, and developed an augmented soccer
field system to produce the environment by utilizing cam-
era input and projector output. The significant point com-
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pared with analogous work is that virtual objects are touch-
able in this system owing to projectors. We also developed
the position visualizer as a portable version of our system.
Moreover, we addressed the learning of goalie strategies in
penalty kicks as an application of our system. By utilizing
our system, our robot could autonomously learn and acquire
better strategies without human intervention.
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Appendix: Movies

All movies of the demonstration of our system and the ex-
periments of the learning in our system are available on-
line †.

†URL: 〈http://www.shino.ecei.tohoku.ac.jp/˜kobayashi/movies.
html#goalie〉
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