
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009
1787

LETTER

Efficient Predicate Matching over Continuous Data Streams

Hyeon-Gyu KIM†a), Member, Woo-Lam KANG†, Yoon-Joon LEE†, and Myoung-Ho KIM†, Nonmembers

SUMMARY In this paper, we propose a predicate indexing method
which handles equality and inequality tests separately. Our method uses
a hash table for the equality test and a balanced binary search tree for the
inequality test. Such a separate structure reduces a height of the search tree
and the number of comparisons per tree node, as well as the cost for tree
rebalancing. We compared our method with the IBS-tree which is one of
the popular indexing methods suitable for data stream processing. Our ex-
perimental results show that the proposed method provides better insertion
and search performances than the IBS-tree.
key words: data streams, predicate index, IBS-tree

1. Introduction

There are many applications to monitor continuous streams
of data items (relational tuples) such as auction bids, stock
exchanges, network measurements, web page visits, sen-
sor readings and so on [1]. These applications commonly
involve a large number of queries which consist of inter-
val predicates [3]. For example, in a stock trading applica-
tion, many queries with interval predicates reflecting user
interests are dynamically registered and used to monitor the
change of stock prices.

One of the common approaches to efficient processing
of a large number of these queries is to use a predicate in-
dex [2]. Many predicate indexing methods have been intro-
duced so far. Among them, only main memory-based in-
dexes such as the interval binary search tree (IBS-tree) [2],
the CEI-based index [3] and the VCI index [4] can be used
for stream applications, because most of them are designed
to run on main memory to provide their responses in a timely
manner.

The CEI-based index assumes the range of input values
is known in advance and decomposes the range into fixed-
size segments (Fig. 1 (a)). Each segment is again decom-
posed to non-overlapping smaller-size segments. A pred-
icate interval is mapped to one or more consecutive seg-
ments. However, its fixed structure may degrade insertion
performance significantly, especially when handling open
intervals that can be distributed to a large number of seg-
ments. The VCI index has the similar mechanism and can
be suffered from the fixed nature of its index structure.

On the other hand, the IBS-tree determines the seg-
ments dynamically based on given predicate intervals

Manuscript received May 15, 2009.
†The authors are with the Division of Computer Science, the

School of Electrical Engineering and Computer Science, KAIST,
373–1 Kusong-dong, Yusong-gu, Taejon, 305–701, South Korea.

a) E-mail: hgkim@dbserver.kaist.ac.kr
DOI: 10.1587/transinf.E92.D.1787

Fig. 1 (a) CEI-based index and (b) the IBS-tree.

(Fig. 1 (b)). So, its insertion performance can be better than
above two methods. The insertion (or deletion) performance
is important for real-time responses of stream applications
where predicates can be registered or unregistered dynami-
cally. Below, we only consider the IBS-tree.

Figure 1 (b) shows an example of the IBS-tree, given
7 predicates from A to G. For each distinct endpoint of a
predicate interval, there is a tree node that consists of three
slots, each of which has a set of predicates whose ranges are
smaller than, equal to and greater than the endpoint, respec-
tively. However, it doesn’t need to keep the “=” slot in every
node, because a probability that an input tuple satisfies the
equality test becomes very low if the value range is large
enough. We also observed that maintaining the “=” slot in
every node can significantly degrade insertion performance.

In this paper, we propose a predicate indexing method
which improves performance by dealing with the equality
and inequality tests separately.

2. Our Method

The proposed method uses a hash table for the equality test
and a balanced binary search tree for the inequality test. Fig-
ure 2 shows an example of our method, given same predi-

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



1788
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009

Fig. 2 Structure of the proposed index.

cates of Fig. 1 (b). The hash table has an entry for each dis-
tinct value of equality predicate endpoints. Each entry has a
set of predicates with the same endpoint (i.e., column Pred)
and pointers to a tree node and the predicates of its “<” slot
(i.e., column Ptrs). (Their usages will be discussed below.)

On the other hand, our search tree has a node for each
distinct value of inequality predicate endpoints. Its node
consists of two slots, each of which has a set of predicates
whose ranges are smaller than and greater than the endpoint,
respectively. Since the tree is constructed from inequality
predicates only, its height becomes smaller than the IBS-
tree. In addition, the average number of comparisons per
node reduces because the equality test is not conducted in
each node. These characteristics enable our method to show
better search performance than the IBS-tree.

Whenever an input tuple arrives, we first find the hash
table, then the search tree. In the tree search, if its value
is equal to a node, it is routed to its left subtree. In this
process, predicates in the “<” slot of the node are added to a
result. However, this may lead to inaccurate search results.
For example, suppose that a tuple (with value) 8 arrives in
Fig. 2. Then, the search will end in the “<” slot of node 8,
and the predicates B, C and G will be returned as a result.
But, C must be excluded from the result because it is defined
as “x < 8”.

To avoid such inaccuracy, we decompose predicates in
the “<” slot into two parts: predicates whose endpoints are
equal to a node value and those whose endpoints are not.
For convenience, we call the former primary (smaller-than)
predicates and the latter secondary predicates. In Fig. 2 (b),
A is a primary predicate of node 6, while C is a secondary
one. If an input tuple v arrives, node v is organized to return
secondary predicates, not whole ones in its “<” slot.

To enable this, we keep an additional hash entry for
each endpoint v of smaller-than predicates. We set point-
ers of the entry (i.e., those in column Ptrs of Fig. 2 (a)) to
its corresponding tree node v and its secondary predicates.
Whenever a tuple v arrives, we check if its hash entry has
a pointer to node v. If so, we organize the node v to return
its secondary predicates (by switching pointers). Then, we
conduct the tree search. After the search ends, we restore
the node v to return its original predicates. Note that in our
method, the search always ends at a leaf node, while it may
stop at an intermediate node in the IBS-tree.

Fig. 3 Insertion of predicates to our search tree.

Now, let us discuss the insertion of predicates in our
method. To illustrate the process, consider a search tree
constructed from 4 predicates “A : x > 3”, “B : x < 7”,
“C : x < 12” and “D : x < 20”. We would insert a
new smaller-than predicate “E : x < 10” to the search tree
(Fig. 3 (a)). To do this, we first add a new node with value
10 to the search tree, and assign E to the “<” slot of the node
as well as the slot of node 7. We also assign a new entry for
E to the hash table and connect pointers to node 10 and its
predicates.

Note that, if we assign a predicate to the “<” slot of
a node, we don’t have to assign it to the “<” slots of left
descendants of the node. This is clear from that “x < v”
logically implies “x < u” if node v is a left descendant of
node u. Consequently, there is no overlap of predicate as-
signments in the “<” slots of nodes u and v. On the other
hands, the “>” slot of a node includes all predicates of the
“>” slots of its left descendants. The interval “x > v” cannot
be covered by the interval “x > u”. In this case, if we assign
a predicate to node v, we also need to assign it to node u
together.

Let le f t(v) and right(v) be the sets of predicates in the
“<” and “>” slots of node v, respectively. Then, the above
characteristics of our search tree can be described as fol-
lows.

Theorem 1. Predicate assignments in our search tree sat-
isfy the following two properties.

(1) If v is a left descendant of u, then
le f t(u) ∩ le f t(v) = ∅ and right(u) ⊇ right(v)

(2) If v is a right descendant of u, then
right(u) ∩ right(v) = ∅ and le f t(u) ⊇ le f t(v)



LETTER
1789

Proof. The proof for property (1) is done by above descrip-
tion. Property (2) is symmetric to property (1), so we
omit its proof. �

Now, let us consider the insertion of “F : x > 2” in
the status of Fig. 3 (a). The insertion of F incurs unbalance
of the tree: the left subtree of node 12 outweighs its right
subtree. To rebalance the tree, any of the existing algorithms
such as the AVL tree and the Red-black tree can be used; we
assume that one of them is used and our tree is rebalanced
based on it.

Note that the rebalancing incurs the redistribution of
predicates in our search tree. In Fig. 3, predicates of nodes
α and β need to be redistributed. (Actually, it is the case of
LL rotation in the AVL-tree scheme.) A rule for the redis-
tribution can be easily derived from Theorem 1. In this case,
node β becomes a right child of node α after rebalancing the
tree. Therefore, we can use property (2) for the redistribu-
tion as follows.

right(β′) = right(β) − right(α)
le f t(α′) = le f t(α) ∪ le f t(β)

We can have the redistribution rule for the symmetric
case from Theorem 1. Here, we do not describe complete
rules from the lack of available spaces.

The IBS-tree has two more rules [2] in addition to the
above ones, which are required for redistribution of predi-
cates in the “=” slots. The rules can be described as fol-
lows. Below, middle(v) denotes a set of predicates in the
“=” slot of node v. (There are also rules for the symmetric
case, which we omit in this paper.)

middle(β′) = middle(β) − right(α)
middle(α′) = middle(α) ∪ le f t(β)

As a result, whenever a tree is rebalanced, the IBS-tree
needs to update four slots, while our method updates two
slots. We observed through our experiments that the update
cost is high. These things make our method outperform the
IBS-tree regarding the insertion performance.

Other features of insertion algorithm are similar to that
of the IBS-tree. To insert a predicate with a closed inter-
val “a ≤ x ≤ b”, we decompose it into two parts “a ≤ x”
and “x ≤ b”. For each part, we again separate the equality
condition “a = x” (or “b = x”) and add a hash entry for
the condition. Then, we add a new node for “a < x” (or
“x < b”) to the search tree. To handle a smaller-than pred-
icate such as “a < x”, we use an algorithm AddLeft which
is shown in Fig. 4. (There is also an algorithm AddRight for
the greater-than part “x ≤ b”.) The algorithm is the same
as that of the IBS-tree, except that it does not include the
equality test in Step (4) and (9). In the algorithm, the func-
tion rightUp returns the lowest ancestor of node n in the tree
that contains n in its left subtree. leftEnd and rightEnd de-
note the left and right endpoints a and b, respectively. After
Step (12), tree rebalancing and predicate redistribution are
conducted as discussed above.

Since our method uses both of the hash table and the

Fig. 4 Insertion of the left-end of a predicate to our search tree.

search tree, the storage complexity of our method becomes
larger than that of the IBS-tree. Let the total number of pred-
icates be N. Then, the storage complexity of the IBS-tree is
O(NlogN) in the worst case because a predicate can place
in up to logN tree nodes. In the same manner, our search
tree requires O(NlogN) storage in the worst case. Our hash
table requires O(N) storage because it can keep entries for
all predicates. Thus, the storage complexity of our method
becomes O(N + NlogN) in the worst case.

However, the actual size of our index structure can be
smaller from the different constant factors. In our method, a
hash entry uses 12 bytes of memory for storing the pointer to
a predicate list (4 bytes) and two pointers to a tree node and
its secondary predicates (8 bytes). A tree node uses larger
memory (28 bytes) for a predicate ID (4 bytes), balance in-
formation (8 bytes), pointers to smaller-than and greater-
than predicate lists (8 bytes) and pointers to the left and right
subtrees (8 bytes). Therefore, the total size of our index
structure can be calculated as 12N + 28NlogN bytes. On the
other hand, the IBS-tree consumes 32NlogN bytes of mem-
ory, since each node of the tree has one more pointer (to the
equality predicate list) than our search tree. If N is given
to 1,000,000 and all of the values are distinct, the IBS-tree
requires about 640 Mbytes of memory, while our method re-
quires about 572 Mbytes.

3. Experimental Results

In this section, we provide experimental results that com-
pare the IBS-tree and our method in terms of insertion and
search performances. To conduct experiments, we imple-
mented algorithms of both methods as well as a data gener-
ator to synthesize test data sets. We set the domain of pred-
icate endpoint values to [0, 1000000] and randomly pro-
duced up to 100,000 predicates with their inequality types
(i.e., “<”, “≤”, “>” and “≥”). We excluded equality pred-
icates to make search trees of both methods have the same
number of nodes.

As a hash table, we currently use an array whose size is
large enough to cover the domain. Assuming the above do-
main, the array uses 4 Mbytes of memory since each element
has a pointer to a hash entry (4 bytes). If there are 100,000
predicates, our method uses 6.8 Mbytes smaller than the



1790
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.9 SEPTEMBER 2009

Fig. 5 Our method vs. IBS-tree: (a) insertion performances (upper) and
(b) search performances (lower).

IBS-tree as discussed in Sect. 3. Thus, it is affordable to use
4 Mbytes for the array. Note that, if a conventional hash-
ing method is used, the search performance of our method
can be degraded by the cost of overflow handling. Our ex-
periments were conducted on Intel Pentium IV 3.2 GHz ma-
chine, running Window XP, with 2 G main memory.

First, we would compare insertion performances of two
methods. We used two kinds of data sets: one has only open
intervals with types “≤” and “≥”, and the other has both of
open and closed intervals with types “<”, “≤”, “>” and “≥”.
In the latter, we organized the ratio of two kinds of inter-
vals to be the same. We increased the number of predicates
from 8 K to 100 K and observed their insertion times of both
cases. In Fig. 5 (a), experimental results for the former data
set are marked as solid lines, while the results for the latter
one are marked as dashed lines. In both of the results, in-
sertion performance of our method is approximately 2 times
better than that of the IBS-tree. This is because our method
does not have the “=” slot in each tree node, while the IBS
tree does. The result also infers that the cost of updating a
slot is high. Note that insertion times of experiments with
the former data set are larger than those of experiments with
the latter one. This is due to that the average number of pred-
icates per node becomes larger when a tree is made from
open intervals only, compared with the case when the tree is
made from both open and closed intervals.

Then, we compared search performances of both meth-
ods. In this experiment, we increased the number of open
interval predicates (with types “≤” and “≥”) n from 10 to
100 K and conducted 10 million times of searches. The re-
sult (Fig. 5 (b)) shows that our method is about 15% better
than the IBS-tree when n is larger than 1 K in our experi-
mental setup. We also observed that our method is about
7% better in the extreme case when the domain size is equal
to n, which we omitted from the lack of spaces. This shows
that the benefit of the smaller number of comparisons per
node of our search tree is bigger than that of the search stop
at an intermediate node of the IBS-tree.

4. Conclusion and Future Work

In this paper, we proposed a predicate indexing method
which uses a hash table for the equality test and a balanced
binary search tree for the inequality test. By excluding slots
for the equality test from the search tree, our method pro-
vides better performance than the IBS-tree. Our experimen-
tal results show that the proposed method provides approx-
imately 100% and 15% better insertion and search perfor-
mances, respectively.

As a hash table, we used an array that can cover the
domain of input values. If a conventional hashing method is
used, the search performance of our method can be degraded
by the cost of overflow handling. To overcome this, we are
planning to apply a caching mechanism to our method. We
think it is acceptable because our method uses smaller mem-
ory than the IBS-tree.

Acknowledgements

This work was supported by Korea Science and Engineer-
ing Foundation (KOSEF) grant funded by the Korea gov-
ernment (MEST) (No.R0A-2007-000-10046-0).

References

[1] L. Golab and M.T. Ozsu, “Issues in data stream management,” ACM
SIGMOD, Record 32, no.2, pp.5–14, 2003.

[2] E. Hanson, M .Chaabouni, C. Kim, and Y. Wang, “A predicate match-
ing algorithm for database rule systems,” ACM SIGMOD, pp.271–
280, 1990.

[3] K. Wu, S. Chen, and P.S. Yu, “Interval query indexing for efficient
stream processing,” ACM CIKM, pp.88–97, 2004.

[4] K. Wu, S. Chen, P.S. Yu, and M. Mei, “Efficient interval indexing for
content-based subscription E-Commerce and E-Service,” CEC-East,
2004.


