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Approximate Decision Function and Optimization for GMM-UBM
Based Speaker Verification∗
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SUMMARY The GMM-UBM framework has been proved to be one of
the most effective approaches to the automatic speaker verification (ASV)
task in recent years. In this letter, we first propose an approximate deci-
sion function of traditional GMM-UBM, from which it is shown that the
contribution to classification of each Gaussian component is equally im-
portant. However, research in speaker perception shows that a different
speech sound unit defined by Gaussian component makes a different contri-
bution to speaker verification. This motivates us to emphasize some sound
units which have discriminability between speakers while de-emphasize the
speech sound units which contain little information for speaker verification.
Experiments on 2006 NIST SRE core task show that the proposed approach
outperforms traditional GMM-UBM approach in classification accuracy.
key words: automatic speaker verification, contribution weight re-
estimation, optimization

1. Introduction

The GMM-UBM framework has proved to be a com-
mon technique in an automatic speaker verification (ASV)
task [1]. A GMM-UBM system consists of two probabilis-
tic models, one is the target model which is estimated via
Maximum a Posterior (MAP) criterion using target utter-
ance, and the other one is the universal background model
(UBM) which is used to denote the non-target model. Dur-
ing the testing procedure, the decision function, defined as
the likelihood ratio of the testing utterance between the tar-
get speaker model and the UBM is computed and then com-
pared to a universal threshold, to make the decision whether
the trial should be accepted (the given test utterance is spo-
ken by the claimed target speaker) or rejected.

It is proposed in [2] that the GMM can be used to rep-
resent the underlying process that generates the multilingual
data. The individual Gaussian components are trained to
represent the underlying set of speech sound units (vowel,
nasal, fricative etc.) in a self-organized manner.

In this letter, we first proposed an approximate estima-
tion of traditional GMM-UBM based decision function. It
is shown that the decision function of GMM-UBM can be
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treated approximately as an equally weighted linear combi-
nation of each Gaussian component’s occupation probabili-
ties, which means that in traditional GMM-UBM approach,
the contribution of each Gaussian component is assumed to
be equally weighted. However, the assumption is not suit-
able for classification. It is considered that different speech
sound unit defined by Gaussian component may have differ-
ent contribution weight to classification. Voiced sound units
are more significant to speaker verification since they catch
most of the vocal tract characteristics, and different types of
vowels have different contribution weights to speaker veri-
fication as discussed in [3]. Thus, some speech sound units
which are discriminative between speakers should be em-
phasized while some other speech sound units with little dis-
criminability among speakers should be given less weight.

The outline of this letter is as follows. In Sect. 2, the
decision function of traditional GMM-UBM approach is in-
troduced. In Sect. 3, we proposed the approximate estima-
tion of GMM-UBM based decision function. In Sect. 4, the
re-estimation of the contribution weight of each Gaussian
component’s occupation probabilities is shown. The exper-
iment results on NIST speaker recognition evaluation 2006
task data are listed in Sect. 5 and we present our conclusion
in Sect. 6.

2. GMM-UBM Decision Function

The speaker verification can be viewed as a hypothesis test
between

H0: X is from the hypothesized speaker
and

H1: X is not from the hypothesized speaker.
To make a decision between the two hypothesis, we define
the likelihood ratio decision function as follows [1]

Λ(X) =
P(X|H0)
P(X|H1)

=

{ ≥ threshold accept
< threshold reject

(1)

where P(X|Hi) is the probability density function of hypoth-
esis Hi given observed sequences X={x1, x2, . . . , xT }. In the
GMM-UBM approach, H0 is represented by a GMM model
λS , which characterizes the hypothesized target speaker, and
the alternative hypothesis H1 is represented by the univer-
sal background model (UBM) λU which is also a GMM
model. If we take the logarithm of the likelihood ratio deci-
sion function, we get

Λ(X) = logP(X|λS ) − logP(X|λU) (2)
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The feature vectors of X are assumed to be independent, and
we usually take the average log-likelihood value and the de-
cision function will be

Λ(X) =
1
T

T∑
t=1

(logP(xt |λS ) − logP(xt |λU)) (3)

Eq. (3) is the commonly used decision function of GMM-
UBM approach [1].

3. Approximate Decision Function of GMM Based
Speaker Verification

If we use P(xt) to denote the total probability of both λS and
λU given observation xt, where

P(xt) = P(xt |λS ) + P(xt |λU) (4)

Eq. (3) can be rewritten as follows

Λ(X) =
1
T

T∑
t=1

(
log

P(xt |λS )
P(xt)

− log
P(xt |λU)

P(xt)

)
(5)

Two terms of the Taylor series, log(x) ≈ x − 1 are used to
obtain the approximation of Eq. (5) and we discard the −1
since the change will not affect the classification decision [4]

Λ̃(X) =
1
T

T∑
t=1

(
P(xt |λS )

P(xt)
− P(xt |λU)

P(xt)

)
(6)

Here we use Λ̃(X) to denote the approximate estimation of
Λ(X).

Notice that the Taylor series, log(x) ≈ x − 1 should
satisfy that x ≈ 1, however, we still have several reasons
for using the Taylors series approximation. One reason is
that the ratio P(xt |λi)/P(xt) vary over a small dynamic range.
Second the approximation preserves score order so it will
not affect the classification results significantly.

While in a Gaussian mixture model (GMM) λ, the
probability density P(xt |λ) given observed vector xt is

P(xt |λ) =
M∑

m=1

wm pm(xt) =
M∑

m=1

gm(xt) (7)

where M is the Gaussian component number, wm is the
weight of the m-th Gaussian component pm(∗). Here we
adopt gm(∗) to denote the m-th weighted Gaussian compo-
nent for simplification. The Eq. (6) can be written in a GMM
form, that is

Λ̃(X) =
1
T

T∑
t=1

⎛⎜⎜⎜⎜⎜⎝
M∑

m=1

gS pk
m (xt) − gUbm

m (xt)
P(xt)

⎞⎟⎟⎟⎟⎟⎠ (8)

where gS pk
m (xt) denotes the m-th Gaussian component of tar-

get speaker GMM and gUbm
m (xt) denotes the m-th Gaussian

component of UBM.
Note that the since P(xt) is the total probability of both

target model λS and UBM λU , we can combine the target

GMM and UBM together, to form a combined GMM λC

which has 2M Gaussian components

P(xt |λC) =
2M∑
m=1

ĝm(xt) (9)

where

ĝm(xt) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 gS pk

m (xt) if m ≤ M

1
2 gUbm

m−M(xt) if m > M

Here we have each Gaussian component’s weight half to sat-
isfy that the sum of Gaussian component’s weight of λC is
1. The new GMM λC can be thought to define an acoustic
space which consists of sound units both from target speaker
and non target speakers.

We can define

γm(t) = P(m|xt, λC) =
ĝm(xt)

P(xt |λC)
(10)

as the occupation probability γm(t) of the m-th Gaussian
mixture component given observation xt and

γ̄m(X) =
1
T

T∑
t=1

γm(t) (11)

as the average occupation probability of the m-th Gaussian
mixture component for observation sequence X. We can
rewrite Eq. (8) as follows

Λ̃(X) = 〈Φ(X),Θ〉 (12)

where 〈·, ·〉 denotes inner product, and

Φ(X) = [γ̄1(X), γ̄2(X), . . . , γ̄2M(X)]t (13)

is the 2M dimensional occupation vector. Θ is a 2M di-
mensional vector, which consists of M ones followed by M
negative ones. Θ is named as the contribution weight vec-
tor since it denotes the contribution weight of each Gaussian
component’s occupation to decision function.

Θ = [1, 1, . . . , 1,−1,−1, . . . ,−1]t (14)

Here, the average occupation probability γ̄m(X) can be
thought to represent the frequency of occurrence of sound
unit m in the whole observation sequences X and the value
of γ̄m(X) represents the contribution to decision function of
Gaussian component m. It is shown in Eq. (14) that the con-
tribution of each Gaussian component to decision function is
assumed to be equally weighted. However, as we discussed
in Sect. 1, different speech sound unit defined by Gaussian
component may have different contribution weight to classi-
fication, and the problem of re-estimation of the contribution
weight vectorΘ can be converted into the problem of how to
obtain an optimum solution of the linear classifier motivated
by the inner product form of Eq. (12).

It is noticed that since we obtain an approximate esti-
mation of the decision function, upon which the following
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optimization is based, the effect on the classification after
introducing the two terms of Taylor series should be exam-
ined first. In Sect. 5, before we give the experiment results
of GMM-UBM and proposed approach, we show that the
classification results of GMM-UBM are almost not affected
after we introduce the Taylor series.

4. Re-Estimation of The Contribution Weight Vector

4.1 MSE Criterion

In this section, we will show how to obtain an optimum
solution of the contribution weight vector Θ based on the
minimizing the sum-of-squares error function (MSE) crite-
rion [5].

Suppose we have a training set consist of n trials, each
of which can be mapped into a vector Φi, we labeled yi =

1 for true trial vectors(meaning two utterances of the trial
are from the same speaker) and yi = −1 for the false trial
vectors. For convenience, we define Ψi = yiΦi and we aim
to find a Θ∗ that for each Ψi, we have 〈Ψi,Θ

∗〉 > 0, and the
sum-of-squares error function JΘ is defined as

JΘ =
n∑

i=1

(
Ψt

iΘ − bi

)2
(15)

where bi is an arbitrary positive constant, if we define matrix
Y as follows

Y = [Ψ1,Ψ2, . . . ,Ψn]t

we have

JΘ = ||YΘ − b||2 (16)

Here b is a vector consisting of arbitrary positive constants.
To solve the minimizing problem, we can find

∇JΘ = 2Yt(YΘ − b) (17)

Let ∇JΘ = 0 and we can get the optimum Θ as follows

Θ∗ =
(
YtY

)−1
Ytb (18)

However, the MSE solution depends on the vector b, it
is obvious that different b will give the solution of different
properties. Next part, we will show how to get a largest mar-
gin solution based on support vector machines (SVMs) [4].

4.2 MSE Mapping for SVMs

For a testing trial vector Ψx, the decision function is

Λ̃(X) = Ψt
xΘ
∗ = Ψt

x

(
YtY

)−1
Ytb (19)

Here we set R = YtY and Ψ̂y = Ytb =
n∑

i=1

biΨi. Eq. (19)

will be

KMSE = Ψ
t
xR−1Ψ̂y (20)

Here are several comments for the MSE kernel defined
by Eq. (20).

First, the value of bi has no effect on the SVM solution.
A typical SVM solution is

Θ∗ =
n∑

i=0

(
αiR−1xi

)
+ d (21)

Given the kernel R, and all of the training vectors xi, i ∈
{1, 2, · · · , n}, SVMs training procedure will find the corre-
sponding αi for each xi and an universal d. In this letter, the
solution defined by Eq. (21) is re-written as follows

Θ∗ =
n∑

i=0

(
αiR−1biΨi

)
+ d

=

n∑
i=0

(
αibiR−1Ψi

)
+ d

=

n∑
i=0

(
α∗i R−1Ψi

)
+ d

That is, when the kernel R and the training vectors Ψi are
given, no matter what the value of bi is, the solution Θ∗ ob-
tained by SVMs is unique.

Second, please note that R defined by Eq. (20) is not a
semi-positive matrix, so it is not a kernel yet, and an approx-
imation is necessary for the MSE kernel application. An
useful assumption is that the trial vectors Ψi of the training
set are independent, and thus, we only take R̂ as the diag-
onal matrix of R, this approximation significantly reduces
the computation and makes R semi-positive. Eq. (20) can
be re-written as

KMSE =
(
R̂
− 1

2Ψx

)t (
R̂
− 1

2 Ψ̂y

)
(22)

Here R̂
− 1

2Ψx is defined as the MSE mapping of Ψx.
Eq. (22) has shown the way of re-estimating Θ∗. First,

each trial vector of the training set is used to compute the
diagonal matrix R̂. Second the MSE mapping of each trial
vector, both for training and testing is calculated, and a lin-
ear kernel based SVMs is adopted to find the solution.

5. Experiment

As we discussed in Sect. 3, the experiments are conducted
on 2006 NIST speaker recognition evaluation (SRE) core
task [6] gender dependently (22490 male trials and 29934
female trials) to examine the effect on classification after
introducing the Taylor series. Score of each trial is ob-
tained respectively from traditional GMM-UBM approach
(defined in Eq. (3)) and Taylor series approximation (defined
in Eq. (12)). The relationship of scores are shown in Fig. 1.
It is obvious that the relationship between scores obtained
from traditional GMM-UBM and Taylor series approxima-
tion are almost linear which means that for the purpose of
classification, the introducing of Taylor series makes almost
no difference on the results.
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Fig. 1 The effect on classification of approximation by taylor series.

Table 1 Trial numbers of 2004 and 2006 NIST-SRE core task.

Year-Gender Trial Number
2004-female 14069
2004-male 11228

2006-female 29934
2006-male 22490

We compare the performance of proposed approach to
traditional GMM-UBM approaches on the 2006 SRE core
task gender dependently, without score normalization and
with speaker adaptive test score normalization (AT-Norm)
respectively [7].

All the systems are based on the same UBM, which has
1024 Gaussian components, gender dependently, and dur-
ing the enrollment procedure, only the means are adapted
for the target model with a relevance factor of 12. The rel-
evance factor is used to compute the adaptation coefficient
and further details can be found in [1]. We do not apply any
feature compensation techniques in this letter. The speech is
first processed by a feature extraction module that computes
a 18-dimension frame of MFCC every 20 milliseconds with
10 milliseconds overlap (100 frames per second). Delta-
cepstral coefficients are then computed and appended to the
cepstral vector, producing a 36-dimensional feature vector.
For the AT-Norm, the pool of cohort model consists of 300
speaker models and top 60 models are being selected.

For the proposed system, the contribution weight vec-
tor is estimated gender dependently with trials only from
the 2004 NIST-SRE core task. We do not apply any trials
from 2005 NIST-SRE task since we found that there is over-
lap between the data set of 2005 NIST-SRE task and 2006
NIST-SRE task.

The data sets of 2004 and 2006 NIST-SRE are listed in
Table 1. The linear kernel based SVMs training procedure
is conducted with the package SVM-light which is released
by University of Dortmund [8].

Table 2 Experiment result of 2006 NIST-SRE core task.

System/minDCF*100 female male all
(1)Traditional GMM-UBM 4.47 3.92 4.25
(2)GMM-UBM Approximation
Without Re-Estimation

4.47 3.92 4.25

(3)GMM-UBM Approximation
With Re-Estimation

4.01 3.61 3.84

Relative Improvement 10.3% 7.9% 9.6%

(2)+AT-Norm 3.99 3.68 3.87
(3)+AT-Norm 3.68 3.47 3.59
Relative Improvement 7.8% 5.7% 7.2%

We used the minimum decision cost function
(MinDCF) [6] for evaluation, which is

DCF = CMissPTargetP(Miss/Target)

+CFAPNonTargetP(FA/NonTarget) (23)

where CMiss = 10, CFA = 1 and PTarget = 0.01, PNonTarget =

0.99.
Experiment results are listed in Table 2. Comparison

between (1) and (2) shows that the approximation of Tay-
lor series makes no difference on the classification results.
Comparing (2) to (3), we can observe that the re-estimation
of contribution weights significantly improves the classifi-
cation accuracy both without and with AT-Norm.

6. Conclusion

In this letter, we introduced and evaluated the contribu-
tion weight re-estimation method for GMM-UBM based
ASV task. The motivation of re-estimating the contribution
weight was based on the concept that different speech sound
unit defined by Gaussian component has different contribu-
tion weight to speaker verification. Experiments on NIST-
SRE 2006 data set show that the re-estimation of contribu-
tion weights adopted by SVMs improves the performance of
speaker verification significantly.
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