
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009
181

PAPER Special Section on Foundations of Computer Science

Polynomial Time Inductive Inference of TTSP Graph Languages
from Positive Data

Ryoji TAKAMI†, Yusuke SUZUKI††a), Nonmembers, Tomoyuki UCHIDA††,
and Takayoshi SHOUDAI†††, Members

SUMMARY Two-Terminal Series Parallel (TTSP, for short) graphs are
used as data models in applications for electric networks and schedul-
ing problems. We propose a TTSP term graph which is a TTSP graph
having structured variables, that is, a graph pattern over a TTSP graph.
Let TGTTSP be the set of all TTSP term graphs whose variable labels
are mutually distinct. For a TTSP term graph g in TGTTSP, the TTSP
graph language of g, denoted by L(g), is the set of all TTSP graphs ob-
tained from g by substituting arbitrary TTSP graphs for all variables in
g. Firstly, when a TTSP graph G and a TTSP term graph g are given as
inputs, we present a polynomial time matching algorithm which decides
whether or not L(g) contains G. The minimal language problem for the
class LTTSP = {L(g) | g ∈ TGTTSP} is, given a set S of TTSP graphs, to
find a TTSP term graph g in TGTTSP such that L(g) is minimal among all
TTSP graph languages which contain all TTSP graphs in S . Secondly, we
give a polynomial time algorithm for solving the minimal language prob-
lem for LTTSP. Finally, we show that LTTSP is polynomial time induc-
tively inferable from positive data.
key words: inductive inference, computational learning theory, TTSP
graph, graph languages

1. Introduction

We consider the learnability of Two-Terminal Series Paral-
lel (TTSP, for short) graph languages from positive data. A
TTSP graph is a connected directed graph constructed by re-
cursively applying “series” and “parallel” operations. Since
a TTSP graph is an edge-colored planar graph allowed mul-
tiple edges but having no cycles, it is often used in appli-
cations as a data model of electrical networks and schedul-
ing. In the fields of data mining and knowledge discovery,
many researchers have been developing data mining tech-
niques based on machine learning methods for analyzing
data. From the viewpoint of algorithmic learning theory,
the purpose of this paper is to show that the class of lan-
guages on TTSP graphs is polynomial time inductively in-
ferable from positive data.

Uchida et al. [11] proposed the concepts of a graph pat-
tern having graph structures and structured variables, called
a term graph, and a graph pattern language, called a graph
language. Based on the concept of a term graph and a graph

Manuscript received March 28, 2008.
Manuscript revised June 29, 2008.
†The author is with the Faculty of Information Sciences,

Hiroshima City University, Hiroshima-shi, 731–3194 Japan.
††The authors are with the Graduate School of Information Sci-

ences, Hiroshima City University, Hiroshima-shi, 731–3194 Japan.
†††The author is with Department of Informatics, Kyushu Uni-

versity, Fukuoka-shi, 819–0395 Japan.
a) E-mail: y-suzuki@hiroshima-cu.ac.jp

DOI: 10.1587/transinf.E92.D.181

language given in [11], we define a TTSP term graph as a
graph pattern having a TTSP graph structure and structured
variables. A variable in a TTSP term graph is a pair of its
distinct vertices. For a TTSP term graph g, we also define
a TTSP graph language of g, denoted by L(g), as the set of
all TTSP graphs obtained from g by substituting arbitrary
TTSP graphs for all variables in g. We denote by TGTTSP
the set of all TTSP term graphs whose variable labels are
mutually distinct. In Fig. 1, we give TTSP graphs G1, G2,
G3, G4, G5 and a TTSP term graph g in TGTTSP as exam-
ples. And the TTSP graph G1 in Fig. 1 is obtained from the
TTSP term graph g by replacing variables having label x and
y with TTSP graphs G4 and G5 so that u1, u2, v1, v2 of g are
identified with w4

1, w4
2, w5

1, w5
2 of TTSP graphs G4 and G5,

respectively.
Angluin [2] and Shinohara [7] gave the framework of

inductive inference from positive data and showed that if a
class C has finite thickness, and the membership problem
and the minimal language (MINL) problem for C are com-
putable in polynomial time then C is polynomial time in-
ductively inferable from positive data. Based on this frame-
work, in this paper, we consider the polynomial time learn-
ability of LTTSP = {L(g) | g ∈ TGTTSP} from positive
data.

Firstly, we show that, for any nonempty set S of TTSP
graphs, the cardinality of the set {L ∈ LTTSP | S ⊆ L} is fi-

Fig. 1 TTSP graphs G1, G2, G3, G4, G5 and a TTSP term graph g. A
variable is drawn by a box with lines to its elements and the symbol inside
a box shows the label of the variable.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

182
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

nite, that is, LTTSP has finite thickness. Secondly, we con-
sider the membership problem for LTTSP which is, given
a TTSP term graph g ∈ TGTTSP and a TTSP graph G, to
decide whether or not L(g) contains G. In [5], [8], and [9],
we presented a term tree all of whose internal vertices are
ordered, called an ordered term tree, and a term tree all of
whose internal vertices are unordered, called an unordered
term tree. In order to show that the membership problem for
LTTSP is solvable in polynomial time, we present a poly-
nomial time matching algorithm for solving the member-
ship problem for the set of languages of term trees each of
whose internal vertices has ordered or unordered children,
by modifying polynomial time matching algorithms for or-
dered term trees and unordered term trees in [5] and [9].
In Fig. 2, we give a term tree t as an example. A tree T
in Fig. 2 is obtained from t by replacing two variables hav-
ing labels x and y with trees T1 and T2 in Fig. 2, respec-
tively. Thirdly, we consider the minimal language problem,
MINL problem for short, for LTTSP which is, given a set S
of TTSP graphs, to find a TTSP term graph g ∈ TGTTSP
such that S ⊆ L(g) and there exists no TTSP term graph
g′ ∈ TGTTSP with S ⊆ L(g′) ⊆/ L(g), that is, L(g) is min-
imal in the set {L ∈ LTTSP | S ⊆ L}. Here g is called a
minimally generalized TTSP term graph explaining S . For
example, the TTSP graph g in Fig. 1 is a minimally gen-
eralized TTSP term graph such that {G1, G2, G3} ⊆ L(g),
where G1, G2, G3 are TTSP graphs in Fig. 1. Finally, we
show that the class LTTSP is polynomial time inductively
inferable from positive data.

There are many studies [10], [12], [13] for many graph
theoretical problems on TTSP graphs such as Recognition,
Decomposition, Maximum independent set, Minimum dom-
inating set, Maximum matching. We considered the polyno-
mial time learnabilities of ordered term tree languages and
unordered term tree languages from positive data in [5], [8],
and [9]. In other learning models such as query learning, the
learnability of the class of finite unions of ordered term tree
languages, unordered term tree languages and TTSP term

Fig. 2 Trees T , T1, T2 and a term tree t.

graph languages were considered in [4] and [6].
This paper is organized as follows. In Sect. 2, we give a

TTSP graph pattern having structured variables and its graph
language. Then, we formally define a membership problem
and a minimal language problem for the class LTTSP of
TTSP graph languages. In Sect. 3, we summarize our results
of this paper. Then, we present polynomial time algorithms
for solving the membership problem and the MINL problem
for LTTSP in Sects. 4 and 5, respectively. In Sect. 6, we
conclude this paper with future works.

2. Preliminaries

In this section, we present a two-terminal series parallel
(TTSP, for short) term graph as a graph pattern having struc-
tured variables and its TTSP graph language by restricting
the notion of a term graph given in [11]. For a set S , |S |
denotes the cardinality of S , that is the number of elements
of S .

A multidag is a directed connected graph which allows
multiple edges and does not contain any cycle. Let Λ be
finite alphabet whose element is called an edge label. A di-
rected edge labeled with an edge label is called an edge. An
edge labeled with an edge label a ∈ Λ from a vertex u to
a vertex v is denoted by a triplet (u, a, v). Let X be infinite
alphabet with Λ ∩ X = ∅. An element of X is called a vari-
able label. A directed edge having a variable label is called
a variable. A variable labeled with a variable label x ∈ X
from a vertex u to a vertex v is denoted by a triplet [u, x, v].
For a vertex v in a TTSP term graph g, indeg(v) denotes the
sum of all edges entering v and all variables whose child
port is v, and outdeg(v) denotes the sum of all edges leaving
v and all variables whose parent port is v. A vertex v with
indeg(v) = 0 (resp., outdeg(v) = 0) is called a source (resp.,
a sink) of g. A multidag is said to be two-terminal if it has
exactly one source and one sink.

Definition 1: A TTSP term graph is a two-terminal multi-
dag recursively defined as follows.

(1) A directed connected graph consisting of two vertices
u and v, and a single edge from u to v or a single vari-
able is a TTSP term graph. The vertices u and v are its
source and its sink, respectively.

(2) For i = 1, 2, let Gi be a TTSP term graph which has ui

as its source and vi as its sink. Then the graph obtained
by either of the following two operations is a TTSP
term graph.

(a) Parallel operation: Identify u1 with u2, and iden-
tify v1 with v2. The resulting graph, denoted by
G1//G2, has u1(= u2) as its source and v1(= v2) as
its sink.

(b) Series operation: Identify u2 with v1. The source
and the sink of the resulting graph, denoted by
G1 ∗G2, are u1 and v2, respectively.

From the above definition, it is easy to see that a TTSP term
graph has exactly one source and one sink. A TTSP term

TAKAMI et al.: POLYNOMIAL TIME INDUCTIVE INFERENCE OF TTSP GRAPH LANGUAGES
183

graph g is denoted by a triplet (Vg, Eg, Hg), where Vg, Eg

and Hg are sets of all vertices, all edges and all variables in
g, respectively. A TTSP term graph g is said to be ground
if g has no variable. A ground TTSP term graph is called a
TTSP graph simply. A TTSP graph g is denoted by (Vg, Eg),
where Vg and Eg are sets of all vertices and all edges in g, re-
spectively. A TTSP term graph g is linear if all variables in
g have mutually distinct variable labels in X. The set of all
linear TTSP term graphs is denoted by TGTTSP and the set
of all ground TTSP term graphs, namely all TTSP graphs,
is denoted by TTSP. From the definitions of a TTSP term
graph and a TTSP graph, we note that TTSP ⊂ TGTTSP
and every vertex has no label. In this paper, we deal with
linear TTSP term graphs only. Hence, unless otherwise indi-
cated, we call a linear TTSP term graph a TTSP term graph
simply. For example, g given in Fig. 1 is a TTSP term graph
({u1, u2, v1, v2,w}, {(u1, a,w), (w, b, u2), (u1, f , v1), (v2, i, u2)},
{[u1, x, u2], [v1, y, v2]}) having the source u1 and the sink u2.
For each i (1 ≤ i ≤ 5), Gi given in Fig. 1 is a TTSP graph
having wi

1 as the source and wi
2 as the sink, respectively. For

two TTSP graphs G4 and G5 given in Fig. 1, we give an ex-
ample of a TTSP graph G4//G5 (resp., G4 ∗ G5) in Fig. 3
which is obtained by applying the Parallel operation (resp.,
the Series operation) to G4 and G5.

For an edge (u, a, v) ∈ Eg, u is said to be the parent of
v and v is a child of u. For a variable [u, x, v] ∈ Hg, we call
u the parent port of [u, x, v] and v the child port of [u, x, v].
We call a sequence v1, v2, . . . , vi of distinct vertices of g a
path from v1 to vi if for any j with 1 ≤ j < i, there exists an
edge or a variable which consists of v j and v j+1.

For two TTSP term graphs g = (Vg, Eg,Hg) and f =
(Vf , E f ,Hf), g and f are isomorphic, denoted by g ≡ f , if
there exists a bijection π : Vg → Vf such that (i) the ver-
tices u and v are the source and the sink of g, respectively,
if and only if the vertices π(u) and π(v) are the source and
the sink of f , respectively, (ii) (u, a, v) ∈ Eg if and only
if (π(u), a, π(v)) ∈ E f , (iii) [u, x, v] ∈ Hg if and only if
[π(u), y, π(v)] ∈ Hf for some x and y in X.

Let g be a TTSP term graph with at least two vertices
and x a variable label in X. Let σ = [u, u′] be a list of two
vertices in g, where u is the source of g and u′ is the sink of g.
The form x := [g, σ] is called a binding for x. A substitution

Fig. 3 TTSP graphs G4//G5 and G4 ∗G5, where G4 and G5 are given in
Fig. 1.

is a finite collection of bindings {x1 := [g1, σ1], · · · , xn :=
[gn, σn]}, where xi’s are mutually distinct variable labels in
X, gi’s are ground TTSP term graphs, and σi’s are lists of
two vertices in gi.

Let f = (Vf , E f ,Hf) and g = (Vg, Eg,Hg) be two TTSP
term graphs. A new TTSP term graph f {x := [g, [u, u′]]} is
obtained by applying the binding x := [g, [u, u′]] to f in the
following way. Let e = [v, x, v′] be a variable in f . Let g′

be one copy of g and w, w′ the vertices of g′ corresponding
to u, u′ of g, respectively. For the variable e = [v, x, v′], we
attach g′ to f by removing the variable e from Hf and by
identifying the vertices v, v′ with the vertices w, w′ of g′, re-
spectively. Now let θ = {x1 := [g1, σ1], · · · , xn := [gn, σn]}
be a substitution. The TTSP term graph f θ, called the in-
stance of f by θ, is obtained by applying all the bindings
xi := [gi, σi] to f simultaneously. We remark that the source
and the sink of f are the source and the sink of f θ, respec-
tively. For example, let g be a TTSP term graph in Fig. 1
and θ = {x := [G4, [w4

1,w
4
2]], y := [G5, [w5

1,w
5
2]]} a substitu-

tion, where G4 and G5 are TTSP graphs in Fig. 1. Then the
instance gθ of the term graph g by θ is the TTSP graph G1

in Fig. 1.

Definition 2: For a TTSP term graph g ∈ TGTTSP, the
TTSP graph language of g, denoted by L(g), is defined as
{G ∈ TTSP | G ≡ gθ for some substitution θ}.

3. Main Results

In this section, we formally define a membership problem
and a minimal language problem for TTSP graph languages.
Then, we summarize our results of this paper. In Sects. 4 and
5, we will discuss the membership problem and the minimal
language problem for a TTSP graph language in detail.

For a class C, Angluin [1] and Shinohara [7] showed
that if C has finite thickness, and the membership prob-
lem and the minimal language problem for C are solvable
in polynomial time then C is polynomial time inductively
inferable from positive data. In this paper, we consider the
classLTTSP = {L(g) | g ∈ TGTTSP} as a target of inductive
inference.

It is easy to see that the following lemma holds, that is,
for any nonempty finite set S ⊆ TTSP, the cardinality of
the set {L ∈ LTTSP | S ⊆ L} is finite.

Lemma 1: The class LTTSP has finite thickness.

Proof. Let S be a nonempty finite subset of TTSP and
G = (VG, EG) a TTSP graph in S . If g = (Vg, Eg,Hg) is
a TTSP term graph in TGTTSP such that L(g) includes G,
then |Vg| ≤ |VG | and |Eg|+|Hg| ≤ |EG |. Moreover, the number
of all edge labels in G is finite. Therefore LTTSP has finite
thickness. �

In Sect. 4, by presenting a polynomial time matching
algorithm for solving the membership problem for the set of
languages of term trees each of whose internal vertices has
ordered or unordered children, we show that the following
membership problem for LTTSP is solvable in polynomial

184
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

time.
Membership Problem for LTTSP.
Instance: A TTSP term graph g ∈ TGTTSP and

a TTSP graph G ∈ TTSP.
Question: Does L(g) contain G?

A minimally generalized TTSP term graph explaining
a given set of TTSP graphs S ⊆ TTSP is a TTSP term
graph g such that S ⊆ L(g) and there is no TTSP term graph
g′ satisfying that S ⊆ L(g′) ⊆/ L(g). In Sect. 5, we show that
the following minimal language (MINL, for short) problem
for LTTSP is solvable in polynomial time.

MINL Problem for LTTSP.
Instance: A nonempty set of TTSP graphs

S ⊆ TTSP.
Question: Find a minimally generalized TTSP

term graph g ∈ TGTTSP explaining S .

Therefore, we have the following main result.

Theorem 1: The class LTTSP is polynomial time induc-
tively inferable from positive data.

4. An Efficient Matching Algorithm for TTSP Term
Graphs

In this section, we give a polynomial time matching algo-
rithm for the membership problem forLTTSP by presenting
the matching algorithm for the membership problem for the
set of languages of term trees each of whose internal vertices
has ordered or unordered children. Firstly, based on notions
of an ordered term tree and an unordered term tree presented
in [5] and [9], we formally define a term tree each of whose
internal vertices has ordered or unordered children and call
such a term tree a partially-ordered term tree. Moreover, we
define a membership problem for the set of the languages of
partially-ordered term trees. Next, we give a polynomial
time matching algorithm for the membership problem for
the set of the languages of partially-ordered term trees. Fi-
nally, we give a polynomial time algorithm for the mem-
bership problem for LTTSP by reducing this problem to the
membership problem for the set of the languages of a special
kind of partially-ordered term trees.

4.1 Partially-Ordered Term Trees and Its Languages

In this paper, unless otherwise indicated, we call a rooted
tree each of whose internal vertices has ordered or unordered
children a tree simply. We call an internal vertex having or-
dered children (resp., unordered children) an o-vertex (resp.,
a u-vertex) simply.

Definition 3: Let T = (VT , ET) be a tree where VT and ET

are sets of vertices and edges, respectively. Let Et and Ht be
a partition of ET (i.e., Et∪Ht = ET and Et∩Ht = ∅). Let Vt =

VT . A triplet t = (Vt, Et,Ht) is called a partially-ordered
term tree. A partially-ordered term tree t = (Vt, Et,Ht) is
linear if all variables in Ht have mutually distinct variable
labels in X.

In this paper, we deal with only linear partially-ordered term
trees. Hence, unless otherwise indicated, we call a linear
partially-ordered term tree a term tree simply. We denote by
TT the set of all term trees. A term tree with no variable is
called a ground term tree, which is a tree. We denote by T
the set of all ground term trees. In the same way as a TTSP
term graph, we assume that every edge and every variable
have elements in Λ and X as labels, respectively, but every
vertex has no label. Hence, we use the same notations of an
edge and a variable as those of a TTSP term graph. For a
term tree t and two vertices u, v of t, u is an ancestor of v
and v is a descendant of u if there exists a path from u to v.
For a tree or a term tree T , we call the maximal length of
paths from the root of T to leaves the height of T .

For a term tree t and every internal vertex u in t having
ordered children, all children of u have a total ordering on all
children of u. The ordering on the children of u is denoted
by <t

u. Let s = (Vs, Es,Hs) and t = (Vt, Et,Ht) be two term
trees. We say that s and t are isomorphic, denoted by s ≡ t,
if there is a bijection ϕ from Vs to Vt such that (i) the root
of s is mapped to the root of t by ϕ, (ii) u is an o-vertex of
s if and only if ϕ(u) is an o-vertex in t, (iii) (u, a, v) ∈ Es

if and only if (ϕ(u), a, ϕ(v)) ∈ Et, (iv) [u, x, v] ∈ Hs if and
only if [ϕ(u), y, ϕ(v)] ∈ Ht, for some x and y in X, (v) for
any o-vertex u in s which has more than one child, and for
any two children u′ and u′′ of u, u′ <s

u u′′ if and only if
ϕ(u′) <t

ϕ(u) ϕ(u′′).
Let t be a term tree with at least two vertices and x a

variable label in X. Let σ = [u, u′] be a list of two vertices
in t, where u is the root of t and u′ is a leaf of t. The form
x := [t, σ] is called a binding for x. A substitution is a finite
collection of bindings {x1 := [t1, σ1], · · · , xn := [tn, σn]},
where xi’s are mutually distinct variable labels in X, ti’s are
ground term trees, and σi’s are lists of two vertices in ti.

In the same way as a TTSP term graph, for a term tree t
and a substitution θ, we define an instance of t by θ, denoted
by tθ, as a term tree obtained from t by applying θ to t. We
define the root of the instance tθ of t by θ as the root of t.
Further we have to give a new total ordering < f θ

v on every
vertex v of f θ. These orderings are defined in a natural way.

Let f = (Vf , E f ,Hf) be a term tree and θ = {x1 :=
[g1, σ1], · · · , xn := [gn, σn]} a substitution. Suppose that v
is an o-vertex in f θ which has more than one child and let
v′ and v′′ be two children of v of f θ. There are five cases
in which the ordering between v′ and v′′ have to be newly
defined. (1) v ∈ Vf θ − Vf : In this case, there is a term tree
g ∈ {g1, · · · , gn} such that all of v, v′, v′′ are in Vg. Then
v′ < f θ

v v′′ is defined if and only if v′ <g
v v′′. If v ∈ Vf , we

have the following four subcases. (2) v′ ∈ Vf and v′′ ∈ Vf :
v′ < f θ

v v′′ is defined if and only if v′ < f
v v′′. (3) v′ ∈ Vf and

there is a term tree g ∈ {g1, · · · , gn} such that v′′ ∈ Vg: Let
w be the child port of the variable for which g is substituted.
We note that v is the parent port of the variable. Then v′ < f θ

v

v′′ is defined if and only if v′ < f
v w. (4) There is a term tree

g ∈ {g1, · · · , gn} such that both of v′ and v′′ are in Vg: Since
v is identified with the root of g (say u), v′ < f θ

v v′′ is defined

TAKAMI et al.: POLYNOMIAL TIME INDUCTIVE INFERENCE OF TTSP GRAPH LANGUAGES
185

if and only if v′ <g
u v′′. (5) There are two distinct term trees

g, g′ ∈ {g1, · · · , gn} such that v′ ∈ Vg and v′′ ∈ Vg′ : Let w
(resp. w′) be the child port of the variable for which g (resp.
g′) is substituted. Then v′ < f θ

v v′′ is defined if and only if
w <

f
v w′′.
For example, let t be a term tree in Fig. 2 and θ = {x :=

[T1, [w1
1,w

1
2]], y := [T2, [w2

1,w
2
2]]} a substitution, where T1

and T2 are trees in Fig. 2. Then the instance tθ of the term
tree t by θ is the tree T in Fig. 2.

Definition 4: For a term tree t ∈ TT , the term tree lan-
guage of t, denoted by L(t), is defined as {s ∈ T | s ≡
tθ for some substitution θ}.

4.2 A Polynomial Time Algorithm for Solving the Mem-
bership Problem for Term Trees

In this section, by extending the polynomial time matching
algorithm in [5] and [9], we give a polynomial time match-
ing algorithm for solving the following membership prob-
lem for the class LTT = {L(t) ⊆ T | t ∈ TT }.

Membership Problem for LTT .
Instance: A term tree t ∈ TT and a tree T ∈ T .
Question: Does L(t) contain T ?

For a tree or a term tree t and its vertex u, t[u] denotes the
subtree consisting of u and all descendants of u in t. We note
that u is the root of t[u]. Let t = (Vt, Et,Ht) be a term tree
and T a tree. We assume that all vertices of a term tree t
are associated with mutually distinct numbers, called vertex
identifiers. We denote by I(u) the vertex identifier of u ∈ Vt.

Definition 5: A correspondence set of a vertex v of T , de-
noted by CS (v), is a subset of {I(u) | u ∈ Vt} ∪ {(I(u)) | u
is the child port of a variable of t} satisfying the following
two conditions. (1) I(u) ∈ CS (v) if and only if L(t[u]) con-
tains T [v], and (2) (I(u)) ∈ CS (v) if and only if there exists
a proper descendant v′ of v such that L(t[u]) contains T [v′].

Below we call a correspondence set a C-set shortly. Let
u be an internal vertex of t and c1, . . . , cm (m ≥ 1) all ordered
(or unordered) children of u. The C-set-attaching rule of
u is of the form I(u)

u← (or
o←,←)ξ(c1), . . . , ξ(cm), where

ξ(ci) = (I(ci)) if ci is the child port of a variable, ξ(ci) = I(ci)

Fig. 4 A term tree t, the C-set-attaching rule Rule(t) of t, a tree T and C-sets which are attached for
vertices in T .

otherwise. The C-set-attaching rule of t, denoted by Rule(t),
is defined as follows.

Rule(t) =⋃
u∈Vt

({I(u)
u← ξ(c1), . . . , ξ(cm) | u is a u-vertex of t}

∪{I(u)
o← ξ(c1), . . . , ξ(cm) | u is an o-vertex of t}

∪{(I(u))← (I(u)) | u is the child port of a variable}).

For example, for a TTSP term tree t given in Fig. 4, we give
the C-set-attaching rule Rule(t) of t in Fig. 4.

In Fig. 5, we present an algorithm TT-Matching for
solving the membership problem forLTT . In TT-Matching,
by using CS-Attaching given in Fig. 5, we repeatedly attach
a C-set to each vertex of a given tree T in the bottom-up
manner, that is, from the leaves to the root of T . If the C-set
of the root of T has the vertex identifier of the root of t, then
we conclude that L(t) contains T . For example, given a term
tree t and a tree T in Fig. 4, TT-Matching constructs the C-
set-attaching rule Rule(t) of t in Fig. 4 and attaches C-sets
in Fig. 4 to all vertices of T . In this example, TT-Matching
returns “yes”, because the C-set of the root A of T includes
the vertex identifier 1 of the root of t.

Theorem 2: The membership problem forLTT is solvable
in polynomial time.

Proof. Let v be a vertex of T . If v is a leaf of T , the
C-set of v is correctly calculated at the first foreach loop
of Algorithm TT-Matching(T, t). For an internal vertex v
of T , let CS (v) be a set lastly attached to v by Procedure
CS-Attaching(v,Rule(t)). We assume that the C-sets of all
proper descendants of v are correctly calculated by Proce-
dure CS-Attaching. Then we have the following two claims.

Claim 1. I(u) ∈ CS (v) if and only if L(t[u]) contains T [v].
Claim 2. (I(u)) ∈ CS (v) if and only if there exists a proper
descendant v′ of v such that L(t[u]) contains T [v′].
Proof of Claim 1. We suppose that u is an o-vertex and I(u) ∈
CS (v). From the condition of the if statement at the line
5 of CS-Attaching, there is a rule I(u)

o← ξ(c1), . . . , ξ(cm)
(m ≥ 1) and there are exactly m ordered children of v which
satisfy the condition of the if statement. Here we denote
the m ordered children by d1, . . . , dm. Since CS (di) contains
I(ci) or (I(ci)), from the definition of the C-set, we can con-
struct a substitution θ such that t[u]θ ≡ T [v]. Then L(t[u])
contains T [v]. Conversely, if L(t[u]) contains T [v], there is

186
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

Fig. 5 Algorithm TT-Matching and Procedure CS-Attaching.

a substitution θ such that t[u]θ ≡ T [v]. Let ψ be an isomor-
phism from t[u]θ to T [v]. Let I(u)

o← ξ(c1), . . . , ξ(cm) be the
C-set-attaching rule of u. There are exactly m ordered chil-
dren of v, denoted by d1, . . . , dm, such that for i = 1, . . . ,m,
if ξ(ci) = I(ci) then ψ(ci) = di, and if ξ(ci) = (I(ci)) then
ψ(ci) is a descendant of di. From the definition of the C-
set, CS (di) contains I(ci) or (I(ci)) for each i = 1, . . . ,m.
Therefore, d1, . . . , dm are ordered children which satisfy the
condition of the line 5 of CS-Attaching. Then we have
I(u) ∈ CS (v). In the case that u is a u-vertex, we can prove
this claim similarly. (End of Proof of Claim 1)

Proof of Claim 2. From the lines 15-17 of CS-Attaching, if

Fig. 6 A term tree t[u] and a tree T [v] is a subtree of t and a subtree of T
in Fig. 4, respectively.

(I(u)) ∈ CS (v) then u is the child port of some variable and
there is a child of v whose C-set contains I(u) or (I(u)). From
the definition of the C-set, there exists a proper descendant
v′ of v such that L(t[u]) contains T [v′]. Conversely, we sup-
pose that there is a proper descendant v′ of v such that L(t[u])
contains T [v′]. If v′ is a child of v, the CS (v′) contains I(u).
Then (I(u)) ∈ CS (v). Otherwise, there is a child w of v such
that v′ is a proper descendant of w. From the definition of
the C-set, CS (w) has (I(u)). Then (I(u)) ∈ CS (v). (End of
Proof of Claim 2)

From these claims, Algorithm TT-Matching(T, t) cor-
rectly solves the membership problem for LTT .

Finally, we show that TT-Matching can solve the mem-
bership problem forLTT in polynomial time as follows. Let
N and n be the numbers of vertices of T and t, respectively.
We can show that the time complexity of TT-Matching is
O(
∑

v∈QT
Φ(v,Rule(t))), where QT is the set of internal ver-

tices in T and Φ(v,Rule(t)) is the time complexity of the
procedure CS-Attaching for v and Rule(t).

In [3], Hopcroft and Karp presented an O(
√
|V ||E|) time

algorithm for finding a maximum cardinality matching for a
given bipartite graph G = (V, E). By using the algorithm
Rule Matching given in [9] and Hopcroft and Karp’s algo-
rithm for the line 5 and lines 11-12 of CS-Attaching, respec-
tively, the time complexity Φ(v,Rule(t)) of CS-Attaching
is
∑

r∈Rule(t)(
√

Dv + dr × Dv × dr), where Dv is the num-
ber of children of v and dr is the number of elements
in the righthand side of the rule r. Since dr ≤ Dv,∑

r∈Rule(t) dr ≤ 2n − 2,
∑

v∈QT
Dv = N − 1 and for each

v ∈ QT , Dv ≤ Dmax hold, we have O(
∑

v∈QT

∑

r∈Rule(t)

(
√

Dv + dr×

Dv × dr) = O(
√

Dmax × N × n), where Dmax = maxv∈QT Dv.
Hence, this theorem holds. �

For example, let u and u′ be the vertices 3 and 6 of t in
Fig. 4, respectively. And let v and v′ be the vertices C and H
of T in Fig. 4, respectively. The term tree t[u] and the tree
T [v] are described in Fig. 6. Then, we see that L(t[u]) con-
tains T [v] and I(u) ∈ CS (v). Furthermore, (I(u′)) ∈ CS (v)
and there exists a proper descendant v′ of v such that L(t[u′])
contains T [v′].

4.3 A Polynomial Time Algorithm for Solving the Mem-
bership Problem for LTTSP

In this section, we present a polynomial time algorithm for
solving the membership problem for LTTSP by reducing
this problem to the membership problem for LTT . A tree

TAKAMI et al.: POLYNOMIAL TIME INDUCTIVE INFERENCE OF TTSP GRAPH LANGUAGES
187

whose vertices have labels is called a colored-tree.

Definition 6: A decomposition tree of a TTSP term graph
is recursively defined as follows.

(1) A colored-tree consisting of only one vertex having
a label a in Λ is a decomposition tree of a TTSP
term graph consisting of two vertices u, v and an edge
(u, a, v).

(2) A colored-tree consisting of only one vertex having a
label x in X is a decomposition tree of a TTSP term
graph consisting of two vertices u, v and a variable
[u, x, v].

(3) Let T1 = (V1, E1) and T2 = (V2, E2) be decomposition
trees of TTSP term graphs g1 and g2, respectively, and
r1 and r2 roots of T1 and T2, respectively. Let a be a
label in Λ. Then, the following two colored-trees are
decomposition trees.

(a) A colored-tree T = (VT , ET) having a u-vertex ru

as the root and having T1 and T2 as children of ru

is a decomposition tree of the TTSP term graph
g1//g2. Namely, VT = V1 ∪ V2 ∪ {ru}, and ET =

E1 ∪ E2 ∪ {(ru, a, r1), (ru, a, r2)}.
(b) A colored-tree T = (VT , ET) having an o-vertex ro

as the root and having T1 and T2 as children of ro

with r1 <
T
ro

r2 is a decomposition tree of the TTSP
term graph g1 ∗ g2. Namely, VT = V1 ∪ V2 ∪ {ro}
and ET = E1 ∪ E2 ∪ {(ro, a, r1), (ro, a, r2)}.

We remark that a decomposition tree is a tree whose internal
vertices are o-vertices or u-vertices, all of whose leaves have
labels in Λ ∪ X and all of whose edges have the label a.

Let T be a decomposition tree having at least two
vertices. We call an edge whose both endpoints are o-
vertices (resp., u-vertices) an o-edge (resp., a u-edge). Let
e = (u, a, v) be an o-edge or a u-edge of T . A contraction of
e is an operation of removing e from T , identifying u with v
and, if u and v are o-vertices, updating a total ordering <T ′

u
on the o-vertex u(= v) of the result tree T ′ as follows.

(1) For w and w′ are children of u if w <T
u w′ then w <T ′

u w′.
(2) For w and w′ are children of v if w <T

v w′ then w <T ′
u w′.

(3) For w and w′ are children of u and v, respectively, if
w <T

u v then w <T ′
u w′.

(4) For w and w′ are children of u and v, respectively, if
v <T

u w then w′ <T ′
u w.

Let g be a TTSP term graph and Tg a decomposition tree
of g. A contraction tree of Tg is the tree obtained from Tg

by recursively applying contractions of o-edges and u-edges
until there exists neither o-edges nor u-edges. For the TTSP
term graph g in Fig. 1, for example, T1 shown in Fig. 7 is a
decomposition tree of g and T2 shown in Fig. 7 is the con-
traction tree of T1.

Let g be a TTSP term graph and T = (VT , ET) the con-
traction tree of a decomposition tree of g and r the root of
T . A parse tree of g is the term tree tg = (Vt, Et,Ht) such
that Vt = VT ∪ {v0}, Et = {(v0, a, r)} ∪ {(u, a, v) | (u, a, v) ∈

Fig. 7 A decomposition tree T1 of the TTSP term graph g given in Fig. 1,
the contraction tree T2 of T1 and the parse tree T3 of g in Fig. 1.

ET , v is an internal vertex of T } ∪ {(u, b, v) | (u, a, v) ∈
ET , v is a leaf labeled with b ∈ Λ } and Ht = {[u, x, v] |
(u, a, v) ∈ ET , v is a leaf labeled with x ∈ X}. For example,
for a TTSP term graph g in Fig. 1, T3 presented in Fig. 7 is
the parse tree of g.

Lemma 2: Let g1 and g2 be TTSP term graphs. Let t1 and
t2 be the parse trees of g1 and g2, respectively. Then, g1 ≡ g2

if and only if t1 ≡ t2.

Proof. Let T1 and T2 be the contraction trees of g1 and g2,
respectively. It is sufficient to show that g1 ≡ g2 if and only
if T1 ≡ T2. Let g1 = (V1, E1,H1). We show both the “if” part
and “only if” part by inductions on |E1∪H1|. If |E1∪H1| = 1,
it is obvious that g1 ≡ g2 if and only if T1 ≡ T2. Then we
assume that |E1 ∪ H1| ≥ 2.
Only if part. We have in the two cases. (1) There exist k (k ≥
2) TTSP term graphs g1

1, . . . , g
k
1 such that g1 ≡ g1

1// · · · //g
k
1

and none of gi
1 (1 ≤ i ≤ k) can be obtained from two TTSP

term graphs by a parallel operation. Since g1 ≡ g2, there
exist k TTSP term graphs g1

2, . . . , g
k
2 such that gi

1 ≡ gi
2 for

any i (1 ≤ i ≤ k), g2 ≡ g1
2// · · · //g

k
2, and none of gi

2
(1 ≤ i ≤ k) can be obtained from two TTSP term graphs
by a parallel operation. For any i (1 ≤ i ≤ k), let T i

1 and
T i

2 be the contraction trees of gi
1 and gi

2, respectively. T1 is
obtained from T 1

1 , . . . ,T
k
1 and a new u-vertex by connecting

the roots of T 1
1 , . . . ,T

k
1 to the u-vertex. T2 is also obtained

from T 1
2 , . . . ,T

k
2 and a new u-vertex by the same way. There-

fore we have T1 ≡ T2. (2) There exist k (k ≥ 2) TTSP term
graphs g1

1, . . . , g
k
1 such that g1 ≡ g1

1 ∗ · · · ∗ gk
1 and none of gi

1
(1 ≤ i ≤ k) can be obtained from two TTSP term graphs by
a series operation. This case is shown in a similar way to the
case (1).
If part. Let r1 and r2 be the roots of T1 and T2, respectively.
Let T 1

1 , . . . ,T
k
1 be the contraction trees whose roots are the

children of r1. Since T1 ≡ T2, r2 has exactly k children,
there are k contraction trees T 1

2 , . . . ,T
k
2 whose roots are the

children of r2, and T i
1 ≡ T i

2 (1 ≤ i ≤ k). We have the
following two cases. (a) r1 is a u-vertex and (b) r1 is an o-
vertex. Here we show only the case (a). The case (b) can
be shown in a similar way. Let g1

1, . . . , g
k
1 be the TTSP term

graphs whose contraction trees are T 1
1 , . . . ,T

k
1 , respectively.

Let g1
2, . . . , g

k
2 be the TTSP term graphs whose contraction

trees are T 1
2 , . . . ,T

k
2 , respectively. By the induction hypoth-

esis, gi
1 ≡ gi

2 (1 ≤ i ≤ k). Since both r1 and r2 are u-vertices,
g1 ≡ g1

1// · · · //g
k
1 and g2 ≡ g1

2// · · · //g
k
2. Therefore we

have g1 ≡ g2. �

188
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

Lemma 3: Let g be a TTSP term graph and G a TTSP
graph. Let tg and TG be the parse trees of g and G, respec-
tively. Then, G ∈ L(g) if and only if TG ∈ L(tg).

Proof. From the definition of parse trees, we have the fol-
lowing two claims.
Claim 1. Let x := [p, [up, vp]] be a binding for the variable
label x of g and tp the parse tree of p, where p is a TTSP
term graph, and up and vp are the source and the sink of p,
respectively. Let t be the parse tree of g{x := [p, [up, vp]]}.
Then we have t ≡ tg{x := [tp, [rp, �p]}, where rp and �p are
the root and a leaf of tp, respectively.
Claim 2. Let x := [t′, [r′, �′]] be a binding for the variable
label x of tg, where t′ is a term tree, and r′ and �′ are the
root and a leaf of t′, respectively. If tg{x := [t′, [r′, �′]]} is
the parse tree of a TTSP term graph, t′ is also the parse tree
of a TTSP term graph.

We assume G ∈ L(g). Then there is a substitution
θ = {x1 := [p1, [up1 , vp1]], · · · , xn := [pn, [upn , vpn]]} such
that G ≡ gθ, where x1, . . . , xn are mutually distinct variable
labels, and for any i (1 ≤ i ≤ n), pi is a TTSP term graph,
and upi and vpi are the source and the sink of pi, respec-
tively. For any i (1 ≤ i ≤ n), let tpi be the parse tree of pi,
and rpi and �pi the root and a leaf of tpi , respectively. Let
τ = {x1 := [tp1 , [rp1 , �p1]], · · · , xn := [tpn , [rpn , �pn]]}. From
Claim 1, the parse tree of gθ is isomorphic to tgτ. Then,
from Lemma 2, TG ≡ tgτ. Therefore TG ∈ L(tg) holds.

Conversely, we assume TG ∈ L(tg). Then there is a
substitution τ = {x1 := [t1, [rt1 , �t1]], · · · , xn := [tn, [rtn , �tn]]}
such that TG ≡ tgτ, where x1, . . . , xn are mutually distinct
variable labels, and for any i (1 ≤ i ≤ n), ti is a term
tree, and rti and �ti are the root and a leaf of ti, respec-
tively. From Claim 2, there are TTSP graphs p1, . . . , pn

such that each ti is the parse tree of pi (1 ≤ i ≤ n). Let
θ = {x1 := [p1, [up1 , vp1]], · · · , xn := [pn, [upn , vpn]]}, where
for any i (1 ≤ i ≤ n), upi and vpi are the source and the sink
of pi, respectively. From Claim 1, tgτ is isomorphic to the
parse tree of gθ. Then, from Lemma 2, G ≡ gθ. Therefore
G ∈ L(g) holds. �

In Fig. 8, we give a polynomial time algorithm
TTSPTG-Matching which solves the membership problem
for LTTSP.

Theorem 3: The membership problem for LTTSP is solv-
able in polynomial time.

Proof. It is easy to see that TTSPTG-Matching certainly
terminates. From Lemma 3, given a TTSP graph G =

(VG, EG) and a TTSP term graph g = (Vg, Eg,Hg), TTSPTG-
Matching correctly decides whether or not L(g) contains
G. By using a linear time algorithm presented by Valdes
et al. [12], we can construct the parse trees of G and g
in time proportional to |VG | + |EG |. Moreover, by using
TT-Matching given in Fig. 5, Line 3 can be executed in
O(|EG |1.5×|Eg∪Hg|). Hence, for a given TTSP graph G and a
given TTSP term graph g, the algorithm TTSPTG-Matching
decides whether or not L(g) contains G in O(|EG |1.5 × |Eg ∪
Hg|) time. �

Fig. 8 Algorithm TTSPTG-Matching.

5. An Algorithm for Finding a Minimally Generalized
TTSP Term Graph

Let Λ be a set of edge labels. In this section, we as-
sume that |Λ| = ∞. Let g and f be TTSP term graphs.
We denote g � f if there exists a substitution θ such that
g ≡ f θ. For any TTSP term graph g, we denote by s(g)
the TTSP term graph obtained from g by replacing each of
all edges of g with a variable, i.e., for g = (Vg, Eg,Hg),
s(g) = (Vg, ∅,H′g), where H′g = Hg ∪ {[u, xe, v] | e =
(u, a, v) ∈ Eg and xe is a new variable label only for e}. For
any two TTSP term graphs g and f , we write g ≈ f if
s(g) ≡ s(f). It is easy to see the following lemma since
|Λ| = ∞.

Lemma 4: Let g and f be two TTSP term graphs in
TGTTSP. If g ≈ f and L(g) ⊆ L(f) then g � f .

The algorithm MINL-TTSP (Fig. 9) solves the MINL
problem for LTTSP. The procedure Variable-Extension
(Fig. 9) extends a TTSP term graph g by adding variables
as much as possible while S ⊆ L(g) holds. Edge-Replacing
(Fig. 9) tries to replace each variable in g with a labeled edge
if possible. We use the following three substitutions in the
algorithm. These substitutions are called refinement opera-
tors.

Par(h) :Replace h = [u, x, v] ∈ Hg with h′ = [u, x′, v]
and h′′ = [u, x′′, v], where x′ and x′′ are new
variable labels in X.

S er(h) :Replace h = [u, x, v] ∈ Hg with h′ = [u, x′,w]
and h′′ = [w, x′′, v], where w is a new vertex
and x′ and x′′ are new variable labels in X.

Lab(h)λ :Replace h = [u, x, v] ∈ Hg with (u, λ, v),
where λ ∈ Λ.

Lemma 5: Let g ∈ TGTTSP be the TTSP term graph just
after the procedure Variable-Extension for an input S fin-
ishes. Let g′ be another TTSP term graph. If S ⊆ L(g′) ⊆
L(g) then g′ ≈ g.

TAKAMI et al.: POLYNOMIAL TIME INDUCTIVE INFERENCE OF TTSP GRAPH LANGUAGES
189

Fig. 9 Algorithm MINL-TTSP.

Proof. Let T (g′) and T (g) be contraction trees of decom-
position trees of g′ and g, respectively. In the procedure
Variable-Extension (Fig. 9), for each variable of g, refine-
ment operators Par and S er are executed as much as pos-
sible. From this algorithm, we can show that T (g) must be
equivalent to T (g′) if the labels of leaves are not considered.
The statement follows from this fact. �

Lemma 6: Let g ∈ TGTTSP be the output of the algorithm
MINL-TTSP for an input S . Let g′ be a TTSP term graph
satisfying that S ⊆ L(g′) ⊆ L(g). Then g′ ≡ g.

Proof. From Lemmas 4 and 5, we have g′ � g. The proce-
dure Edge-Replacing (Fig. 9) replaces all possible variables
with labeled edges. Therefore from S ⊆ L(g′), g′ ≡ g holds.

�

Theorem 4: The algorithm MINL-TTSP finds a mini-
mally generalized TTSP term graph in TGTTSP for a given
set of TTSP graphs in TTSP in polynomial time.

Proof. The correctness follows from Lemma 6. Let S =
{G1, . . . ,Gm} be an input set of TTSP graphs, where Gi =

(Vi, Ei) (1 ≤ i ≤ m). Let Nmin = min1≤i≤m |Ei| and Nmax =

max1≤i≤m |Ei|. Let g = (Vg, Eg,Hg) be the TTSP term graph
generated by the algorithm MINL-TTSP for S . It is easy
to see that |Eg ∪ Hg| ≤ Nmin. Therefore O(Nmin) refinement
operators are totally executed in Variable-Extension. From
Theorem 3, one inclusion test needs

∑
1≤i≤m O(|Ei|1.5 × |Eg ∪

Hg|) = O(mN1.5
maxNmin) time. Since one inclusion test is exe-

cuted every refinement operation, the procedure Variable-
Extension needs O(mN1.5

maxN2
min) time. Let ΛS be the set

of edge labels which appear in S . Since Edge-Replacing
tries to replace variables with labeled edges at most |ΛS |Nmin

times, the procedure needs totally |ΛS |Nmin×O(mN1.5
maxNmin)

time. Hence the total time for all executions in the algorithm
MINL-TTSP is O(|ΛS |mN1.5

maxN2
min), which is polynomial

w.r.t. S . �

6. Conclusion

We have shown the polynomial time learnabilities of TTSP
graph languages from positive data by giving a reduction to
that of a special kind of term tree languages. Firstly, we
have introduced a TTSP term graph as a graph pattern con-
sisting of a TTSP graph structure and structured variables.
Moreover, for a TTSP term graph g, we have defined a TTSP
graph language L(g) as the set of all TTSP term graphs ob-
tained from g by substituting arbitrary TTSP graphs for all
variables in g. Secondly, we have given a set TT of term
trees such that there exists a bijection from the set TGTTSP
of all TTSP term graphs to TT , and have presented a poly-
nomial time matching algorithm for solving the membership
problem for LTTSP = {L(g) | g ∈ TGTTSP} by giving a
polynomial time matching algorithm for solving the mem-
bership problem for LTT = {L(t) | t ∈ TT }. Finally, we
have presented a polynomial time algorithm for solving the
minimal language problem for LTTSP. By using the above
polynomial time algorithms for LTTSP, we have shown the
polynomial time learnability of LTTSP from positive data.

Our results given in this paper lead us to study the
learnability of languages over other classes of graphs such
as series parallel graphs, outerplanar graphs, graphs of
bounded treewidth (see [13]). As future works, we consider
the learnability of languages on other classes of graph pat-
terns. We also consider the learnability of the class of finite
unions of TTSP graph languages from positive data. Fur-
thermore, we consider the problem of deciding whether or
not there is a minimally generalized TTSP term graph such
that the number of variables is at most K for some integer
K. Since the problem of finding a minimally generalized
term tree such that the number of variables is at most K
is NP-complete [8], we conjecture that the problem is NP-
complete. Moreover, we consider applying our results in
this paper to other fields such as data mining from graph
structured data.

References

[1] D. Angluin, “Finding patterns common to a set of strings,” J. Com-
put. Syst. Sci., vol.21, pp.46–62, 1980.

[2] D. Angluin, “Inductive inference of formal languages from positive
data,” Information and Control, vol.45, pp.117–135, 1980.

[3] J. Hopcroft and R. Karp, “An n5/2 algorithm for maximum matching
in bipartite graphs,” SIAM J. Comput., vol.2, pp.225–231, 1973.

[4] S. Matsumoto, T. Shoudai, T. Uchida, T. Miyahara, and Y. Suzuki,
“Learning of finite unions of tree patterns with internal structured
variables from queries,” IEICE Trans. Inf. & Syst., vol.E91-D, no.2,
pp.222–230, Feb. 2008.

[5] T. Miyahara, T. Shoudai, T. Uchida, T. Kuboyama, K. Takahashi,
and H. Ueda, “Discovering new knowledge from graph data using
inductive logic programming,” Proc. ILP-99, Springer-Verlag, LNAI
1634, pp.222–233, 1999.

190
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.2 FEBRUARY 2009

[6] R. Okada, S. Matsumoto, T. Uchida, Y. Suzuki, and T. Shoudai, “Ex-
act learning of finite unions of graph patterns from queries,” Proc.
ALT-2007, Springer-Verlag, LNAI 4754, pp.298–312, 2007.

[7] T. Shinohara, “Polynomial time inference of extended regular pat-
tern languages,” Springer-Verlag, LNCS 147, pp.115–127, 1982.

[8] T. Shoudai, T. Uchida, and T. Miyahara, “Polynomial time algo-
rithms for finding unordered tree patterns with internal variables,”
Proc. FCT-2001, Springer-Verlag, LNCS 2138, pp.335–346, 2001.

[9] Y. Suzuki, R. Akanuma, T. Shoudai, T. Miyahara, and T. Uchida,
“Polynomial time inductive inference of ordered tree patterns with
internal structured variables from positive data,” Proc. COLT-2002,
Springer-Verlag, LNAI 2375, pp.169–184, 2002.

[10] K. Takamizawa, T. Nishizeki, and N. Saito, “Linear-time com-
putability of combinatorial problems on series-parallel graphs,”
Journal of the Association for Computing Machinery, vol.29, no.3,
pp.623–641, 1982.

[11] T. Uchida, T. Shoudai, and S. Miyano, “Parallel algorithms for refu-
tation tree problem on formal graph systems,” IEICE Trans. Inf. &
Syst., vol.E78-D, no.2, pp.99–112, Feb. 1995.

[12] J. Valdes, R.E. Tarjan, and E.L. Lawler, “The recognition of series
parallel digraphs,” SIAM J. Comput., vol.11, pp.298–313, 1982.

[13] Jan van Leeuwen, ed., Handbook of theoretical computer science
(vol.A): Algorithms and complexity, Elsevier and MIT Press, 1990.

Ryoji Takami received the B.S. degree in
2003, the M.S. degree in 2005 in Computer and
Media Technologies from Hiroshima City Uni-
versity. Currentlly, he works at CSI Co. Ltd. His
research interests include algorithmic learning
theory and data mining.

Yusuke Suzuki received the B.S. degree
in Physics, the M.S. and Dr. Sci. degrees in In-
formatics all from Kyushu University, in 2000,
2002 and 2007, respectively. He is currently
a research associate of Graduate School of In-
formation Sciences, Hiroshima City University,
Hiroshima, Japan. His research interests include
machine learning and data mining.

Tomoyuki Uchida received the B.S. degree
in Mathematics, the M.S. and Dr. Sci. degrees
in Information Systems all from Kyushu Uni-
versity, in 1989, 1991 and 1994, respectively.
Currently, he is an associate professor of Grad-
uate School of Information Sciences, Hiroshima
City University. His research interests include
data mining from semistructured data, algorith-
mic graph theory and algorithmic learning the-
ory. He is a member of ACM.

Takayoshi Shoudai received the B.S. in
1986, the M.S. degrees in 1988 in Mathemat-
ics and the Dr. Sci. in 1993 in Information Sci-
ence all from Kyushu University. Currently, he
is an associate professor of Department of In-
formatics, Kyushu University. His research in-
terests include algorithmic graph theory, algo-
rithmic learning theory, and data mining from
graph-structured data. He is a member of IPSJ
and ACM.

