IEICE TRANS. INFE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

1877

| PAPER Special Section on New Technologies and their Applications of the Internet

Expediting Experiments across Testbeds with AnyBed:
A Testbed-Independent Topology Configuration System and Its

Tool Set

Mio SUZUKI', Hiroaki HAZEYAMA Y, Daisuke MIYAMOTO"®, Members, Shinsuke MIWA 'Y, Nonmember,

SUMMARY Building an experimental network within a testbed has
been a tiresome process for experimenters, due to the complexity of the
physical resource assignment and the configuration overhead. Also, the
process could not be expedited across testbeds, because the syntax of a
configuration file varies depending on specific hardware and software. Re-
configuration of an experimental topology for each testbed wastes time,
an experimenter could not carry out his/her experiments during the limited
lease time of a testbed at worst. In this paper, we propose the AnyBed: the
experimental network-building system. The conceptual idea of AnyBed
is “If experimental network topologies can be portable across any kinds
of testbed, then, it would expedite building an experimental network on a
testbed while manipulating experiments by each testbed support tool”. To
achieve this concept, AnyBed divide an experimental network configura-
tion into the logical and physical network topologies. Mapping these two
topologies, AnyBed can build intended logical network topology on any PC
clusters. We have evaluated the AnyBed implementation using two distinct
clusters. The evaluation result shows a BGP topology with 150 nodes can
be constructed on a large scale testbed in less than 113 seconds.

key words: network simulation, network emulation testbed, internet emu-
lation, assistant tool

1. Introduction

Today, many researchers use PC-based Network Emulation
Testbed (NET) to perform their experiments instead of using
the real Internet. As the purpose of experiments diversifies,
users’ requirements for NET are growing accordingly. Espe-
cially, the one of the most important requirements on NET
is performing their experiments in a short time. The main
purpose of these researchers is not performing their experi-
ments itself but evaluating their implementation or verifying
their models.

Various software technologies also help to con-
struct NET. On large scale NETs such as Emulab[1] or
StarBED [2], users can use hundreds of real nodes on a
reservation basis. These large scale NETs have their own as-

Manuscript received February 2, 2009.
Manuscript revised May 25, 2009.
"The authors are with National Institute of Information and
Communications Technology, Koganei-shi, 184-8795 Japan.
""The authors are with Nara Institute of Science and Technol-
ogy, Ikoma-shi, 630-0192 Japan.
a) E-mail: mio@nict.go.jp
b) E-mail: hiroa-ha@is.naist.jp
¢) E-mail: daisu-mi@is.naist.jp
d) E-mail: danna@nict.go.jp
e) E-mail: youki-k @is.naist.jp
DOI: 10.1587/transinf. E92.D.1877

and Youki KADOBAYASHI'"®, Member

sistant tools [3], [4] for setting hundreds nodes in short time.
NET assistant tools are available to create a small NET on a
blade server. Growing varieties of NETs, a user can perform
an experiment both on a small NET in his laboratory and on
a large scale NET.

Unfortunately, most of NET assistant tools don’t sup-
port designing and building a large network topology with
several routing daemons. Experiments on the middle layer
of IP networks such as overlay routing or DDoS counter-
measures often need large scale inter-domain topologies
based on routing daemons. A researcher will spend much
time before starting their experiments when the researcher
has to create his own scripts to generate configurations about
a BGP network. Also, network configurations are hard to be
reused, because configurations of a network topology eas-
ily include resource information depending on specific soft-
ware, hardware and/or cable wiring on a NET.

To expedite an experiment on NET, the time spent on
network configuration should be shorten. If a network de-
sign and its configuration are independent from the resource
information on any NETs, then, an experiment will be expe-
dited by the reusability of the network configuration on any
NETs.

We propose AnyBed, a portable assistant tool for de-
signing and constructing experimental network topologies.
AnyBed achieves the portability of network topologies by
dividing information for an experiment into two parts: logi-
cal network information and physical network information.
Physical network information, which is stored in a physical
network file, has NET specific information such as hardware
specification of nodes and wiring among network switches.
On the other hand, logical network information, which is
recorded in a logical network file, contains experiment-
specific layer 3 network topology. These two information
files are properly combined by AnyBed to build an exper-
imental network. AnyBed toolset itself is also testbed in-
dependent, that is, a user can construct the same network
topology regardless of the difference in hardware among
NETs. Combining AnyBed with other supportive technolo-
gies, we believe that the user can facilitate constructing their
own purpose-built NET.

We explain the details of AnyBed in following sec-
tions. In Sect. 2, we explain NET and problems in perform-
ing experiments on NETs. In Sect.3, we mention assistant

Copyright © 2009 The Institute of Electronics, Information and Communication Engineers

1878

tools on major large scale NETs, and other network emula-
tion environments. Section 4 and Sect. 5 show the design of
AnyBed architecture and the details of implementation. We
present the evaluation and the verification of the implemen-
tation in Sect. 6 and Sect. 7. Also, we discuss the limitation
of AnyBed in Sect.8. Finally, we conclude this paper in
Sect. 9.

2. Building Networks on NET

In this section, we describe design backgrounds of AnyBed.
We first analyze general steps to perform experiment on a
NET without assistant tools. Next, we focus on building an
experimental network among all procedures.

2.1 Steps to Perform Experiments on NETs

In this section, we analyze general steps to perform ex-
periments in NETs. These steps are derived from experi-
ences when our laboratory fellows performed experiments
in NETs. The steps are described below.

First, the user designs the logical network topology for
his or her experiments. The user also gives roles for each
node; some nodes are used to run programs, some nodes are
used to collect the experimental results.

Second, the user assigns physical resources to the de-
signed network topology. For example, an experimental
node is assigned to a physical or virtual node, or an exper-
imental interface is mapped to a physical or virtual inter-
face. The user assigns IP addresses to network interfaces of
experimental nodes. The user assigns VLANs and network
addresses to each subnet on the logical network topology. In
these sequences, the user must assign appropriate resources
along with the physical network topology of an NET, that
is, the wiring, the number of physical network interfaces,
the bandwidth of physical network interfaces and the per-
formance of CPU.

Third, the user builds the network by setting up physi-
cal nodes and layer 2 switches. The user configures network
interfaces, routing and name resolution for each node. The
user configures VLANS on layer 2 switches. In addition, the
user injects programs used for the experiment to each node
and setup these programs.

Fourth, the user conducts the experiment. The user
runs programs on each node in the specified sequence. Fi-
nally, the user collects results of the experiment and then
restores nodes and switches. The results contain the out-
put of programs and the state of each node. The results are
saved into the hard disks of each node or transferred to re-
mote node.

There are various NETs in the world such as desk-side
PCs, a PC cluster in your laboratory, and large scale central-
ized NETs. In various testbeds, the user selects a suitable
testbed for the scale of his experiments. For example, dur-
ing prototype implementation, it is enough to test it by his
desk-side PCs. However, if he needs more complex emu-
lated network like emulated AS-level topology, he cannot

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

-
s [= §
Q
£ 3
% Node C S g
= Node D 3
4
(a) physical network topology
g
==
» = o
assign & —{ Node B}— -
SN S —— <
== fm === Node C =
3 4- ot
=}
Z

(b) logical network topology (c) assigned network toplogy

— connect to untagged port
== connect to tagged port

Fig.1 Topology assignment.

perform experiments by his desk-side PCs. He may move to
a larger scale testbed.

2.2 Steps to Build Experimental Networks

In the steps described above, the part of building experi-
mental network empirically spends long time on the over-
all experiment. Besides, as the number of nodes increases,
the configuration workload increases as well. For example,
when our fellows performed the experiment about IP Trace-
back [5] on StarBED, we consumed 4 days to build a logical
network topology on 64 nodes and 2 switches of StarBED,
where we have emulated the BGP topology of top 50 Au-
tonomous Systems (AS) by considering a BGP node to an
AS.

In order to expedite experiments, we focus on reducing
the overhead on the part of building experimental networks
on an NET. We divided the part of building experimental
networks on an NET into five steps as follows:

1. Design
A user designs a logical network topology for an exper-
iment (Fig. 1-(b)). The user considers about not only
a layer 3 network topology but also layer 2 network
topology.

2. Assignment
The user assigns resources of an NET to each experi-
mental node according to the designed logical network
topology. The resources to be assigned are PCs, Ether-
net Links, VLANS, IP addresses (Fig. 1-(a)).

3. Configuration
The user writes all configuration files for each applica-
tion on each node to emulate the designed logical net-
work topology.

4. Injection
The user injects those configurations to all nodes in real
hardware or software (Fig. 1-(c)).

SUZUKI et al.: ANYBED: A TESTBED-INDEPENDENT TOPOLOGY CONFIGURATION SYSTEM AND ITS TOOL SET

5. Check
The user checks whether the designed logical network
topology is correctly built on the NET.

From our experiences, time-consuming processes
among all steps in network experiments are assignment and
configuration. The larger the scale of NET is, the longer
time in assignment is spent. The more complex the designed
network topology is, the more items and parameters should
be configured, and the more items or parameters are, the
more time tends to be spent.

3. Related Works and Background

StarBED [2] and Emulab [1] are typical large scale NETs.
StarBED is a centralized large scale NET, which is located
in NICT Hokuriku Research Center [6]. StarBED is com-
posed of 680 PC nodes and several ATM/LAN switches for
network emulation. Also, Emulab is another large scale
NET and the name of its toolset. Emulab is located in Uni-
versity of Utah, which has 374 PCs, 40 wide-area nodes,
58 Wi-Fi nodes, and the front end to PlanetLab. Recently,
NETs based on Emulab toolset are settled in several coun-
tries. DETER [7] is the most well-known large scale NET
based on Emulab toolset. It focuses on experiments for
research and development on cyber security technologies.
Both StarBED and Emulab have produced assistant tools,
which are customized for each environment [1], [2]. These
tools help users to set up the basic configuration of each
node, to describe experimental scenarios in an NS-like man-
ner [8].

Most assistant tools of the NETs mainly focus on re-
source assignment and basic configuration support such
as address assignments of each interface and setting static
routes on each node. If a user wants to construct a large
network topology with several routing daemons, for exam-
ple, an inter-AS topology with a BGP daemon for MOAS
experiments [9], he will manually set up the configuration
of each BGP daemon. Moreover, these assistant tools are
not designed as portable ones. Configuration files of these
assistant tools and tools itself are currently customized for
specific NETs. Due to this design, a user cannot freely move
among various scale NETs that are suitable for his experi-
ment.

Here are the problems that we found: (1) There are no
assistance tools that can construct a large network topology
with several routing daemons, and (2) configuration files
of existing assistant tools and assistant tools itself are not
portable among NETs. To solve these problems, we design
AnyBed and its toolset.

4. Design of AnyBed

In this section, we describe the design of AnyBed. First, we
describe the requirements of AnyBed. Next, we describe the
details of the design.

1879

1 1 1
1 1 1
w\i‘trwsopricigliifngzgsl real network topology designed topology
physical network file locaical network file
(NET-specific) (experiment-specific)

% experimental network @
topology
assignmemlayer[: N

NET-specific
actual configuration files

design layer

NET-specific
actual configuration files

AnyBed toolset }
Experimental network

Fig.2 AnyBed design.

| E—

{ NET-specific toolset injection layer

Experimental network

[

4.1 Requirements

The design goals of AnyBed are as follows:

e Reusability
The reusability of logical network topologies beyond
differences of physical features among NETs eases a
user to quickly start experiments with the same logical
network topology even if the user tries to perform the
experiment in different NETS.

e Portability
To achieve the reusability of logical network topolo-
gies, AnyBed must have its own system portability
among NETs.

o Scalability
To perform experiments on various scale NETs,
AnyBed must work well on a large scale NET as well
as small one. Also AnyBed must map a large logical
network topology to the large scale NET in short time.

In order to achieve these goals, we divide information for an
experiment into two parts, and we adopt layered architecture
that is described in the following section.

4.2 Layered Architecture

According to the requirements mentioned in Sect.4.1, we
design the layered architecture for AnyBed shown as Fig. 2.
AnyBed consists of three layers: the design layer, the as-
signment layer, and the injection layer.

In the design layer, a user designs a logical network
topology and creates a logical network file according to the
designed logical network topology. Similarly, each NET
prepares a physical network file along with its physical net-
work topology, that is, its facilities and the wiring among fa-

1880

cilities. The assignment layer assigns resources such as PCs,
Ethernet links, VLANSs, and IP addresses. After then, as-
signment layer generates actual configuration files for each
node and each switch. The injection layer injects actual con-
figuration files to each node, and switch. As this layer de-
pends on OSes and hardware specifications on each NET,
we design the layer to cooperate with existing NET-specific
toolsets.

Because of the layered architecture, each layer is easily
pluggable. It is easy to replace a component on each layer
to another and to provide various components on each layer
for some specific purposes.

4.3 Logical and Physical Network Topology

In AnyBed, a network topology for an experiment is divided
into two topologies described in XML format: logical net-
work topology and physical network topology. A logical
network topology contains the information about layer 2 and
layer 3 topology of an experimental network. Since ele-
ments and attributes of a logical network topology present
only the connections among logical nodes, it does not de-
pend on a specific NET environment. On the other hand,
a physical network topology shows the information about
physical nodes, network bandwidth and the wiring among
physical nodes. Hence, the physical network topology of
each NET depends on the facilities of each NET.

By using XML for the syntax of each network topol-
ogy file, network topologies are not only human readable
but also easily parsed by computers. Also, the consistency
between a logical network topology and a physical network
topology can be verified in the XML parser. As for a phys-
ical resource description format in XML, GENI project is
currently standardizing GENI RSpec[10], which is based
on the resource description of Emulab. However, the target
of RSpec is only resource description, not topology descrip-
tion.

5. Implementation

In this section, we describe the implementation of assign-
ment layer, which is the main component of AnyBed. We
implemented that in Ruby 1.8.6. Supported layer2 switches
are DELL PowerConnect switches and ExtremeNetworks
Summit switches. Supported routing protocols are OSPF
and BGP. In this section, we focus on the functions related
to OSPF. The components are shown in Fig. 3.

Dispatcher on the assignment layer reads both a phys-
ical network file and a logical network file, assigns the el-
ements of the physical network topology to the elements
of the logical network topology, and makes an experimen-
tal network topology with physical and logical information.
Then, config generator converts the experimental network
topology to actual configuration files along with the syntax
of each software or each switch. In injection layer, config
injector injects those actual configuration files to each PC
node and switch.

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

locaical network file
(experiment-specific)

physical network file
(NET-specific)

dispatcher

Ll

experimental network
topology

config generator

assignment layer

oot

@I@

NET-specific
actual configuration files

injection layer AnyBed config injector

Experimental network

I

Fig.3 AnyBed programs.

<nodes>
<node name="mc12" os="FreeBSD">
<interface name="bge0" bandwidth="1000"
dotlg="yes" purpose="management"
managementip="172.16.1.12">
</interface>
<interface name="bgel" bandwidth="1000"
dotlg="yes" purpose="experiment'">
<link tonode="mcl-sw2" toint="ethernet 1/2"/>
</interface>
<interface name="bge2" bandwidth="1000"
dotlg="yes" purpose="experiment">
<link tonode="mcl-sw2" toint="ethernet 1/7"/>
</interface>
</node>
</nodes>

Fig.4 Example physical network topology.

5.1 Configuration Files for Network Topologies

In this section, we explain the design of each network file: a
physical network file and a logical network file. A physical
network file describes cable wiring and capability of each
node and each switch.

The example of a physical network topology file is
shown in Fig.4. In the first level, a <nodes> presents for
node sets. A <nodes> has some <node> that present phys-
ical nodes. A <node> has some <interface> that present
network interfaces on each physical node. A <interface>
has some <link> that present physical links on each in-
terface. In this example, the node named “mc12” has the
management interface “bge(0” and has the experimental in-
terfaces named “bgel”, “bge2”. Each experimental inter-

SUZUKI et al.: ANYBED: A TESTBED-INDEPENDENT TOPOLOGY CONFIGURATION SYSTEM AND ITS TOOL SET

~

<nodes>
<node name="NodeA">
<interface name="NodeA-Int1">
<network name="Net1"/>
</interface>
<interface name="NodeA-Int2">
<network name="Net2"/>
</interface>
<function>
<ospf>
</ospf>
</function>
</node>
</nodes>

J

Fig.5 Example logical network topology using OSPF.

<nodes>
<node name="AS65001">
<interfaces>
<interface name="Int-AS65001">
<network name="Net-AS65001"/>
</interface>
<interface name="Int-AS65001-AS65002">
<network name="Net-AS65001-AS65002"/>
</interface>
</interfaces>
<function>
<ospf>
</ospf>
<bgp name="AS65001" asname="AS65001" asnum="65001">
<advnetworks>
<advnetwork name="Net-AS65001"/>
</advnetworks>
<neighbors>
<neighbor asname="AS65002" type="EBGP"
relationship="peer"
localint="Int-AS65001-AS65002"
remoteint="Int-AS65001-AS65002"/>
</neighbors>
</bgp>
</function>
</node>
</nodes>

J

Fig.6 Example logical network topology using BGP.

face connects to the port named “ethernet 1/2”” and “ethernet
1/7” in the switch named “mc1-sw2”. A logical network file
describes a logical network topology that the user desires to
build.

The example of a logical network file is shown in Fig. 5
and Fig. 6. The first example shows a part of a simple OSPF
topology. The second one shows a part of a small BGP
topology. AnyBed can generate both OSPF and BGP topol-
ogy. Here we explain the syntax of the first example. In the
first level, a <nodes> presents for node sets. A <nodes>
has some <node> that presents an experimental node. A
<node> has some <interface> that present network in-
terfaces on each experimental node. A <interface> has
some <network> that present network on each interface.
A <function> presents that the node has routing func-
tions line OSPF or BGP. The first example describes that the
“NodeA” has interfaces named “NodeA-Int1” and “NodeA-
Int2”. Each interface belongs to “Netl” and “Net2”.

The physical network file is basically prepared by the
administrator of the NET. If the administrator does not pre-
pare the file, a user prepares it. We consider inventory

1881

Algorithm 1 An algorithm of assigning nodes and interfaces

1: procedure Assignment Main Routine

2: sort(LogicalNodes) order by Number_of_Interfaces

3: sort(PhysicalNodes) order by Number_of_Interfaces

4: sort(LogicalNodes.Interfaces) order by Bandwidth

5: sort(PhysicalNodes.Interfaces) order by Bandwidth

6: for all LogicalNodes do

7: 1« LogicalNode.Interfaces

8: p « PhysicalNode.Interfaces

9: forall 1 do
10: p-ResidualBandwidth « p.TotalBandwidth
11: MaximumInterface < maximum(p) order by Bandwidth
12: MaximumInterface. VLANID

= assignNew VlanID(MaximumInterface)

13: AverageBandwidth « p.TotalBandwidth / 1. TotalBandwidth
14: p-ResidualBandwidth « p.ResidualBandwidth - AverageBandwidth
15: remove MaximumlInterface from 1
16: end for
17: end for

about nodes are mostly available in NETs. The physical
network file can be converted from the inventory by a tool
or manually. For example, StarBED distribute their inven-
tory file called “starbed-resources” to users in their internal
website. A user using AnyBed converts starbed-resources
to AnyBed physical network file via script named “starbed-
resources2anybedphysical.rb”.

5.2 Assignment Layer

In the assignment layer, dispatcher reads a physical network
file and a logical network file. Then, dispatcher assigns
physical elements to logical ones properly. The physical el-
ements are physical nodes, network interfaces in the nodes,
IP addresses, VLANs and bandwidth. In the current imple-
mentation, the criterion for properness are only fairness of
bandwidth of each physical link. In a logical network file,
there is a tree structure: “node” - “interface” - “network”.
Similarly, in physical network file, there is a tree structure:
“node” - “interface” - “link”.

Dispatcher reads these structures, and then make as-
signment based on the algorithm shown in Algorithm 1. The
reason that we adopt the simple iterative algorithm is that
low computational effort is more important than bandwidth
optimality. If we seek bandwidth-optimum, we must solve
knapsack problem. On the large scale NET, solving knap-
sack problem costs high computational effort, and makes the
user wait for a long time. To improve efficiency of this as-
signment, we must study more about a heterogeneous hard-
ware case of “network testbed mapping problem” [11]. It is
not the target of this paper however.

After dispatcher finished assigning of nodes and in-
terfaces, dispatcher assigns VLAN IDs and IP addresses
to each interface, and an experimental network topology is
generated as the result of resource assignment by dispatcher.
Then, config generator translates from the topology to actual
configuration files.

On the current implementation, dispatcher and config
generator are integrated; therefore, dispatcher directly gen-
erates actual configuration files. The variations of actual
configuration files are as follows: rc.conf, hosts, zebra.conf,

1882

ospfd.conf and switch configuration files of each vendor’s
syntax. Supported switch-vendors are Extreme Networks
and DELL. The architecture of config generator supports
plugins to generate configuration syntax for each switch-
vendor. If a NET has unsupported switches, a user can
make a plugin for the switches. Another choice for the user
is building a network “IP alias mode” of config generator.
In this mode, network topology can be constructed by as-
signing alias IP address instead of using VLAN. This mode
is also useful when a small NET has low-cost L2 switches
without supporting VLAN. Supported OSes of config gen-
erator are only Linux and FreeBSD. About recent experi-
ments in StarBED and DETER, most users performs their
experiments in Linux or FreeBSD. Therefore, we support
these OSes at first. Supporting many OSes, such as Mi-
crosoft Windows, is important, but beyond of this paper.

5.3 Cooperative Tools for AnyBed

In this section, we describe cooperative tools for AnyBed.
First, we describe about AnyBed portable toolset that makes
AnyBed portable among NETs. Then, we introduce imple-
mentations of injection layer tools and implementations of
design layer tools.

5.3.1 AnyBed Portable Toolset

For reusability of logical network topologies among various
NETs, AnyBed must have its own system portability among
NETs. Each NET has its own experimental environments
consisted of different hardwares and different operating sys-
tems. AnyBed must work on these environments to meet the
requirement of system portability. Additionally, performing
experiments among various NETs by the same tools gives
users another advantage to omit learning NET’s own tools
at every NET.

Because of such situations, we designed a toolset called
“AnyBed portable toolset” that we can be commonly used in
various NETS. This toolset contains the following functions.
(1) The user can use the OS which he wants without bother-
ing with whether HDD is equipped or not and which OS was
installed on experimental nodes. The tool contains servers
of DHCP, TFTP, and NFS to boot clients by PXE (Preboot
eXecution Environment) [12]. After nodes booted, they use
NFS as its root file system, not depend on its equipped HDD.
(2) The user can command each node to perform experi-
ments without using NET’s own toolset. This tool is based
on “DSH (Distributed Shell)” [13]. We can use same toolset
while performing experiment on various NETs by bringing
one master server that packages these toolset into the NETs.

This bringing method aims to support such a use case
that users can bring AnyBed-styled master server into the
NETs, and can perform experiments with the toolset in the
server. Generally, almost all PCs in NETs are PC/AT archi-
tecture, and support PXE boot. These PCs are quickly used
as AnyBed-styled experimental nodes by the master server
without care of installed OSes in node’s HDD. Accordingly,

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

we consider that AnyBed toolset realize system portability
among various NETs.

5.3.2 Injection Layer Tools

In the injection layer, config injector injects actual configu-
ration files to each PC node and switch. All configuration
files are classified into two types. One is for PC nodes, and
the other is for switches.

The implementation of config injector would be dif-
ferent from each NET environment. For general use with
AnyBed, we implement two types of config injector for
PC nodes. The first one is using the modified version of
“mkdiskimage” from StarBED[2]. The mkdiskimage is
the environment for making memory file system image of
PXE[12] boot. When a cluster node boots, the node gets
two contents: memory file system image from TFTP server
and tarball from FTP server. The memory file system image
is mounted to root file system, and tarball is extracted there.
Then, operating system reads configuration files there. In
the tarball, we pack actual configuration files.

The second method injects actual configuration files
over NFS. The AnyBed portable toolset previously de-
scribed uses this method. After a cluster node boots from
PXE, the node gets actual configuration files from mounted
NFS directory.

For switches, we implement another type of config in-
jector. This method communicates to switches via TEL-
NET [14] and modifies the configuration of each switch. In
this version of the program, we assume that only one user
uses the switches simultaneously. Therefore, the program
operate the switches as an administrative user. Aside from
TELNET, the standardized mechanisms to modify the con-
figuration of switches is “The Network Configuration Pro-
tocol”’(NETCONF) [15]-[18]. NETCONF provides mecha-
nisms to install, manipulate, and delete the configuration of
switches. It employs an XML-based data encoding for the
configuration data as well as the protocol messages. But, we
found a problem on employing NETCONF for the config
injector; only enterprise switches can support NETCONF.
Low-end L2 switches that are commonly used in lab-level
small NETs do not support NETCONF.

5.3.3 Design Layer Tools

We also implement some tools used for the design layer.
First one is a description converter to a physical network file.
This converter converts the resource description file used by
StarBED’s assistant tools named “SpringOS” [4] to the for-
mat of AnyBed.

Second one is filter scripts named CAIDA topology fil-
ter [19]. These scripts enables us to pick up proper size
of AS relationship data from whole dataset obtained from
CAIDA project [20]. CAIDA Project has measured BGP4
full route information in several backbones and analyzed
an inter-AS topology according to an inferring method [21].
This AS relationship dataset shows the state of each link

SUZUKI et al.: ANYBED: A TESTBED-INDEPENDENT TOPOLOGY CONFIGURATION SYSTEM AND ITS TOOL SET

between two active ASes. These picked data are finally con-
verted into a logical topology file of AnyBed. Using this
file, users can easily build an inter-AS BGP topology like as
MOAS experiments topologies [9].

Third one is a script converting a logical network file
to Graphviz dot file [22]. Graphviz is open source graph
visualization software. Users can visualize and confirm their
designed topology by using Graphviz with this script.

5.4 Building Experimental Network Using AnyBed

The steps for the user to build experimental network with
AnyBed is shown in Fig. 2. The steps are described below:

1. A NET prepares a physical network file along with its
facilities and wiring.

2. A user designs a logical network topology and creates a
logical network file. CAIDA topology filter facilitates
generating this file. Of course, the users can edit the
file manually.

3. The assignment layer of AnyBed checks the consis-
tency of the logical network file and the physical net-
work file.

4. The assignment layer assigns resources to the logical
network topology and generates actual configuration
files, if there is no inconsistency between the logical
network file and the physical network file.

5. The injection layer of AnyBed injects those actual con-
figuration files to each node and switch.

Compared to the manual steps described in Sect. 2.2,
AnyBed and its toolset automate most processes: some parts
of design, assignment, configuration, and injection. The de-
tail evaluation and verification are described in the following
sections.

6. Evaluation

In this section, we describe the evaluation result of the
AnyBed implementation. We conducted the following eval-
uations: scalability to the number of nodes and workload
reduction.

6.1 Scalability to the Number of Nodes

In this section, we see if AnyBed can deal with large scale
network and many nodes. Because we do not have a real
large scale NET, we use StarBED for our scalability evalu-
ation; which is the well-known large-scale centralized NET
that composed of 680 nodes. We describe evaluation en-
vironment. We used 150 experimental nodes on StarBED
and 1 master node. As for a typical user on StarBED, he
uses about 50 up to 150 nodes for one experiment. In DE-
TER, recent experiments [9], [23], [24] need roughly 10 to
100 nodes. We think that evaluating AnyBed using up to
150 nodes is enough for typical uses. The specifications of
nodes are described in Table 1.

In this evaluation, we described the logical network file

1883
Table 1 Evaluation environment for scalability.
CPU Intel Core 2 Duo 2.13 GHz
Master Memory 1GB
Node Operating System Debian GNU/Linux sid
Programming Language Ruby 1.8.6
CPU Intel Pentium3 1 GHz
Exp. Memory 512MB
Nodes Operating System Debian GNU/Linux sid
Layer2 switch Cisco Catalyst 6509
140 + ' ' ' ' T'otal ti}ne : 4
Generate config files and deploy them
120 | Set interfaces of nodes up i
Set BGP connections of nodes up =
100 | 1
o
8 80]
@
£ e}]
40 4
20 1
0

0 20 40 60 80 100 120 140 160
number of nodes

Fig.7 Time consumption of building experimental network under differ-
ent number of nodes.

where nodes had BGP links each other. This BGP topol-
ogy was based on the AS topology of the Internet using the
dataset published by CAIDA [20]. We extracted top ASes
and its related networks from this dataset in order of the
number of BGP peers that ASes have. The number of ex-
tracted ASes depended on the number of usable nodes in
NET. Using this topology, we made an experimental net-
work and measured the time consumption with changing the
number of nodes from 10 to 150 on the environment. In this
evaluation, because 1 AS in the dataset corresponded with
1 node in NET, we could only emulate a part of the whole
topology. We measured times taken by below procedures.
(1) We ran dispatcher on the master node to generate actual
configuration files, and then deployed them to experimental
nodes. (2) After deployed, we set interface of the experi-
mental nodes up. (3) Finally, we set BGP connections of
each node up.

Figure 7 shows that the total time consumption in-
creased linearly up to 150 nodes. However, the time gener-
ating configuration files and deploying them does not seem
to linearly but exponentially. The reason that the curve de-
scribed in the exponential function was that the BGP topol-
ogy was nearly full meshed and the number of subnets and
interfaces increased in the order of O(n%). The number af-
fected the time of assigning resources and the time of gener-
ating configuration files, we considered. On 150 nodes, the
total time consumption of dispatcher was 113 seconds.

Along with this evaluation, we conclude that (1)
AnyBed can ease the overhead of describing configuration
files in the order of magnitude, and (2) it can generate con-

1884

Table2 Verification environment for reusability and workload reduction
(homogeneous cluster).
Node#1 CPU
to Memory
Node#17 NIC
Layer2 switch

Intel Pentium3 1.4 GHz
1024 MB
Broadcom BCM5703X (1000 Mbps) x 2
DELL PowerEdge1655MC Switch

Table3 Verification environment for reusability and workload reduction
(heterogeneous cluster).
Node#1 CPU
to Memory
Node#3 NIC

Intel Pentium3 450 MHz
256 MB
Intel Pro 10/100B/100+(100 Mbps)
3Com 3c905B-TX(100 Mbps)
Intel Pentium3 900 MHz
256 MB
3Com 3c905B-TX(100 Mbps)
Netgear GA620(1000 Mbps)
FoundryNetworks Edgelron4802F
ExtremeNetworks Summit48
ExtremeNetworks Summit5i

Node#4 CPU
to Memory
Node#7 NIC

Layer2 switch

Table 4 Evaluation result of usability and workload reduction.
| | Homogeneous | Heterogeneous |
Num. of nodes 17 7
Num. of config. file in AnyBed 2 2
Size of config. file in AnyBed 10671 Byte 6549 Byte
Num. of actual config. files 31 30
Size of actual config. files 33957 Byte 39191 Byte
| Average time of building network | 137 sec | 135 sec |

figuration files and can deploy them on a large scale NET in
enough short time.

6.2 Workload Reduction

We measured the time until AnyBed finished building the
experimental network. These sequence was repeated 10
times to calculate the average. In addition, we compared
number of configuration files, the size of configuration files
on two PC clusters. One cluster was composed of 17 servers
that have homogeneous specs. Another cluster had 7 het-
erogeneous servers. Equipments on each PC cluster are de-
scribed in Table 2 and Table 3. The verification result is
described in Table 4.

First, we discuss the size and the number of config-
uration files. We used the logical network file that size
was 3,377 Bytes on both clusters. About the size of phys-
ical network file, the size of the file in homogeneous clus-
ter was 7,294 Bytes, and that of heterogeneous cluster was
3,172 Bytes. On the other hand, the total size of actual con-
figuration files was 33,957 Bytes in heterogeneous PC clus-
ter. The configuration files that a user had to create were
only two files in both PC clusters, that is, the logical net-
work file and the physical network file. On the other hand,
the number of the actual configuration files in homogeneous
cluster is 31, and the number in heterogeneous cluster is 30.
Without AnyBed, the user has to write the total size and to-
tal number of the file by hand or by script. Second, we dis-

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

node1 node5
AS65001 AS65005

node2 node6
AS65006 AS65007

Fig.8 Evaluation topology for routing performance.

node3 node4
AS65002 AS65004

Table 5 Evaluation environment for routing performance.
CPU Intel Xeon 2.13 GHz
Master Memory 4GB
Node Operating System Debian GNU/Linux etch
Programming Language Ruby 1.8.5
Exp. CPU Intel Xeon 2.8 GHz
Nodel,2 Memory 2.5GB
NIC Broadcom GbE NIC x 2
Exp. CPU AMD Opteron 1.8 GHz
Node3 Memory 4GB
NIC Broadcom GbE NIC x 2
Exp. CPU Intel Xeon 2.8 GHz
Node4 Memory 2GB
NIC Broadcom GbE NIC x 2
Exp. CPU Intel Xeon 2.8 GHz
Node5 Memory 2GB
NIC Broadcom GbE NIC x 2
Exp. CPU Intel Xeon 2.8 GHz
Node6 Memory 1GB
NIC Broadcom GbE NIC x 2
Layer2 switch Buffalo LSW-GT-16NSR

cuss the time of building experimental network. The time
of building experimental network was fewer than 140 sec-
onds on both clusters. We think that 140 seconds are short
enough compared with building it by hand.

6.3 Decline of Routing Performance

In this section, we discussed the decline of routing perfor-
mance when a user employs AnyBed. We evaluated the dif-
ferences of routing performance on two same topologies:
one was built by AnyBed, and the other was built by hand.
Figure 8 shows these topologies. On these topologies, we
assigned the same PC for each node. Equipments on each
PC are described in Table 5. On each topology, we measured
routing performance 10 times from nodel to node6 by iperf.

The result of the measurement showed that both
topologies had the same routing performances. In both
cases, measured routing performance was 914 Mbps. The
result means that AnyBed does not cause decline of routing
performance.

7. Verification

In this section, we describe the verification result of the
AnyBed implementation. We conducted the following ver-
ifications and evaluations: topology reusability, system
portability, and scalability to the number of nodes.

SUZUKI et al.: ANYBED: A TESTBED-INDEPENDENT TOPOLOGY CONFIGURATION SYSTEM AND ITS TOOL SET

7.1 Topology Reusability

In this section, we verify the functions of AnyBed. In the
verification, we prepared two PC clusters that their hardware
equipment is different from each other. On these two clus-
ters, we built the same network topology by AnyBed to ver-
ify topology reusability. Also we compared number of con-
figuration files, the size of configuration files and the aver-
age time spend for building the network to verify workload
reduction. Then, we verified system portability of AnyBed
using another two different PC clusters.

Equipments on each PC cluster are described in Table 2
and Table 3. The former PC cluster was homogeneous, that
is, it was composed of 17 blade servers where each blade
server had the same hardware and software spec. On the
other hand, the latter PC cluster had heterogeneous nodes,
that is, it was constructed with different spec PCs and several
vendors’ switches.

The homogeneous PC cluster was comprised of 17
blade servers and a layer 2 switch made by Dell. We used
one server for DHCP, FTP server, and the other for building
experimental network. These cluster nodes were connected
with each other by 6 layer2 switches. Because all equipped
NICs were PXE-capable, we used PXE boot and mkdiskim-
age for config injector. The heterogeneous PC cluster was
composed of 7 nodes. Node#1 to node#3 and node#4 to
node#7 were different in the type of NIC. Therefore, band-
width and the name of network interface in operating system
were different between two groups. In the heterogeneous
PC cluster, we could not use PXE boot for config injector
because all equipped NICs were not PXE-capable. Instead
of PXE boot, we used NFS for config injector.

On these two PC clusters, we gave the same logical
network file that 7 routers were connected with full mesh
links, then verified whether the same experimental network
topologies were built or not. To investigate network topolo-
gies, we logged in to Zebra OSPF daemon via telnet, and got
the routing information by executing “show ip ospf route”
command [25].

7.2 System Portability

Then, we verified system portability of AnyBed using an-
other two different PC clusters. One cluster had 32 blade
servers described in Table 6 and another cluster had 32 1U
servers described in Table 7. At first, after we connected
the master server including the AnyBed portable toolset, we
built BGP topology on the first cluster using the toolset.
Secondly, we disconnected the master server and brought
it to the facilities that another cluster was located. Then,
after we connected it to another cluster, we had quickly re-
built the same topology with regenerating actual configura-
tion files. This verification shows that AnyBed toolset has
system portability.

According to the results of verifications, we conclude
that AnyBed enables a topology to reuse among 4 NETs and

1885
Table 6 Verification environment for system portability (Cluster#1).
CPU AMD Mobile Athlon XP 1800+ 1.53 GHz
Memory 2048 MB
NIC Broadcom Gigabit Ethernet Adapter x 2
Operating System Debian GNU/Linux sid
Layer2 switch Sun Fire B1600 Switch

Table 7 Verification environment for system portability (Cluster#2).
CPU Intel Pentium3 1 GHz
Memory 512MB
Operating System | Debian GNU/Linux sid
Layer2 switch Cisco Catalyst 6509

that AnyBed can reduce the workload of building experi-
mental network on NET.

The result of evaluation and verification shows that
AnyBed has achieved the design goals described in
Sect. 4.1. First, Sect. 7.1 has described about the reusability
of network topology. Then, we have described the porta-
bility of AnyBed in this section. About the scalability of
AnyBed, the result in Sect. 6.1 has shown that AnyBed is
enough scalable for typical experiments.

8. Discussion

First, we discuss scalability in massive network topology
consisting of virtual nodes. Then, we discuss consistency of
the constructed network with AnyBed and testbed-oriented
supportive tools.

8.1 Scalability in Massive Network Topology Consisting
of Virtual Nodes

Recently, advances of virtualization technologies increase
the number of nodes in NETs by several times. Anticipat-
ing that a user would use AnyBed in thousands of virtual
nodes, we have tested the scalability of AnyBed. In the case
of 10,000 virtual nodes, AnyBed and XENebula toolset [26]
took 2.5 days to build a network topology. This result shows
that current AnyBed implementation is not scalable in mas-
sive network topology. We will analyze bottleneck points,
and improve the scalability in our future work.

With use of virtualization technologies, we consider
that it will become more common for network researchers
to perform experiments with over hundreds of virtual nodes
in lab-level NETs with AnyBed. However, in the massive
environment, there are still problems in addition to the scal-
ability: node control, measurement, anomaly detection, and
so on. These are all our future works.

8.2 Consistency of the Constructed Network with AnyBed
and Testbed Oriented Supportive Tools

Checking the consistency of the constructed network topol-
ogy is one of issues on experiments on NET. The consis-
tency in this context means that the network is certainly con-
structed as the user intended. Due to the numerous network

1886

nodes, the consistency check is tedious work, too. The in-
consistency will be caused not only by mis-configuration of
AnyBed, but also by mis-configuration of VLAN and/or as-
signed nodes by testbed oriented supportive tools. In our fu-
ture work, we have to develop a scalable consistency check
component that can let experimenters narrow down causes
of inconsistency.

9. Conclusion

Through our experiences of experiments on NETs, we
pointed out advantages for the case that an experimental net-
work topology and its configuration files should be portable
across NETs. With consideration to the portability, we an-
alyzed the steps to perform experiment on NETs. We par-
ticularly focused on the step to build experimental networks
since it is time-consuming among all the steps. Consider-
ing procedures in the step to build experimental networks,
we designed AnyBed architecture. Then, we implemented
assignment layer and injection layer of AnyBed. We also
verified and evaluated the assignment layer implementation.

The results of the verification and evaluation showed
that AnyBed well automated the steps to construct an exper-
imental network topology on various NETs. AnyBed can
expedite the time spent building 50 AS topology, from 4
days in manual to 30 seconds in AnyBed. The implementa-
tion of AnyBed is available from Sourceforge.net [27].

References

[1] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M.
Newbold, M. Hibler, C. Barb, and A. Joglekar, “An integrated ex-
perimental environment for distributed systems and networks,” Proc.
Fifth Symposium on Operating Systems Design and Implementa-
tion, 2002.

[2] T. Miyachi, K. Chinen, and Y. Shinoda, “Automatic configura-
tion and execution of internet experiments on an actual node-based
testbed,” Proc. 2nd International IEEE/Create-Net Conference on
Testbeds and Research Infrastructures for the Development of Net-
works and Communities (TridentCom), pp.274-282, 2005.

[3] “Emulab software distributions.”
http://www.emulab.net/software.php3

[4] T. Miyachi, K. Chinen, and Y. Shinoda, “StarBED and SpringOS:
Large-scale general purpose network testbed and supporting soft-
ware,” Proc. International Conference on Performance Evaluation
Methodlogies and Tools (Valuetools) 2006, 2006.

[S] M. Oe, Y. Kadobayashi, and S. Yamaguchi, “An implementation
of a hierarchical IP traceback architecture,” Proc. IPv6 Workshop,
SAINT 2003, Orland, USA, 2003.

[6] “NICT Hokuriku research center.” http://starbed.nict.go.jp/

[7] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower,
R. Ostrenga, and S. Schwab, “Design, deployment, and use of the
DETER testbed,” Proc. DETER Community Workshop 2007, 2007.

[8] Information Sciences Institute, “NS-2 network simulator,” Software
Package, 2003. http://www.isi.edu/nsnam/ns/

[9] S.P.G. Carl, G. Kesidis, and P.S.U.B. Madan, ‘“Preliminary BGP
Multiple-Origin Autonomous Systems (MOAS) experiments on the
DETER testbed,” Proc. Deter Community Workshop 2006, 2006.

[10] “GENI Rspec.” http://groups.geni.net/geni/attachment/wiki/
GeniRspec/rspec-draft-v0.5.doc

[11] R.Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed
mapping problem,” ACM SIGCOMM Computer Communications

[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

Review, vol.33, no.2, 2003.

“Intel corporation, Preboot Execution Environment (PXE) specific-
tion version 2.1,” 1990.

J. Uekawa, “Dsh - dancer’s shell / distributed shell.”
http://www.netfort.gr.jp/ dancer/software/dsh.html

J. Postel and J. Reynolds, “Telnet protocol specification, RFC854,”
1983.

R. Enns, ed. and J. Networks, “NETCONF configuration protocol,
RFC4742,.” 2006.

M. Wasserman, ThingMagic, T. Goddard, and I. ICEsoft Tech-
nologies, “Using the NETCONF configuration protocol over Secure
SHell (SSH), RFC4742,” 2006.

T. Goddard and I. T. Inc., “Using NETCONF over the Simple Object
Access Protocol (SOAP), RFC4742,” 2006.

E. Lear, C. Systems, and K. Crozier, “Using the NETCONF protocol
over the Blocks Extensible Exchange Protocol (BEEP), RFC4742,”
2006.

H. Hazeyama, M. Suzuki, S. Miwa, D. Miyamoto, and Y.
Kadobayashi, “Outfitting an Inter-AS topology to a network emu-
lation TestBed for realistic performance tests of DDoS countermea-
sures,” Proc. Workshop on Cyber Security Experimentation and Test
(CSET’08), 2008.

CAIDA, The cooperative association for Internet data analysis, “The
CAIDA AS Relationships Dataset.”
http://www.caida.org/data/active/as-relationships/

X. Dimitropoulos, D. Krioukov, M. Famenkov, B. Huffaker, Y.
Hyun, K. Claffy, and G. Riley, “AS relationships: Inference and
validation,” ACM SIGCOMM Computer Communication Review
(CCR), vol.37, no.1, pp.29-40, 2007.

“Graphviz - Graph visualization software.”
http://www.graphviz.org/

J. Mirkovic, B. Wilson, A. Hussain, S. Fahmy, P. Reiher, R. Thomas,
and S. Schwab, “Automating ddos experimentation,” Proc. Deter
Community Workshop on Cyber Security Experimentation and Test
2007, 2007.

Y.-L. Huang, Y. Huang, J. Tygar, H. Lin, L.Yeh, H. Tsai, K. Sklower,
S. Shieh, C. Wu, P. Lu, S. Chien, Z. Lin, L. Hsu, C.W. Hsu, C.T.
Hsu, Y. Wu, and M. Leong, “SWOON: A testbed for secure wireless
overlay networks,” Proc. CyberSecurity Experimentation and Test
(CSET) Workshop, 2008.

“GNU zebra.” http://www.zebra.org/

S. Miwa, M. Suzuki, H. Hazeyama, S. Uda, T. Miyachi, Y.
Kadobayashi, and Y. Shinoda, “Building mimetic internet—A trial
to emulate inter—AS networks,” Internet Conference 2007, pp.41—
48,2007.

M. Suzuki, “AnyBed: A testbed-independent topology configuration
tool.” http://sourceforge.net/projects/anybed/

Mio Suzuki received his M.E. degree of Sci-
ence and Technology (NAIST), Japan, in 2004.
He is currently a technical engineer in National
Institute of Information and Communications
Technology(NICT), Japan. His research inter-
ests include internet emulation, network opera-
tion, network security.

SUZUKI et al.: ANYBED: A TESTBED-INDEPENDENT TOPOLOGY CONFIGURATION SYSTEM AND ITS TOOL SET
1887

Hiroaki Hazeyama received his Ph.D.
degree in Engineering from Nara Institute of
Science and Technology (NAIST), Japan, in
2006. He is currently an assistant professor
in the Graduate School of Information Science,
NAIST. His research interests include network
operation, network security, and large-scale net-
work testbed.

Daisuke Miyamoto received his M.E. de-
gree in Information Science from Nara Institute
of Science and Technology (NAIST), Japan, in
2002. He is currently a researcher in NAIST.
His current interests include web application se-
curity especially countermeasures of web spoof-
ing.

Shinsuke Miwa received his Ph.D. degree
in Information Science from Japan Advanced
Institute of Science and Technology (JAIST),
Japan, in 1999. He is currently a researcher
in Information Security Research Center, Na-
tional Institute of Information and Communica-
tions Technology (NICT), Japan. His current re-
search interests include cyber-security using vir-
tualization technologies and Internet emulation.
He is a member of USENIX and ACM.

Youki Kadobayashi received his Ph.D.
degree in Computer Science from Osaka Uni-
versity in 1997. He is currently an Associate
Professor in the Graduate School of Informa-
tion Science, Nara Institute of Science and Tech-
nology, Japan. His research interests include
IP traceback, content internetworking, overlay
networks, quality of services in the application-
layer, middleware security, and secure operating
- systems. He is also a member of IPSJ.

