IEICE TRANS. INFE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

1923

| PAPER Special Section on New Technologies and their Applications of the Internet |

FreeNA: A Multi-Platform Framework for Inserting Upper-Layer

Network Services

Ryota KAWASHIMA ™, Student Member, Yusheng JI'T, Member,

SUMMARY Networking technologies have recently been evolving and
network applications are now expected to support flexible composition of
upper-layer network services, such as security, QoS, or personal firewall.
We propose a multi-platform framework called FreeNA* that extends ex-
isting applications by incorporating the services based on user definitions.
This extension does not require users to modify their systems at all. There-
fore, FreeNA is valuable for experimental system usage. We implemented
FreeNA on both Linux and Microsoft Windows operating systems, and
evaluated their functionality and performance. In this paper, we describe
the design and implementation of FreeNA including details on how to insert
network services into existing applications and how to create services in a
multi-platform environment. We also give an example implementation of
a service with SSL, a functionality comparison with relevant systems, and
our performance evaluation results. The results show that FreeNA offers
finer configurability, composability, and usability than other similar sys-
tems. We also show that the throughput degradation of transparent service
insertion is 2% at most compared with a method of directly inserting such
services into applications.

key words: upper-layer services, transparent functions insertion, systen-
call interposition, multi-platform framework, SSL

1. Introduction

As current network environments are rapidly evolving, net-
work applications need to be able to support upper-layer
(session/presentation/application-layer) services, such as se-
curity and QoS. However, these services often require some
expertise for developing and operation of them. As a result,
incorporating services into existing user systems tends to be
an experimental work and incurs changes of user systems
at the time of introduction of the services. Moreover, ad-
dition/deletion of functions is needed continually for some
services like security, and users have to follow latest ser-
vices timely and test their systems accordingly. Therefore,
a scheme realizing the ease of introducing/testing services is
needed in current network systems.

We focus on the core functions of many network ser-
vices which are sharable by many network applications
and can be offered as independent components. That
is, implementation of the services can be disjoined from

Manuscript received February 18, 2009.
Manuscript revised May 25, 2009.

"The author is with the Department of Informatics, School of
Multidisciplinary Sciences, The Graduate University for Advanced
Studies (SOKENDALI), Tokyo, 101-8430 Japan.

"The authors are with Information Systems Architecture Re-
search Division, National Institute of Informatics (NII), Tokyo,
101-8430 Japan.

a) E-mail: kawa@nii.ac.jp

DOI: 10.1587/transinf. E92.D.1923

and Katsumi MARUYAMA ', Fellow

the core functions of the application structurally, and
modification of the application is not necessary when
adding/updating/deleting the services. These implementa-
tions can be applied to variety of applications, hence soft-
ware assets are leveraged effectively.

In order to facilitate deploying advanced network
services, we have developed a multi-platform framework
called FreeNA [1], which enables services to be transpar-
ently inserted into existing applications. FreeNA hides the
platform-dependent issues like API and ABI (Application
Binary Interface), and also offers a unified abstraction inter-
face to its users. That is, the users only have to select the
network service to be inserted into a target application and
set some parameters. This means that users can instantly
validate their new network services with real applications as
a test without any modification of them.

So far, many related systems are proposed for the simi-
lar purposes as in [2]-[6], however, these systems have some
restrictions on performance, platform, developer-oriented
behavior, usability, and flexible service composition. Com-
paring with those systems, FreeNA is designed to overcome
the drawbacks.

In this paper, we describe the design and implementa-
tion of FreeNA including the details on how to insert net-
work services into existing applications, how to create ser-
vices in a multi-platform environment, example implemen-
tation of a service with SSL, a functionality comparison with
relevant systems, and our performance evaluation results.
The result shows that FreeNA offers finer configurability,
composability, and usability than other similar systems. We
also show that the throughput degradation of transparent ser-
vice insertion is 2% at most compared to a method of di-
rectly inserting such services into applications.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the related work. Section 3 gives the pur-
poses of FreeNA and examples of network services. Sec-
tion 4 presents an architectural makeup of the system. We
describe its implementation in Sects. 5 and 6, and manage-
ability in Sect.7. We discuss the evaluation of FreeNA in
Sect. 8. Section 9 is used to conclude this paper as well as
to introduce some of our future challenges.

*FRamework for Extending Existing Network Applications.

Copyright © 2009 The Institute of Electronics, Information and Communication Engineers

1924

2. Related Work

There have been a number of proposed systems that were
related to FreeNA and many of these systems hook center-
piece APIs to transparently change being sent/received data.
Here, related systems are categorized by their service inser-
tion types.

e Source code level insertion

J. Zhang et al. [7] proposed an approach to introduce dy-
namic adaptation to legacy systems using AOP (Aspect Ori-
ented Programming). KLASY [8] realizes AOP functions
for OS kernel using Kerninst [9]. MetaSockets [2] enables
adaptive services insertion for Java applications by Adap-
tive Java [10].

Although these systems enable a granular program en-
hancement mechanism, users of these systems are largely
limited to developers and can only use aspect-oriented lan-
guages that correspond to the implementation language of
the application. Moreover, users must have the source code
of the application. However, there are many cases when the
source codes of the applications are hidden.

o Runtime System call Interposition

Interposition Agents [3] trap specified system calls using a
dedicated system call to alter their behaviors. DITOOLS [4]
offers customized linker and loader to rebind the sym-
bol information. TESLA [5] and Trickle [11] use a library
preloading technique to inject network functions like traffic
shaping. Livepatch [12] can change process images running
on Linux using a BFD library and ptrace system calls.

Although these can be used without the source code
of the application, their mechanisms are mostly platform-
dependent, and preloading technique requires troublesome
tasks when inserting multiple services hierarchically (they
are independent one another).

In contrast, FreeNA is designed for portable system
even though FreeNA uses runtime interposition. This is
achieved by separating platform-dependent parts and imple-
menting the mechanism which can select the adequate inter-
position mechanism depending on the platform.

o Service Insertion with Kernel Support

A x-Kernel [13] enables network protocols and their chains.
Stream [14] supports composable linear connections of a
module within a kernel.

Although the kernel support is efficient, these system
use special interfaces with applications like UPI or TLI/XTI.
Hence, there are compatibility problems with existing sys-
tems. Moreover, they are not available on Windows.

e Others

Dyninst API[15] can change a process image by dy-
namically instrumenting/removing the code into/from the

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

image. It is provided as an unified API regardless of ABI.
Dyninst API is used by FreeNA internally.

A VTL framework [6] provides a multi-platform trans-
parent network service insertion method, but it only supports
applications running on virtual machines.

3. Overview of FreeNA

In this section, we refer to the purposes of FreeNA and its
characteristics, and introduce some examples of network
services. First, FreeNA is not a proxy server, virtual ma-
chine, API, or client libraries, but a normal program and
runs with the target application on the same machine. It
works as a middleware system between applications and the
operating system.

3.1 Purposes

FreeNA is developed for application users with a certain
level of knowledge, developers, operators, and researchers.
They may introduce new features into existing systems, or
customize behaviors of systems. However, these processes
will require not only source code of applications, but also
modification of applications.

Then, FreeNA enables users to transparently insert user
codes into the application without the source code and any
modification. This mechanism is useful to application users
because they can modify their applications easily, and de-
velopers since networking services can be tested in actual
environment independently from core logic of the applica-
tion. This usage is also useful when developers can only ac-
cess source codes partially and result in fewer bugs caused
by modification of source codes at development time.

To achieve the mechanism of FreeNA, it is designed as
providing following characteristics.

¢ General-purposed Framework
FreeNA can be used with many types of network appli-
cations, such as custom applications, web applications,
P2P applications, mobile applications, or network con-
trol programs for various purposes.

e Programming-language Independence
FreeNA does not take into consideration what pro-
gramming language is used for implementing the target
application.

e Multi-platform
FreeNA is designed to work on various platforms and
currently runs on both Linux and Microsoft Windows
operating systems.

e User-oriented
Users can select the network services being inserted by
using a configuration file for the application. FreeNA
offers several commands for these operations. That is,
users are not required to write a program to insert a
service as long as the network service component is
ready.

KAWASHIMA et al.: FREENA: A MULTI-PLATFORM FRAMEWORK FOR INSERTING UPPER-LAYER NETWORK SERVICES

3.2 Network Services

We suppose following network services with FreeNA.

e Compression
This type of services shrink data being sent before
passing them to OS and stretch them at the receiver
side.

e SSL
This type of services provide secure Internet commu-
nication to non-SSL-compliant applications on PKI
framework. Unlike Stunnel proxy[16], such ser-
vices ensure end-to-end transparency and better perfor-
mance.

e TCP multiplexing
This type of services bring multiple TCP connections
together into one connection. This is effective there is
an already existing TCP connection, actual throughput
will be increased by using the same connection instead
of establishing a new one. Especially, this method is
more useful to secure connections or tunneling proto-
col if dedicated tools can’t be used.

o Ad-hoc Traffic shaping
This type of services adjust transmission rate of
data packets at user-space or control the behavior
of TCP protocol by setting socket parameters like
TCP_MAXSEG. Therefore, users can control band-
width utilization in an ad-hoc way without special
tools.

o Stateful application-layer firewall
This type of services are different with common
packet filtering based firewalls in that these services
check packet content or aggregated content to inspect
application-layer protocols. These services will be ef-
fective to prevent applications from buffer-overflow at-
tacks, format string attacks, and SQL injection attacks
like TCP Stream Filtering [17]. Moreover, they will en-
hance the security of the P2P node by inspecting suspi-
cious contents when communicating time.

e Mobility
This type of services manage connectivity of applica-
tions by migrating sessions like TESLA, or try to re-
duce transmitting of packets for power consumption
like MetaSockets.

The goals of FreeNA are to transparently offer the
above-mentioned services to the applications running on a
variety of major platforms, and to provide unified and ab-
stract interfaces to users. Above all, the applications or ker-
nels must not be modified at all for this purpose.

In practice, there are dedicated systems that offer one
of above services such as Stunnel for SSL and compres-
sion, DummyNet[18] and Trickle for traffic controlling,
and Zorp [19] for application-layer firewall. Users should
use dedicated lower-layer networking tools because FreeNA
only supports upper-layer protocol services (It is also possi-
ble to combine both FreeNA and other tools since FreeNA

1925

does not modify any existing systems).

However, there are benefits of using FreeNA, for ex-
ample, users can use many network services in an unified
way on multiple platforms, customized service for the spe-
cific application. Therefore, major advantage of FreeNA
is providing mechanism to users to customize and com-
bine services easier without special support of platforms
and applications. In other words, FreeNA is a kind of
application/user-oriented networking tool compared with
other networking tools.

Note that, although FreeNA can support variety of net-
work services and applications, there can be cases that some
services are not practical for some types of applications.
Therefore, users have to consider whether supposing ser-
vices are effective to their applications.

4. FreeNA Architecture

FreeNA can be used to transparently insert network services
into the communication path between end-applications (See
Fig. 1). For instance, when an application (sender) transmits
a packet to the receiver, the packet is intercepted and pro-
cessed by the services inserted by FreeNA, then it is passed
to the underlying OS. At the receiver side, the services also
intercept the packet from the OS and execute the opposite
process; then they pass the result to the receiver application.

When inserting network services, FreeNA employs a
notion of flow handler [5]. The flow hander takes one input
data flow and several output data flows. Each network ser-
vice corresponds to an instance of the flow handler. FreeNA
combines the output flow of the upstream handler with the
input flow of the downstream hander.

4.1 System Components

Figure 2 shows the overall architecture of FreeNA. As you
can see, FreeNA is mainly composed of the FreeNA client
and the FreeNA server.

The FreeNA client provides an user-interface. Users
execute the client to access the FreeNA server for insert-
ing desired services into the target application. The current
user-interface is a command-based interface like a GNU de-
bugger (GDB) or DBMS client (supported commands are
listed in the Appendix C).

) [Coomr o] [(reomn) [rocem]]. |
oo 1 /mﬁ\\ L

4 ™ 4 N

N
|| Hetwork Servicel || - FreeNA inserts |||getwork Servicel ||
| 1, network services) 1
! Hetwork Service2 : :\tranSparentl_E’L/: Network Service2 :
|| Network Service2 |, . || Hetwork Service2 |,
. / X"’\J/ \ ;

Processed
B Packet

g Network g DP:;;:::‘J

Fig.1 Image of network service insertion.

Processed
Packet B

1926

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

- Application Application
User . .
Configuration
Command Files mmm e g -
’ Y
- I \
FreeN2 Client I Error I
|| [compression . Loggin
/_Socket Co-unication| I P Correction ggtng I
] I
I|[stateful |[TcP Multi-|[Traffic ||,
: . Firewall plexing Shaping 1
1 I
! : [] l
i : P ~—
! @ " : PN !
i 1 : ¢ Inserted SSL I
] c r Servicef//‘)
1 -
Parser 1 1 (I || N || [4
: |: IIHHHHIIH!IIIH!II :‘=xx=qa~\h.,z“
L '
\ (A !
~ . >
e S % = ‘ Socket layer ‘ Qs
_ FreeHA Server ,)

Fig.2 Overall architecture of the FreeNA.

The FreeNA server executes invocation of the target ap-
plication and inserts the specified network services based
on a configuration file. In particular, an Interposer compo-
nent invokes the application as a child process of the server
and switches the destination of output data flow from socket
layer to inserted network services with a Dyninst APL

4.2 The Configuration File

The configuration file must be prepared for each application
to choose services and their parameters. The structure of the
file is shown in Fig. 3.

A service tag specifies a network service, its parame-
ters, library name, and a local using rule. Multiple services
can be inserted into the same application in the order of be-
ing written. A rule tag (local rule) is used to specify a packet
flow type by a set of conditions, such as the transport proto-
col, port number, and communication type (client/server).
The rule tags also appear inside of the using-rules tag.
These rules (global rules) are applied to all services. The
rules are written in descending priority order and users can
use ‘¥’ to express all (protocols, port numbers and so on).
Note that the local rules come before the global rules.

In the case shown in Fig. 3, both firewall and SSL ser-
vices are inserted when the application uses TCP, port 8080
as the server according to the global rules, and only the SSL
service is inserted when the application uses TCP, port 8020
and 8021 according to the local rule. Services are not in-
serted at all in other cases.

4.3 The Network Service

FreeNA inserts network services as shared libraries into the
application. The libraries provide “socket-like” functions

<?xml version="1.0" encoding="UTF-8"7>
<configuration application="myserver">
<services> * Network service

<service name="firewall" lib="libfreena_fw.so">
<parameter name="SQL-injection" value="ON"/>
<parameter name="Abnormal" value="disconnect"/>
</service>

<service name="SSL" lib="libfreena_ssl.so">
<parameter name="CA" value="rootcert.pem"
<parameter name="PrivateKey" value="server.pem"/>
<parameter name="Version" value="SSLv3:TLS"/>

<rule use="true" service="FTP" transport="TCP"
port="8020-8021" type="x"/>

</service> » Local rule
</services>
<using-rules> * Global rule

<rule use="true" service="HTTP" transport="TCP"
port="8080" type="server"/>

<rule use="false" service="*" transport="x"
port="x" type=n*n/>

</using-rules>
</configuration>

Fig.3 The configuration file. Users have to specify the inserting network
services with parameters and insertion rules with XML-style notation.

such as send() and recv(), and they are carefully imple-
mented so that they do not depend on other service libraries
and the socket library. Therefore, FreeNA can concatenate
various combinations of network services.

5. Implementation

This section describes the internal architecture of FreeNA.

KAWASHIMA et al.: FREENA: A MULTI-PLATFORM FRAMEWORK FOR INSERTING UPPER-LAYER NETWORK SERVICES

First, the implementation of the FreeNA client/server is ex-
plained, then the mechanism of the service insertion and the
implementation of the flow handler are explained.

5.1 FreeNA Client/Server

Since FreeNA aims to work on several platforms, most of
it is implemented in Java. In Fig.2, the whole client and
the left dotted square of the server are coded in Java, and
the right dotted square is implemented as a library coded
in C++, because the Interposer is platform-dependent. The
library is accessed via Java Native Interface (JNI) by the
Java-coded part.

5.2 Network Service Insertion

As we mentioned in previous section, network services are
implemented as independent shared libraries based on the
concept of the flow handler. So, all FreeNA has to do is
to bind input/output data flows of service libraries, switch
from the socket function calls invoked by the application to
library function calls of the uppermost service library, and
have the undermost service calling actual socket functions.
We subsequently explain these key mechanisms.

5.3 Flow Handler Chain

To compose the flow handler chain, we define a
service_info C structure shown in Fig.4. Each network
service library has one corresponding service_info struc-
ture instance. The structure contains service parameters and

struct service_info
/* Pointer to the downstream service’s one */
struct service_info* next;

/* Parameter information of this service */
int num_of_params;

char** params;

char*x* values;

/* Service insertion rule contains effective
port numbers and communication type */

struct rule tcp;

struct rule udp;

/* Function pointers to initialization/
finalization functions of the downstream
service */

void (*service_init) (struct service_infox*);

void (*service_exit) (void);

/* Function pointers to corresponding socket-like
functions of the downstream service */
socket_t (*service_socket) (int, int, int);
int (*service_bind) (socket_t, const sockaddrx,
socklen_t);

}s

Fig.4 The service_info structure definition. All member variables are
set by a control library.

1927

insertion rule information of the service. Moreover, it con-
tains function pointers to functions of the downstream ser-
vice library and the pointers are set by the outside of the
service library. Therefore, one network service can use an-
other service even though the service library itself does not
know details of another library.

Eventually, FreeNA hierarchically inserts network ser-
vice libraries between the application and the socket library.
Figure 5 expresses the diagram of the hierarchy. As it can
be seen in the figure, not only service libraries, but also
a Control library and an Interface library are inserted to-
gether. The control library dynamically loads all under-
lying libraries into the application process and sets up the
service_info structures with the configuration informa-
tion passed from the FreeNA server. The service_info
structures are formed as linked list and passed down to
downstream library by init () functions. The interface li-
brary is inserted to access the intrinsic socket library of the
platform. SSL library is also one of the network service li-
braries. However, it differs from other libraries in that SSL
library is located as downmost library and used instead of
interface library. We present implementation details of the
library later.

By comprising FreeNA with above hierarchical archi-
tecture, arbitrary service libraries can be inserted transpar-
ently into the socket function call flow between the appli-
cation and the socket library. Furthermore, FreeNA realizes
more flexible function call flows.

Service insertion rules mentioned in Sect. 4.2 are used
to switch call flows. When the condition is satisfied, the
control library calls the service library’s function. Other-
wise, the control library bypasses the underlying libraries
and directly calls the actual socket functions.

=

. .--"fnsert ion

Application

Hetwork Service Library 1
Socket Calls

L
, L
“% Hetwork Service Library N

init/exitiI—< Socket Ccalls

Dyhamic Loading

5 |
A A 4 A A A 4

L
SSL Library

Interface Library

Socket API=s ‘

Fig.5 Hierarchical structures of inserted services.

1928

5.4 Socket Function Call Interposition

So far, we have explained the flow of function call through
the control library, service libraries, and interface libraries.
The remaining concern is that how to switch from the socket
function calls invoked by the application to control library’s
function calls.

FreeNA leverages the runtime system-call interposition
mechanism to hook socket functions. This method is suit-
able to realize FreeNA’s mechanism than Proxy-based in-
terposition and source code level interposition. Because,
hooking of socket functions at the process image can en-
sure better performance and end-to-end transparency than
Proxy-based interposition. Moreover, users do not need to
have the source code of the application, know the internal
structure of the application, nor consider the programming
languages like source code level interposition.

In practice, we use the dyninst API[15] for interposi-
tion. The API provides a variety of methods for dynamically
changing the runtime process image such that instrument-
ing/removing the CPU instructions into/from the image in
an abstract manner.

Figure 6 shows a schematic process image of the ap-
plication with FreeNA. First, FreeNA launches the appli-
cation and loads the control library into the process image,
then a ctl_init() and a ctl_exit() function of the li-
brary are embedded into the main() function of the appli-
cation before starting. The configuration information is also
embedded as the arguments of ctl_init (). Next, FreeNA
switches the function call target from the socket library to
the control library by rewriting the process image. Net-
work service libraries and interface libraries are dynamically
loaded by the control library at initialization time.

Here, since Interposer is dependent from core FreeNA

Stack
Interface
@ 1Load Service?
Servicel
Control
@1Insert with '
| config info
Heap init/
(DExecute exit/
FreeNA > Data socket
calls
®cChange f;;::::;\\ Application
call target Code

Fig.6 Synoptic structure of process image with FreeNA.

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

server, it is possible to call another Interposer library which
leverages other interposition mechanisms, such as library
preloading and Detours [20]. This alternation is useful when
users have platforms which Dyninst API cannot support. In-
stead, another mechanisms for initialization/finalization and
passing configuration information are needed. Therefore, it
is better to use Dyninst API for interposition whenever it
supports the platform.

6. Implementation of Network Services

We now introduce the code examples of network ser-
vices. We implemented compression service library and
SSL service library. Compression library is a simple li-
brary that processes data at I/O operations. SSL library
provides SSL/TLS compliant secure communication mech-
anism based on PKI framework to applications. As we
can see later, service library developers can leverage exist-
ing client library, such as OpenSSL [21], libcurl [22], and
Zlib [23] to implement service libraries for FreeNA.

It should be emphasized that service libraries do not
provide APIs for application developers but offer socket-like
interfaces. Therefore, functions of service libraries have to
be implemented to conform to the purpose of socket func-
tions.

Figure 7 shows condensed code of sending function
of compression. As you can see, service_send() func-
tion has same interface with normal send() function. Data
passed from the upstream library is compressed and passed
down to the downstream library using service_info struc-
ture of this library.

Likewise, we next present code of SSL service library
as a more complicated example. Since SSL is associated
with socket layer, we define the SSL library as the low-
ermost library. Table 1 shows functions of SSL library
and their purposes. service_init() is used to initial-

ssize_t service_send(socket_t s, const char* data,
size_t len, int flags)

ssize_t ret;

// Service applied socket is already registered

// according to the local rule

if (use_this_service(s)) {
size_t new_len = BUF_SIZE - HDR_SIZE;
// Compress ’data’ and output to ’buf’
compress(&buf [HDR_SIZE], &new_len, data, len);
// Set header information (packet length)
set_packet_length(buf, new_len);
// Pass down ’buf’ using ’service_info’ structure
// of this library
ret = info->service_send(s, buf, new_len +

HDR_SIZE, flags);
}

else {
// Do nothing but pass down ’data’
ret = info->service_send(s, data, len, flags);

}

return ret;

}

Fig.7 Example of compression service library’s functions.

KAWASHIMA et al.: FREENA: A MULTI-PLATFORM FRAMEWORK FOR INSERTING UPPER-LAYER NETWORK SERVICES

Table 1

Library functions
service_init
service_connect

SSL service library’s functions and their purposes.

Purposes

Initialize a SSL environment
Establish a SSL connection as a client
based on the connected socket

service_accept Establish a SSL connection as a server
based on the connected socket
service_send Encrypt data and send them

service_recv
service_close

Receive data and decrypt them
Disconnect the SSL connection

int service_connect(socket_t s, const struct
sockaddr* addr, socklen_t addrlen)

// Call actual ’connect’ socket function
int ret = sys_connect(s, addr, addrlen);
// Setup a SSL object

SSL_CTX *ctx = setup_client_ctx();

BIO* bio = BIO_new_socket(s, BIO_NOCLOSE);
SSL* ssl = SSL_new(ctx);

SSL_set_bio(ssl, bio, bio);

// Make a SSL connection

SSL_connect(ssl);

certification_check(ssl, addr);

// Associate SSL object with socket
register_socket(s, ssl);

return ret;

}

ssize_t service_send(socket_t s, const char* data,
size_t len, int flag)

// Get the SSL object associated with the socket
SSL* ssl = get_SSL(s);

// Encrypt data and send them

ssize_t n = SSL_write(ssl, data, len);

return n;

Fig.8 Example of SSL service library’s functions.

ize a SSL environment like loading certification file, set-
ting random number, and determining encryption methods
based on parameter information. service_connect() and
service_accept() establish a SSL connection based on
the already connected TCP socket. service_send() en-
crypts data being sent and pass down to the socket layer.
service_recv() gets received data from the socket and
decrypts data. service_close() disconnects the SSL con-
nection.

Next, we show the condensed code example of SSL
service library functions at Fig. 8. Our SSL library internally
leverages OpenSSL library'and associates the socket with
SSL session object.

7. The Manageability of FreeNA

As discussed before, FreeNA consists of many components
and leverages various software techniques such as system-
call interposition. Therefore, it seems that FreeNA’s archi-
tecture raises the threshold of the system. In this section, we
discuss the manageability of FreeNA components separately
and compare with other systems.

As we mentioned at Sect. 5.1, FreeNA client is imple-

1929

mented as a fully independent Java program for user inter-
face. Therefore, it can be managed as the same with normal
Java programs.

FreeNA server consists of Java-coded part and the in-
dependent shared library named Interposer. Java-coded part
can also be managed like normal Java program. Since Inter-
poser library just calls Dyninst API for interposition, it can
be managed like a normal shared library.

Dyninst API has been developed and managed as a part
of Paradyn project at Maryland University. In FreeNA sys-
tem, only Interposer library of FreeNA server uses this API,
and FreeNA users and network service developers do not
need to know the existence of the API. Therefore, we can
integrate the latest API into FreeNA system regardless of
users and service developers.

Since network service libraries are implemented as in-
dependent shared libraries with our-defined interface, and
they are dynamically and fully-transparently loaded into the
process image, FreeNA users and service library develop-
ers do not need to be always the same. Therefore, FreeNA
users can download service libraries from third parties, and
manage them independently from FreeNA client/server.

There are many other systems which leverages tricky
interposition techniques. FUSE [24] hooks file operation
system calls to construct user-space filesystems. Although
FUSE is integrated with recent Linux kernel and many dis-
tributors support it by default, the manageability of FreeNA
is easy in that users can manage FreeNA in an unified way
on many platforms, and all FreeNA’s components run within
user-space as independent modules.

Xen [25] is another system which use binary rewriting
method. In contrast, FreeNA users do not need to man-
age patched version of applications, modification of existing
systems, nor special CPU support.

8. Evaluation

In this section, we first compare the functionality of FreeNA
to similar systems, then we evaluate the performance degra-
dation of transparent service insertion with FreeNA.

8.1 Functionality Comparison

MetaSockets [2], Interposition Agents[3], DITOOLS [4],
TESLA [5], and VTL [6] are also general-purposed frame-
works for inserting extended functions into existing appli-
cations like FreeNA.

Table 2 presents a summarization of the functionality
of each system. Usability is evaluated on whether users
can insert prepared service libraries without programming.
Configurability denotes whether the system offers easily-
configurable features. Selective insertion denotes whether
the service insertion/removing can be enabled by some
given conditions.

"We customized OpenSSL library so that the library calls our
prepared function instead of original socket functions to prevent
recursive socket functions calling (See Appendix A).

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

1930
Table 2 Functionality comparison of each systems.
System Users Applications Service Components
Ul U2 Al A2 A3 S1 S2 S3 S4
FreeNA v v v Native Linux/ Library v v v
Windows
MetaSockets N/A Limited | N/A | Java VM - Java Class Y v Limited
Interposition N/A N/A v Native Mach 2.5 Executable | N/A | N/A | Limited
Agents (4.3BSD)
DITOOLS Limited | Limited vV Native IRIX/Linux Library N/A | N/A N/A
TESLA Limited | Limited v Native Linux/FreeBSD | Executable v N/A v
VTL N/A Limited vV Xen/ Executable | N/A | N/A vV
VMWare -

Ul: Usability, U2: Configurability

Al: Language-Independent, A2: Runtime Environment, A3: Platform
S1: Implementation Type, S2: Independently Multiple Insertion, S3: Selective Insertion, S4: Parameter Setting

While other systems impose coding tasks to their users
for network service insertion, FreeNA does not require pro-
gramming to its users. To realize service insertion with-
out programming, FreeNA offers fine configuration mech-
anism. Therefore, FreeNA is user-oriented system rather
than developer-oriented system unlike other systems. Al-
though DITOOLS offers the configuration file, configurable
items are few and not user-oriented.

FreeNA has no restriction on the programming lan-
guage used to implement the application because service
functions are inserted at binary level. However, MetaSock-
ets can only be used for Java applications. In general, sys-
tems that are based on source code level service insertion
have similar limitations.

Since network services can be implemented as sharable
components, several implementation types are considerable.
With FreeNA and DITOOLS, network services are imple-
mented as shared libraries. Therefore, network services can
be directly loaded into application’s process image. With
Interposition Agents, TESLA, and VTL, services are imple-
mented as executables.

Advanced network applications may have multiple
communication flows. In this case, a mechanism that al-
lows users to insert network services separately (selective
insertion) is imperative. FreeNA enables the selective inser-
tion by using the global/local rules in the configuration file.
MetaSockets does not support such selective insertion. In-
stead, they enable runtime service insertion according to the
network conditions such as packet loss rate. Other systems
do not support selective insertion. Even though the mecha-
nism can be implemented within service components them-
selves, it incurs more complexity in service components es-
pecially multiple services are inserted.

As we can see, FreeNA has more practical usages in
that following reasons.

e FreeNA can be available on multi-platforms including
Windows because of its design and the portability of
Dyninst APIL.

e FreeNA can support many applications run on ma-
jor platforms because FreeNA is available on multiple
platforms, applications implemented with different lan-

& ol

1000BASE-T

@@

1000BASE T

@

BUFFALO

Machlne 1 (LSW-GT-8NSR) Machine 2
{Receiver) {Sender}
Fig.9 Experimental network.

Table3 Machine specifications.

Machinel

(0N WindowsXP/Linux (2.6.18)
CPU Intel PentiumM 1.73 GHz
Memory | 512 MByte

Network | Ethernet (1000BASE-T)
Machine2

(0N WindowsXP/Linux (2.6.18)
CPU Intel PentiumD 2.8 GHz
Memory | 4GByte

Network | Ethernet (1000BASE-T)

guages can be supported, and FreeNA does not require
virtual environment.

e Users can insert the existing service component by
writing the XML-formatted configuration file without
any modification of existing systems.

e Users can specify services, parameters, and insertion
rules within the configuration file.

e FreeNA can support multiple service components to-
gether because FreeNA leveraging the flow handler
mechanism.

e Overhead of service insertion is quite small as shown
later, because service functions can be directly ac-
cessed by the application code within the process im-
age.

8.2 Overhead Evaluation

We conducted three types of experiments to evaluate the
overhead of service insertion by FreeNA. Figure 9 and Ta-
ble 3 shows the experimental network and each machine’s
specifications. In the experiments, overhead was evaluated
on both the Linux and Windows operating systems. An

KAWASHIMA et al.: FREENA: A MULTI-PLATFORM FRAMEWORK FOR INSERTING UPPER-LAYER NETWORK SERVICES

application that directly calls the service functions is also
evaluated for comparison purposes. The test applications
were written in C++ and compiled by GNU g++/Visual Stu-
dio.NET using the best optimization option.

8.2.1 Transmission Overhead with Light-Weight Service

In the first experiment, the application on Machinel sends
300,000 application-data with a Null service library, which
sends data merely without any processing, and therefore the
measurement directly represents the efficiency of the service
insertion. Each application-data is 1024 bytes and the time
is measured during all the data is transmitted to the receiver.

Table 4 shows the time for transmissions on both Linux
and Windows with various numbers of null service libraries.
Although the transmission times are different for different
OSs, the time for FreeNA and for an application calling the
service directly are almost the same (performance degrada-
tion was less than 2% at the most). Therefore, the overhead
of a service insertion by FreeNA is negligible.

8.2.2 Transmission Overhead with Heavy-Weight Service

This experiment was conducted under the same conditions
as the previous one except that a Cryptography service li-
brary and a Compression service library were used. The
compression library uses a Zlib library [23] and the cryp-
tography library uses a Crypto++ library [26], and a Sose-
manuk stream cipher [27] was used in the experiment. We
tested the cryptography services, compression services, and
both the compression and cryptography services.

The measurement results are shown in Table 5 and in-
dicate that FreeNA does not affect the performance of the
target application when using practical service libraries (per-
formance degradation was less than 1%).

8.2.3 Overhead with Practical Usage

The third experiment was conducted using a file transfer

Table4 Transmission time with light-weight service.
Number of calls 1 2 3 4 5
FreeNA 2.635 2.638 2.635 2.637 2.64
L Appli- 2.629 2.635 2.636 2.637 2.636
direct
FreeNA 10.105 10.104 10.12 10.121 10.095
w Appli- 10.105 10.076 10.122 10.097 10.141
direct

L: Linux, W: Windows

Table 5 Transmission time with heavy-weight services.
Service Name | Crypto Comp. Crypto+Comp.
FreeNA | 2.641 26.242 26.785
L Appli- 2.641 26.197 26.721
direct
FreeNA | 10.404 23.574 24.141
W | Applli- | 10.389 23.625 24.128
direct

1931

application like FTP that uses two connections. A control
connection was used to request a file and a data connec-
tion was used to transfer the file itself. The cryptography
and compression service libraries were used again, and the
compression service was applied to the data connection and
the cryptography service was applied to both the data and
the control connections. We evaluated the throughput of
the client application on Machinel while the required file
was transferring through the data connection using various
application-data sizes. The size of the application-data was
one of the important factors affecting the system through-
put, because the number of packets is inversely proportional
to their size. The number of packets should generally be
reduced to curtail the overheads of the packet processing.
Figure 10 shows the client’s throughput on Linux and
Fig. 11 shows the throughput on Windows. In Fig. 10,
the throughput rapidly increased as the application-data
size increased, especially for Application-Normal. The
throughputs for these three schemes were close when the
size was larger than 2048 bytes. If the compression ser-
vice was used, throughput was low even though the ac-
tual application-data size was reduced by the compression.
However, the throughput of the other four graphs was al-
most the same. Next, on Windows, the throughput of the

1000
900 Appllatln Norml]
— 800 Application-Crypto B
a FreeNA-Crypto —¢
g 700 e -
=
- 600 1
5 500 .
,g 400 Application-Compress — &
2 FreeNA-Compress —<—
" 300 Application-Compress+Crypio v]
= 200 + FreeNA-Compress+Crypto —+— |
10 W MRS
0 1 1 Il 1
0 2048 4096 6144 8192
Data Size [bvte]
Fig.10 Throughput of client on Linux.
600 T T T T
Application-Normal *
500 Application-Crypto — /X,__*/;E
n FreeNA-Crypto
3 400 |
5300 :
’_% 2
g Application-Compress — 4
o 200 FreeNA-Compress o—]
=) P P "
100 6 1
ppllcahon Compress+CrypTo —v—
o ¥ . FreeNA-Compress+Cryplo ——
0 2048 4096 6144 8192

Data Size [bvtel]

Fig.11 Throughput of client on Windows.

1932

normal/cryptography clients was less than that of Linux.
In addition, there are some substantial performance drop
points. This phenomenon may be caused by Windows or
a network driver’s implementation style since the test pro-
gram and service libraries are the same on both Windows
and Linux, and the phenomenon was not observed on Linux
platform. However, there was no significant differences be-
tween FreeNA method and application-direct method. From
the experiment, we can say that there seems to be no signif-
icant influence of the service insertion by FreeNA for prac-
tical usage on both platforms. Therefore, users only have
to consider the overhead of processing the service functions
themselves.

9. Conclusion

In this paper, we presented a multi-platform framework
called FreeNA, which allows users to insert network service
functions into existing applications for instant service vali-
dation with real system environment. FreeNA is composed
of a client, a server, configuration files, and service libraries,
and is currently available on Linux/Windows platforms.

We evaluated the functionality of FreeNA and con-
ducted several experiments. As a result, FreeNA was able to
enable more usability, portability, configurability, and prac-
ticality than other systems, and the overhead of a service
insertion using FreeNA was about 1-2% at a maximum on
both platforms when compared to that of an application-
direct method.

Followings are advantages of FreeNA compared with
other similar systems.

e FreeNA can be available on multi-platforms

e FreeNA can support many applications run on major
platforms

e Users can insert the existing service component by
writing the configuration file

e Users can specify services, parameters, and insertion
rules

e FreeNA can support multiple service components to-
gether

e Overhead of service insertion is quite small

We are going to introduce more practical network ser-
vices such as mobile service and extend FreeNA in order
to dynamically insert or remove network services depend-
ing on network conditions. Each end of FreeNA may have
to communicate with each other more dynamically. This ap-
proach is expected to enhance the overall performance of the
system since the most suitable services and parameters can
be selected based on network environments or conditions.

References

[1] R. Kawashima, Y. Ji, and K. Maruyama, “Design and implementa-
tion of multi-platform infrastructure of extensible networking func-
tions,” IEEE GLOBECOM, New Orleans, LA, USA, Nov. 2008.

(2]

[3]

[4]

(3]

[6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]
[24]

[25]

[26]
[27]

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

S.M. Sadjadi, P.K. McKinley, E.P. Kasten, and Z. Zhou, “MetaSock-
ets: Design and operation of runtime reconfigurable communica-
tion services,” Software-Practice & Experience, vol.36, no.11-12,
pp.1157-1178, 2006.

M.B. Jones, “Interposition agents: Transparently interposing user
code at the system interface,” ACM SIGOPS Operating Systems Re-
view, vol.27, no.5, pp.80-93, 1993.

A. Serra, N. Navarro, and T. Cortes, “DITOOLS: Application-
level support for dynamic extension and flexible composition,” Proc.
USENIX Annual Technical Conference, San Diego, CA, USA, June
2000.

J. Salz, A. Snoeren, and H. Balakrishnan, “TESLA: A transpar-
ent, extensible sesson-layer architecture for end-to-end network ser-
vices,” Proc. USITS *03, 4th USENIX Symposium on Internet Tech-
nologies and Systems, Seattle, WA, USA, March 2003.

J.R. Lange and P.A. Dinda, “Transparent network services via a vir-
tual traffic layer for virtual machines,” IEEE International Sympo-
sium on High Performance Distributed Computing, Monterey, CA,
USA, June 2007.

J. Zhang and B.H.C. Cheng, “Towards re-engineering legacy sys-
tems for assured dynamic adaptation,” International Workshop on
Modeling in Software Engineering (MISE *07), Minneapolis, MN,
USA, May 2007.

Y. Yanagisawa, K. Kourai, S. Chiba, and R. Ishikawa, “KLASY:
System for source-based binary-level dynamic weaving,” J. IPSJ,
vol.48, n0.SIG 10(PRO 33), pp.176-188, June 2007.

J. Tamches and B.P. Miller, “Fine-grained dynamic instrumentation
of commodity operating system kernels,” Proc. OSDI 99, pp.117—
130, Berkeley, CA, USA, 1999.

E. Kasten, P.K. McKinley, S. Sadjadi, and R. Stirewalt, “Separating
introspection and intercession in metamorphic distributed systems,”
Proc. ICDCS’02, Vienna, Austria, July 2002.

M.A. Eriksen, “Trickle: A userland bandwidth shaper for Unix-like
systems,” Proc. USENIX Annual Technical Conference, Anaheim,
CA, 2005.

livepatch — Live Patching for Linux,
http://ukai.jp/Software/livepatch/, May 2009.

N.C. Hutchinson and L.L. Peterson, “The x-Kernel: An architec-
ture for implementing network protocols,” IEEE Trans. Softw. Eng.,
vol.17, no.1, pp.64-76, Jan. 1991.

D.M. Ritchie, “A stream input-output system,” AT&T Bell Lab.
Tech. Journal, vol.63, no.8, pp.1897-1910, Oct. 1984.

B. Buck and J.K. Hollingsworth, “An API for runtime code patch-
ing,” International Journal of High Performance Computing Appli-
cations, vol.14, no.4, pp.317-329, 2000.

Stunnel.org, http://www.stunnel.org/, May 2009.

K. Kono, T. Shinagawa, and M.R. Kabir, “Improving internet
server security by filtering on TCP streams,” J. IPSJ, vol.46,
n0.SIG 4(ACS 9), pp.33—-44, 2005.

IP_.DUMMYNET, http://info.iet.unipi.it/ luigi/ip-dummynet/, May
2009.

Zorp, http://www.balabit.com/network-security/zorp-gateway/, May
2009.

Detours, http://research.microsoft.com/en-us/projects/detours/, May
2009.

OpenSSL, http://www.openssl.org/, May 2009.

libcurl — the multiprotocol file transfer library,
http://curl.haxx.se/libcurl/, May 2009.

Zlib, http://www.zlib.net/, May 2009.

FUSE: Filesystem in Userspace, http://fuse.sourceforge.net/, May
2009.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtualiza-
tion,” Proc. 19th ACM symposium on Operating systems principles,
Bolton Landing, New York, USA, 2003.

Crypto++, http://www.cryptopp.com/, May 2009.

C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L.

KAWASHIMA et al.: FREENA: A MULTI-PLATFORM FRAMEWORK FOR INSERTING UPPER-LAYER NETWORK SERVICES

Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T.
Pornin, and H. Sibert, “Sosemanuk, a fast software-oriented stream
cipher,” Proc. SKEW — Symmetric Key Encryption Workshop, Net-
work of Excellence in Cryptology ECRYPT, Aarhus, Denmark, May
2005.

Appendix A: Recursive Socket Functions Calling Prob-
lem

In our approach, socket functions called by applications are
replaced with functions of the control library by dyninst
APIL. Dyninst API inserts jump instruction into process im-
ages at the beginning of socket functions’ code. Therefore,
when the interface library calls socket functions, control li-
brary’s functions are eventually called again.

We solved this problem by using syscall system
call on linux and customized WinSock library on windows.
syscall can be used to call system calls by specifying func-
tion numbers. Customized WinSock library is almost the
same with original WinSock except that function’s names
are slightly changed like send — senX. Since dyninst API
identifies functions by their names, this approach is valid.

Appendix B: Supported Socket Functions

Common socket functions supported by FreeNA are listed in
Table A- 1. FreeNA user can modify the behavior of listed
functions by preparing network service libraries.

Appendix C: FreeNA’s Commands

FreeNA client’s commands are listed in Table A- 2.

Table A-1 Supported socket functions (AF_INET).
socket bind connect
listen accept send
recv sendto recvfrom
close shutdown getpeername
getsockname | getsockopt | setsockopt
Table A-2 List of major commands of FreeNA client.
command | description
run Execute the specified application
dumpfile Create the executable file
stop Suspend the specified application
continue Reexecute the specified application
terminate | Terminate the specified application
detach Detach the specified application
input Input standard-input data to the application
proclist Show a list of running application
cd Change the current directory
Is List all files in the current directory

pwd Show the path to the current directory

1933

Ryota Kawashima was born in 1983. He
received his M.S. degree from Iwate Pref. Univ.
in 2007. He is a Ph.D. Candidate and has been in
Graduate University for Advanced Studies (SO-
KENDAI) since 2007. His research areas are
networking, middleware system and mobile sys-
tems. He is a member of IPSJ, JSSST, and IEEE.

Yusheng Ji received B.E., M.E. and D.E. in
Electrical Engineering from The University of
Tokyo in 1984, 1986 and 1989 respectively. She
jointed the National Center for Science Informa-
tion Systems in 1990. Currently she is an as-
sociate professor at the National Institute of In-
formatics, and the Graduate University for Ad-
vanced Studies. Her research interests include
network architecture, resource management and
performance analysis for quality of service pro-
visioning in wired and wireless networks. She
is a member of IPSJ and IEEE.

Katsumi Maruyama received B.E. and
M.E. degrees in Electrical Engineering from
University of Tokyo, in 1968 and 1970, respec-
tively, and the Dr. degree in Engineering from
University of Tokyo, in 1990. From 1970 to
1995, he worked at NTT. He is currently a
professor at National Institute of Informatics.
His research interests include distributed oper-
ating systems, concurrent object systems, real-
time systems and programming languages. 1982
NTT president award. 1993 IPSJ best paper

award.

