
1986
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

PAPER Special Section on New Technologies and their Applications of the Internet

Partially Eager Update Propagation and Freshness-Based Read
Relaxation for Replicated Internet Services

Ho-Joong KIM†a), Student Member and Seungryoul MAENG†, Nonmember

SUMMARY We propose an Edge-write architecture which performs
eager update propagation for update requests for the corresponding sec-
ondary server, whereas it lazily propagates updates from other sec-
ondary servers. Our architecture resolves consistency problems caused by
read/update decoupling in the conventional lazy update propagation-based
system. It also improves overall scalability by alleviating the performance
bottleneck at the primary server in compensation for increased but bounded
response time. Such relaxed consistency management enables a read re-
quest to choose whether to read the replicated data immediately or to re-
fresh it. We use the age of a local data copy as the freshness factor so that a
secondary server can make a decision for freshness control independently.
As a result, our freshness-controlled edge-write architecture benefits by ad-
justing a tradeoff between the response time and the correctness of data.
key words: distributed system, edge service, data replication, freshness,
consistency

1. Introduction

Edge service architecture [2], [3] is widely adopted nowa-
days in order to reduce response time between client and
origin server. Edge server is located geologically close to
clients and serves them cached contents which were gener-
ated by origin server. Thus it absorbs network traffic and lib-
erates the origin server from heavy loads. As the needs for
dynamically generated contents increases, edge server not
only caches static contents like movie files but also deploys
business logic and performs dynamic contents generation to
alleviate server load further as shown in Fig. 1 (b).

But data still remains at origin server in such environ-
ment, since frequently changed data are difficult to cache or
replicate. Thus edge server should communicate with origin
server to manipulate data safely. Such data access causes
increase in the response time and hence it diminishes the
benefit of edge service architecture.

The solution is to replicate data near the edge like 1 (c).
But data replication in a distributed environment needs a
synchronization mechanism between the original and the
replicated data.

There are two major approaches to handle data repli-
cation; decentralized and centralized approaches. While de-
centralized approaches keep the consistency of data by par-
ticipation of member nodes, centralized approach lean on a
authorized server to maintain consistency.

Manuscript received February 14, 2009.
Manuscript revised May 25, 2009.
†The authors are with Korea Advanced Institute of Science and

Technology (KAIST), Korea.
a) E-mail: hjkim@camars.kaist.ac.kr

DOI: 10.1587/transinf.E92.D.1986

Fig. 1 Edge service architecture and data replication.

In centralized approach, an update request for cer-
tain data is handled first at the primary server, which has
ownership for the original data, and is then propagated to
secondary servers that have replicated copies. Edge ser-
vice architectures commonly adopt the lazy update prop-
agation technique [6], [11], which reduces synchronization
overheads by decoupling data updating at the primary server
and propagation to the secondary servers. As a result, a
replicated copy at the secondary server is stale until the up-
date is propagated. Due to such staleness, some types of
client requests that require correct data cannot be executed
at the secondary server. This reduces the efficiency of the
edge service architecture, particularly when update requests
arrive more frequently.

Weak consistency models such as Eventual consis-
tency [8] can solve the problem. In the eventual consistency
model all replicas eventually be identical, but at a certain
point one replica can have different value from another. This
model is well suitable for numerous Internet applications
since it allows a client to manipulate data with less con-
cern for other clients.Session consistency [6], [7] is a practi-
cal form of eventual consistency. Session consistency keeps

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



KIM and MAENG: PARTIALLY EAGER UPDATE PROPAGATION AND FRESHNESS-BASED READ RELAXATION FOR REPLICATED INTERNET SERVICES
1987

the execution sequence of requests in a single client session
in a consistent order.

Unfortunately, lazy update propagation cannot guaran-
tee session consistency, Because data updating and propa-
gation are separated, a client read request at the secondary
server might not read the previous update request executed
at the primary server but not yet propagated. Thus, addi-
tional synchronization is required, such as blocking a read
request at the secondary server until propagation has been
accomplished.

In the present paper we suggest an edge-write architec-
ture that strengthens synchronization between the primary
and the secondary server. This architecture performs eager
update propagation for update requests for the correspond-
ing secondary server, whereas it lazily propagates updates
from other secondary servers. Moreover, the primary server
is hidden from real clients and each client is connected to a
secondary server only. When an update request arrives at a
secondary server, it is forwarded to the primary server first.
The primary server serializes the request with updates pend-
ing for other clients and then returns it immediately with
any prior update requests on which the request depends that
have not yet been propagated to the secondary server. The
secondary server executes all requests received in sequen-
tial order. By blocking requests, the response time increases
in comparison to the immediate response at the secondary
server, but the blocking time is limited to the round-trip la-
tency between the secondary and the primary server.

For a read-only request, the secondary server decides
between two alternatives: whether to read the possibly stale
data immediately, or to wait until data are refreshed. Some
distributed systems use a freshness scheme to compare dif-
ferences between original and replicated data [5], [15], [16].
However, it is hard to compute data differences between
secondary servers and the primary server correctly in Inter-
net environments. Besides, many Internet applications tend
to have time-related characteristics that are time-sensitive,
time-tolerant, or both. We can use the difference in update
time between the secondary server and the primary server
as a freshness factor. Our freshness scheme regards a repli-
cated data copy to be fresh only when the related update
propagation is accomplished at the secondary server. The
actual freshness of a data copy is the time elapsed since the
last update. This measured freshness value is compared with
the required freshness given by the service provider. If the
measured freshness is higher than the required freshness, a
read request can access data immediately, otherwise the sec-
ondary server sends a refresh action request to the primary
server. This refresh scheme allows precise freshness con-
trol in comparison with primary server-driven update prop-
agation. Our proposed architecture can be used for various
and mixed Internet applications having different time con-
straints.

2. Related Work

There are numerous researches to solve the data replication

Fig. 2 Lazy update propagation model.

problem in distributed environment. Distributed file systems
like Coda [17] and Intermezzo [4] are designed to improve
performance and support disconnected operations. But their
approach is not well suited to Internet applications which are
usually consist of many small independent and interactive
requests.

Decentralized replica management is a hot issue in In-
ternet research area. Distributed Hash Table (DHT) [19]
gives scalability to distributed systems. It is widely used for
searching and maintaining data in P2P networks. Amazon’s
Dynamo [8] is classified as a zero-hop DHT which offers
high availability and good performance for distributed data
access. One of Dynamo’s key feature is eventual consis-
tency model which allows temporarily different version of
data to clients. Decentralized approaches are also strong at
failures like temporal server crash or network partitioning.

Primary-secondary data replication schemes [6], [18]
are based on traditional centralized system. Although cen-
tralized services are weak at single point failure and rela-
tively lacks in scalability, they are intuitive, easy and ef-
ficient to maintain data consistency. Primary-secondary
replication schemes usually adopt lazy update propagation
schemes, as shown in Fig. 2. Whereas eager update prop-
agation suffers from a relatively long response time and
heavy synchronization overhead, lazy update propagation
has advantages of a short response time and a high through-
put [10].

The benefits of lazy update propagation mainly arise
from read request handling at the secondary server. In con-
ventional Internet applications, a large proportion of read
requests are regarded as allowing some staleness. For exam-
ple, web content generated by a service provider is uploaded
at the origin server first and then propagated to edge servers
like the content-delivery network (CDN) [2], [3]. Clients
connect to the nearest CDN server and read the replicated
news document. Although there might be some differences
between the original data at the primary server and its repli-
cated copy at the secondary server until its update is propa-
gated, such differences do not significantly affect the client’s
perception. If a client request requires fully trusted data, it
is served at the primary server rather than at its connected
secondary server.

However, such server-driven consistency management
model [14], [22] is not suitable for interactive services. With



1988
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

the increasing sophistication of Internet applications, there
is more widespread use of interactive data. Clients write
and read their own content and share interaction with other
clients. As a result, an interactive application generates up-
date requests and propagation messages more frequently. A
pure lazy update propagation is not very suitable for such
interactive requests.

A major drawback of lazy update propagation is the
session consistency problem [6]. In session consistency
model any modification of the data induced by a client re-
quest should be visible to successive requests by the same
client. But the pure lazy update propagation protocol cannot
guarantee the session consistency because update at the pri-
mary server is decoupled with read at the secondary server.
If a read request arrives at the secondary server before its
precedent update propagation has been accomplished, the
client cannot see the correct result because his modification
has not yet been applied to that secondary server. Such in-
consistency increases when propagation is delayed or peri-
odic.

Figure 4 (a) illustrates the session consistency problem.
Requests from the same client session on some data d arrive
at the secondary server. Let the first request is composed of
a write and its corresponding read (W1 → R1) and the next
request is a read only request R2. The arriving sequence
at this secondary server is (W1 → R1) → R2, while the
actual execution sequence is R1′ → R2′ → W1′, which
is different from the arrival sequence. Since read requests
cannot see the modification of previous write request, the
session consistency is broken. The dependency between W1
and R1 can be kept if R1 is bounded with W1 in the same
transaction and executed at the primary server rather than at
the secondary server, but R2 still cannot see W1.

Daudjee et al. solved the session consistency problem
in two ways [6]. In one solution, successive read requests
are forwarded to the primary server, while the other solu-
tion involves blocking successive requests at the secondary
server until their precedent updates are propagated. Fig-
ure 4 (b) shows the latter solution, where R2 is blocked at
the secondary server until W1 is propagated later. This solu-
tion offers session consistency but it lacks scalability when
the number of update requests handled at the primary server
increases [7]. Therefore, as well as read requests, update re-
quests should be distributed among the secondary servers.

For certain types of applications, update requests can
be executed at the secondary server. Requests with low con-
currency and high locality can easily be distributed over the
network [9]. GlobeDB [18] moves the responsibility for data
updating from the primary server to the secondary servers.
It divides whole data sets into clusters and assigns a mas-
ter secondary server to each cluster. An update request to a
data cluster is sent to its master secondary server rather than
to the primary server. Using data access locality, GlobeDB
reduces traffic and loads on the primary server. Although
GlobeDB does not guarantee that all secondary servers have
identical data sets at the same time, all replicated data copies
are eventually consistent, since it propagates all updates in

the same order. However, GlobeDB does not fully solve the
scalability issue of lazy update propagation, since data par-
titioning and locality management are additional issues.

3. Proposed System Architecture

3.1 Edge-Write Architecture

As outlined in the previous section, Primary-Secondary data
replication model rely on a centralized primary server that is
not only responsible for update propagation, but also serves
trusted data. Thus, the primary server should handle all
complex updates and read requests alone, whereas the sec-
ondary servers serve simple jobs for which little consistency
management is needed [23]. This imposes heavy loads and
traffic on the primary server. If update requests can be exe-
cuted at each secondary server, the performance bottleneck
at the primary server might be alleviated. Although some
approaches involve distribution of write requests over sec-
ondary servers, applications are limited to low-concurrent
data access [13] or high access locality [18].

We propose an update propagation protocol in which
not only read requests but also all update requests are exe-
cuted at the secondary servers only as shown in Fig. 3. We
call it edge-write architecture because secondary servers re-
side at the edge and allows direct write to its replicated data.

When an update request R arrives at the secondary
server, it is forwarded to the primary server first, the same
as for conventional models. However, the forwarded update
request is not executed at the primary server and is only se-
rialized with other update requests from different secondary
servers. The request is then immediately returned to its cor-
responding secondary server with any other update requests
on which R depends. On receiving the response message
from the primary server, the secondary server executes the
update requests it receives in sequential order. Thus, the
original update request R is executed last. Until all updates
are complete, any read requests that arrived later than R and
depending on it are blocked. By serializing all update re-
quests, replicated data at any secondary server are eventu-
ally identical to the original data at the primary server. Ses-
sion consistency is maintained by blocking and serialization
of local read requests.

The main difference between our design and the oth-
ers is that all update requests and corresponding read re-

Fig. 3 Edge-write architecture.



KIM and MAENG: PARTIALLY EAGER UPDATE PROPAGATION AND FRESHNESS-BASED READ RELAXATION FOR REPLICATED INTERNET SERVICES
1989

Fig. 4 Synchronization mechanisms in the lazy update propagation.

quests for the latter have to be executed at the primary server
that has the original data, whereas our proposed architecture
forces each update request to be executed locally at each sec-
ondary server. By restricting the role of the primary server
to sequencing of updates, we eliminate the performance
bottleneck at the primary server [6] and distribute requests
among the secondary servers. In addition, the blocking la-
tency at the secondary server is not restricted to the primary
server’s update propagation interval, but is only limited by
the round-trip time between the secondary and the primary
server. Figure 4 (c) Illustrates how the edge-write architec-
tures works.

3.2 Eventual Consistency and Concurrency Control

Our proposed architecture adopts session consistency,
which is a form of eventual consistency [21]. As described
in the previous section, each secondary server can see tem-
porarily different version of data copy in the eventual con-
sistency model, although these copies will be finally merged
into identical value some time.

Let’s see the example Fig. 4 (c). after W1 is serialized
at the master server with a data d = d1, R1 and R2 at the
secondary server E1 can read d without any intervention.

If another secondary server E2 writes W3 E2 on d = d2

at the master server, the change of d is not propagated and
the value of d still remains d1 at E1. This does not violate the
session consistency because a session in E1 can see its write
d1, but it violates the transactional consistency model. Since
the other secondary server can read d as d1 or d2, concur-
rency control is required for the eventual consistency model.

Fully distributed approaches [8] require multi-version
control to solve such inconsistency. It requires extra over-
head and needs additional programming rather than tradi-
tional internet service models.

Our proposed architecture also requires concurrency
control, but in highly alleviated manner. Since we seri-
alize all write requests in a primary server, all secondary
servers except E1 who wrote d = d1 can see the latest ver-
sion d = d2. E1 does not need to update d = d2 until it
requires to update d again. Assume E1 writes W4 where

d = d3 = d1 + 1. W4 should be serialized first at the pri-
mary server before it is done at E1. Since the primary server
keeps the propagation history d, it can easily find out that
W3E2 was not propagated to E1 and solve the conflict.

Although the eventual consistency model requires such
extra mechanism, such consistency model can distribute re-
quests among distributed replicas and therefore improve the
overall system performance in the most case.

3.3 Freshness

Generally, read requests in Internet services can be catego-
rized into two groups: those that require careful handling
with a guarantee of full consistency, and those that can be
executed without regarding the correctness. In the latter
case, a read request reads replicated data that are possibly
outdated at the secondary server. Updates for such data are
initiated by the primary server immediately, with a delay, or
periodically after the update is accomplished at the primary
server. However, sophisticated consistency control can im-
prove the performance of Internet service systems and dis-
tribute certain services that are currently considered not to
be replicated at the secondary server.

We use the concept of freshness in our edge-write ar-
chitecture to adjust a tradeoff between the response time and
the correctness of data. Commonly, the freshness of a repli-
cated data set D′ is defined as the difference between D′ and
the original data set D. Various freshness metrics can be
used, such as version difference or the amount of modified
data [5], [12] and the time difference [1], [16]. High fresh-
ness means that replicated data are close to the original data,
and thus the replication service is reliable to a certain degree.

While most distributed systems focus on maintaining
the freshness of replicated data as high as possible, Röhm et
al. [16] defined freshness as a QoS (quality-of-service) pa-
rameter in an online analytical processing cluster system.
Every read request submitted to the centralized scheduler is
forwarded to a data server, which satisfies the freshness re-
quirement of the request. When there is no server to meet
the requirement, one server is chosen to be refreshed. By
allowing different freshness values for each data server, the



1990
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

system can avoid the overheads involved in refreshing the
whole server system. Since many Internet applications per-
mit a certain degree of staleness, freshness-based QoS con-
trol can improve the performance of Internet servers.

Unfortunately, it is not so easy to apply existing
freshness-based schemes directly to our edge-write architec-
ture. Each client’s request message is connected to the geo-
graphically or logically closest server, rather than first being
serialized by a centralized scheduler. Thus, there are only
two options for each request: execution at the connected
secondary server or forwarding to another server, in partic-
ular one with an up-to-date copy.

Since secondary servers are scattered over the wide-
area network, it is difficult to compare the freshness of a
data copy at a particular secondary server with the original
data. Thus, we use the age of a local data copy rather than
the amount of difference as a measure of the freshness. A
data copy d at a secondary server is considered to be fresh at
t0(d), the instant at which the secondary server received and
executed a refresh message regarding d from the primary
server. A refresh message consists of zero or more updates
on d that have not yet been propagated to this secondary
server. Each update for d is executed in sequential order
and then the timestamp and the version number of d are up-
dated to t0(d). If there are no updates to propagate, only
the timestamp is updated. This freshness scheme is simi-
lar to lease-based consistency management [22], but in our
scheme a refresh action is initiated by the secondary server
on demand.

As time elapses since d was refreshed at t0(d), the mea-
sured freshness f m decreases. For convenience, we evalu-
ate f m in indexed form. When a read request R for data
d arrives at the secondary server at time tR, the measured
freshness f m(d) and corresponding staleness sm(d) can be
calculated as follows:

sm(d) =
elapsed time since the latest refresh

P

=
tR − t0(d)

P
f m(d) = MAX[0, 1 − sm(d)]

P is the period length provided by the service provider.
If P has elapsed since the latest refresh, then data copy d
is permanently stale and thus expired. f m declines with a
slope of 1/P.

Each read request has freshness requirement f r(d) for
accessing data d. Different services might have different
freshness requirements for the same data object.

When a read request R having freshness requirements
f r(d) arrives at the secondary server E:

• If f r(d) < f m(d), then R is executed immediately at E.
• Otherwise, E sends a refresh message regarding d to

the origin server and waits for a response.

Although we define sm(d) as a simple linear function
of the elapsed time in this paper, sm(d) can be changed to a
complex timing function. Various factors such as the types

and characteristics of data and access patterns can be used to
adjust the adequate staleness function. Service policy such
as SLA (service level agreement) can also considered on the
decision of sm(d).

We describe the freshness comparison mechanism and
the request flow in detail in the next section.

4. System Design

4.1 Data Partition

Our proposed system replicates a complete set of data to
all secondary servers. Data can be also kept at the primary
server as an option, but in our model this is only used for
backup storage.

A whole data set D is partitioned into n disjoint objects.
Each data object di ∈ D in a secondary server with latest
refresh time and local update version di(ti, vi). The primary
server also has di(ti, vi) for each di, which is the latest request
arrival time and update version for di from all secondary
servers.

The granularity of a data object can vary from a table
entry to a whole database site. When the size of a data ob-
ject is too small, our system suffers from frequent refresh
requests. On the other hand, data objects that are too large
may lose the benefit of freshness control and suffer from
frequent update interrupts, although the overall freshness of
data is kept high. The granularity may be dictated by the
service provider, but we expect that the proper size of data
objects can be calculated by observing data access patterns
and the number of refresh messages.

4.2 Freshness Tables

As shown in Fig. 5, each secondary server maintains two
freshness tables: one is the freshness requirement table
(FRT) for each service, and the other is the freshness mea-
surement table (FMT) for each data object.

A service is a predefined set of codes used to manipu-
late one or more data objects. A client request consists of
services and the corresponding parameters. For example,
“show the current bidding price for a certain item number”
is an inquiry service and “show the current bidding price
for item #123” is an inquiry request. For service S i, fresh-
ness requirement f ri is the set { f r(d1), f r(d2), . . . , f r(dn)}
for data set D = {d1, d2, . . . , dn}. Thus, the FRT is a m × n
array for m services and n data objects.

The FMT is an array of current freshness values for
each data object. It contains (t, v, seq) for each data ob-
ject di, where t(di) is the latest update time and v(di) is the
version number. The version number given by the primary
server is used to maintain the global update sequence. A
measured freshness value f m(di) is derived from t(di). The
FMT also maintains the sequence number seq for each data
object. It is used to achieve session consistency by serializ-
ing and blocking requests locally. Thus, seq is not visible to
the primary server.



KIM and MAENG: PARTIALLY EAGER UPDATE PROPAGATION AND FRESHNESS-BASED READ RELAXATION FOR REPLICATED INTERNET SERVICES
1991

Fig. 5 System design.

The primary server has FMTM only, which is a collec-
tion of FMTs for all secondary servers. It consists of a two-
dimensional array of k × n for k secondary servers and n data
objects. Each entry has a couple of values (t, v), which are
the latest propagation time and the version number. FMTM

does not keep the sequence number seq because the version
number v serializes all write requests arriving at the primary
server.

4.3 Types of Client Request

A single client request accesses one or more data objects
in the connected secondary server. Every request calls on a
service, and thus its consistency requirements are specified
in the FRT. The request is immediately executed at the con-
nected secondary server if it is a read request and all require-
ments are satisfied by the current FMT. If not, the request is
blocked until its related data objects in the secondary server
are updated to meet the requirements.

A local sequence number seq is assigned to each re-
quest. This prevents the sequence inversion that can oc-
cur in distributed environments. Session consistency is also
achieved using the local sequence number [6]. Even if all
freshness requirements are met, a client request should be
held until previous update requests in the same client ses-
sion have been performed.

4.4 Types of Messages between the Secondary Server and
the Primary Server

There are three types of messages transferred between the
secondary server and the primary server: re f resh read,
re f resh update, re f resh response. The first two are re-
quests from the secondary server to the primary server,
while the last is the response from the primary server for
these two types of requests.

• A re f resh read message is initiated by a secondary
server when the consistency requirement of a data ob-
ject di is not fulfilled for any di. This message requests
all prior updates for di that have not been applied to the
secondary server (Algorithm 1).

On receiving the client request R at time tR,
DR = a set of data object d accessed by R
if R is an update request then

m = re f resh update(DR)
else

DS = a subset of DR where f m(d) < f r(d)
if DS � {} then
/* some data objects should be refreshed

*/

f m′(d) : an expected f m(d) at t′R = tR + RT
D′S = a subset of DR where f m′(d) < f r(d)
DS = DS ∪ D′S
m = re f resh read(DS )

else
/* all data objects meet fm(d) ≥ fr(d) */

Execute R immediately at the secondary server
Exit

end
end
Send the message m to the primary server
Block R until the response for m arrives

Algorithm 1: refresh requests by the secondary
server

• A re f resh update message acts similar to re f resh read,
except this message contains a latest update for di.
• A re f resh response message is the response message

from the primary server for the above two types of re-
quests. The primary server packs and returns all update
messages on which is di dependent in sequential order
(Algorithm 2).
• On receiving a re f resh response message, the sec-

ondary server executes all updates in this message
and then executes locally blocked read requests (Al-
gorithm 3).

We compare the measured freshness f m(d) and the
required freshness f r(d) twice in Algorithm 1. Assume
di, d j ∈ DR and di fails to meet the freshness requirement
but d j is fresh at tR, then request R should be blocked until
t′R when the response from the primary server arrives and di

is refreshed. But d j might be stale at t′R since it didn’t re-
quest to be refreshed. Thus we should examine freshness of
d′j once more before sending a refresh request to the primary
server in this case. Because a secondary server cannot know



1992
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

Fig. 6 Types of refresh messages and their flow.

On receiving a refresh request m from a secondary server E,
Dm = a set of data object d accessed by m
if m is re f resh update then

if ∃di ∈ Dm is not the latest version in E then
Solve conflict on di

end
Add m in the global update queue Q

end
/* find all enqueued messages dependent with m,
by reverse order */

Qm = a set of messages ∀m′ ∈ Q not propagated to E
Qres = {}
while Qm � {} do

m′ : the latest message in Qm

Dm′ = a set of data objects accessed by m′
if Dm ∩ Dm′ � {} then

Dm = Dm ∪ Dm′
Add m′ to Qres

end
Remove m′ from Qm

end
/* send all update messages dependent with m */

Send re f resh response(Qres) to E
foreach d ∈ Dm do

Update FMTM(E, d)
end

Algorithm 2: refresh response by the primary
server

On receiving Qres which is a queue of update messages,
/* execute update messages in a sequence order */

while Qres � {} do
m′ : the oldest update request in Qres

Dm′ = a set of data object d accessed by m′
Execute m′
foreach d ∈ Dm′ do

update FMT (d)
end
Remove m′ from Qres

end
Execute blocked requests

Algorithm 3: refresh action at the secondary server

correct t′R, we use an estimation of the round trip time RT
such that t′R = tR + RT .

When a refresh request message m, which is either
re f resh read(DR) or re f resh update(DR), arrives at the
primary server, it requires all previous updates for any data
object d ∈ DR. The simplest way to find out dependen-
cies between m and the queued update messages is to return
whole messages queued in the primary server. This also can
improve overall freshness of whole data set D, but it might
be wasteful when update locality is high. If a secondary
server updates a certain data object frequently and another
secondary server rarely accesses it, the data object is not
necessarily to be propagated to the latter at every update.
To find out dependencies between update requests precisely,
we travel the global update queue Q in the reverse order
as written in Algorithm 2. Even though Dm1 ∩ Dm = {}, if
Dm1 ∩ Dm2 � {} and Dm2 ∩ Dm � {} then m1 → m2 → m. If
any dependency between a queued update message m′ and a
queue of messages Qres is found, m′ is added to Qres. Qres is
then sent back to the secondary server and executed in a se-
quence order, as Algorithm 3. Finally, the secondary server
can execute any blocked requests accessing d ∈ DR.

4.5 Example of a Request Sequence

Figure 6 illustrates an example of a request sequence for a
data object d in a single client session. The above figure is
a flow of request sequence, and the below is the measured
freshness value at each event. Shadowed area means f m(d)
is high enough so that a read request for d can be executed
immediately.

When a read request R1 arrives at the secondary server,
the required d is not fresh enough. Since one or more re-
fresh request messages are pending already, R1 waits until
the update is propagated. After the re f resh response mes-



KIM and MAENG: PARTIALLY EAGER UPDATE PROPAGATION AND FRESHNESS-BASED READ RELAXATION FOR REPLICATED INTERNET SERVICES
1993

sage arrives and is refreshed at the secondary server, The
secondary server can perform R1′, which is the actual ex-
ecution of R1. R2 also accesses fresh data, but when R3
arrives at the secondary server, d is stale again. R3 initiates
a re f resh request message and waits. R4 is blocked again
but does not issue a new request refresh message since the
response for R3 is not yet returned. But an update request
W5 should initiates another request message. When the re-
sponse for R3 is returned, it contains other updates for d
from different secondary servers. After updating Wa, Wb,
and Wc, R3 and R4 can be executed. Execution of R6 is
not yet allowed since it is dependent on W5. Thus, R6 is
executed after Wd and W5 are updated.

5. Evaluation

5.1 Simulation Environments

We made a simulation environment for lazy update propaga-
tion architecture models in which several secondary servers
and one primary server are distributed over a simulated
WAN environment. Clients, which are edge servers in our
simulation, are uniformly assigned to each secondary server,
and each client communicates only with the connected sec-
ondary server. secondary servers communicate with the pri-
mary server to update replicated data copies or to forward
client requests to the primary server.

Since existing web benchmarks such as TPC-W [20]
are designed to evaluate a single site and their data access
patterns have low concurrency, we cannot use such bench-
marks directly for our environment. Instead, we generate
synthetic requests to access shared and replicated data sets.
A client generates a request under given parameters and sub-
mits it to a secondary server. The simulation parameters are
summarized in Table 1.

5.1.1 Simulation Parameters

There are two types of client requests in our simulation: read
and update requests. A read request involves a single read
operation, whereas an update request is a combination of
one write operation and a subsequent read operation. A read
operation accesses one or more data objects and a write op-
eration modifies a small entry in a single data object. The

Table 1 Simulation parameters.

number of CPUs at the primary server 4
number of secondary servers 2–32

number of clients per secondary servers 50
update request ratio 0.01–0.2

execution time for a read operation 0.15 sec
execution time for a write operation 0.01 sec

request handling time 0.001 sec
average WAN latency (RT/2) 0.5 sec

freshness normalization factor P 10 sec
periodic update propagation interval 5 sec

mean client thinking time 10 sec
total execution time 1000 sec

default update request ratio is 0.2, which is quite high com-
pared to the TPC-W benchmark. Although TPC-W chooses
the read/update ratio for “shopping mix” as 80/20, each up-
date transaction comprises several read operations and fewer
write operations rather than a couple of single write and read
operations in our simulation.

The execution time for a read operation belongs to a
uniform distribution with an average of 0.15 sec and 20%
variation. Since a write operation usually involves indexed
access to a single entry rather than a ranged access, the exe-
cution time is much shorter for a write operation than for a
read operation.

We define a freshness normalization factor P of 10 sec-
onds for freshness-based models. This means that any repli-
cated data are permanently stale when 10 sec has elapsed
since the latest update. The WAN latency RT/2 is 0.5 sec.
In the periodic update model, update propagation occurs ev-
ery 5 sec, which is P/2.

Client thinking time is the idle time between two suc-
cessive requests in a single client session. In our evalua-
tion, client thinking time is an exponential distribution with
a mean value of 10 sec. Note that the periodic update propa-
gation interval is shorter than the mean client thinking time.
It gives sufficient time for the previous requests in the same
session to be propagated, thus a subsequent read request is
seldom blocked at the secondary server in the periodic up-
date propagation model.

5.2 System Models

Besides our freshness-based (FR) model, periodic update
propagation (PU) and immediate update propagation (IM)
models are evaluated for comparison. The PU model is a
traditional lazy update propagation model with guaranteed
session consistency, whereas the IM model does not guar-
antee session consistency.

• IM : An update request is divided into write and read
operations. Write operations are sent to the primary
server and propagated to all secondary servers immedi-
ately, whereas subsequent read operations are consid-
ered to be an independent read requests and executed
at the secondary server immediately without waiting
for propagation of previous write operations. The
IM scheme shows maximum performance, but fails to
maintain session consistency. See Fig. 4 (a).
• PU : An update request is forwarded to the primary

server and executed, but is only propagated periodi-
cally. Subsequent read requests should be blocked until
previous update requests have been propagated to the
secondary server. PU guarantees session consistency.
See Fig. 4 (b).
• FR : In our freshness-based scheme, a read-only re-

quest is immediately executed at the secondary server
only when its freshness requirements are met. If the
requirements are not met or the request is updated,
it is blocked until the secondary server receives a



1994
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

Fig. 7 Measured freshness and version difference (update ratio = 0.2).

re f resh response message from the primary server
and refreshes its replicated data. FR guarantees ses-
sion consistency by additional sequence numbering for
each client request. See Fig. 4 (c).

Traditional lazy update propagation architectures are
close to PU in that update requests are sent to the primary
server and read-only requests are executed immediately at
the secondary server, although PU blocks some read-only
requests for session consistency reasons.

5.3 Freshness and Version Difference for Base System

We compare measured freshness and correctness for several
systems in Fig. 7. There are two secondary servers running,
each has 50 clients accessing a single data object with up-
date ratio 0.2. In each figure, the black line above means the
measured freshness at the secondary server, and the shad-
owed region below represents the version difference, i.e., the
number of updates queued at the primary server but not yet
propagated to the secondary server.

The measured freshness of a data object is boosted to
1 when it is updated, or refreshed in our FR schemes, and
then declines with a slope of 1/P. The two FR schemes ex-
hibit relatively high freshness of replicated data, but the IM
and PU schemes show different results. Although IM pro-
vides the highest measured freshness on average, the fresh-
ness value is not bounded since it depends on the primary
server’s update events. The value is low when no updates
occur in the whole system. However, this does not mean that

the secondary server has incorrect data in the IM scheme. If
the network is stable, the time skew between updating at
the primary server and the secondary server does not exceed
RT/2. On the other hand, the measured freshness severely
fluctuates for the PU scheme due to lazy update propaga-
tion. Although session consistency is maintained within the
sequence of a single client session, any updates occurring at
the primary server are not visible to other sessions that are
reading at secondary servers.

Figure 7 also shows the relationship between the fresh-
ness and the actual version difference. Lower freshness
value means higher version difference between the primary
and the secondary server, except IM. IM naturally exhibits
little version difference since it propagates all updates im-
mediately to all secondary servers. Unless a read request
arrives in bursts or the update propagation delay is too long,
the secondary server has nearly the same data as the primary
server. On the other hand, PU shows significant version dif-
ferences. Moreover, an update message is not visible to the
different client sessions in the same secondary server until
it is propagated. Our FR schemes exhibit fewer version dif-
ferences and smaller peak differences compared to PU. The
variation and peak difference increase when the consistency
requirements are relaxed from FR0.8 to FR0.5.

We observed the effect of update ratio in Fig. 8 by low-
ering the update ratio of one secondary server to 0.1. The
other secondary server’s update ratio remains 0.2. As com-
pared to Fig. 7, the measured freshness is quite low and
re f resh read occurs more often because the freshness boost



KIM and MAENG: PARTIALLY EAGER UPDATE PROPAGATION AND FRESHNESS-BASED READ RELAXATION FOR REPLICATED INTERNET SERVICES
1995

by update request occurs infrequently.
The average measured freshness and version difference

are shown in Fig. 9. IM shows low f m when update ratio is
low, but it does not mean that data is stale. The value for
FR0.8 is close to that for IM, and even FR0.5 shows a rela-
tively high measured freshness and low version difference in
spite of its relaxed constraint. It implies that we can achieve
both reasonable performance and accuracy compared to the
existing data consistency management schemes. Note that
PU offers “data updated per 5 seconds” in this case, whereas
FR0.5 means “data updated within 5 seconds”.

5.4 Number of Refresh Messages Transferred by the Pri-
mary Server

Previous results indicate that immediate update propagation
is the best approach for obtaining the highest consistency for
replicated data at secondary servers. The FR schemes shows
closer results to the IM scheme as the freshness requirement
f r is restricted to higher values. However, IM cannot guar-
antee session semantics or stronger consistency because it
decouples read and write operation. Besides, the IM perfor-
mance suffers as the number of update requests increases.

The total number of update requests in the system is
determined by the number of clients and the update ratio.
Assume that there are E secondary servers and n clients per
each secondary server. Each client generates requests at fre-
quency q with update ratio w. Then each secondary server

Fig. 8 Measured freshness and version difference under low update ratio
(update ratio = 0.1).

Fig. 9 Effect of update ratio.

receives n·q·w update requests from its connected clients
and send them to the primary server. In the FR schemes,
a re f resh response message is immediately returned to the
corresponding secondary server, and thus the primary server
generates n·q·w·E messages in total. The PU scheme exe-
cutes every update request at the primary server, but it prop-
agates updates periodically. It’s total number of update re-
quests are p·E where p is the frequency of periodic propa-
gation. On the other hand, IM propagates all write opera-
tions immediately to all secondary servers. Therefore, the
primary server has to send (n·q·w·E) × E messages in total.
As the number of secondary servers increases, this can lead
to a bottleneck. Furthermore, it also burdens the secondary
servers. Each secondary server receives n·q·w·E propaga-
tion messages equally, which is E times larger than for the
FR schemes. Such frequent propagation can lead to a de-
crease in performance, since write operations might invali-
date the local query cache, although our simulation does not
consider such effects.

When the number of secondary servers is small, the FR
schemes generate a little more traffic than IM because both
re f resh update and re f resh read requests are sent to the
primary server. This effect is revealed more clearly when the
update ratio is low so that the proportion of re f resh read
messages increases. However, as shown in Fig. 10, traffic
does not scale with the number of secondary servers in the
FR schemes. Thus, the FR model is much more scalable
than IM in terms of traffic and primary server overheads.

Update ratio directly affects to the number of messages
in FR schemes. Though High update ratio directly increases
re f resh update messages, it also decreases re f resh read
messages because frequent update makes the replicated data
more fresh. This effect is well shown in Fig. 10. In the figure
for update ratio of 0.2, total number of messages for FR
schemes is high but the difference between FR0.5 and FR0.8
which is caused by re f resh read is relatively small.

Figure 11 shows, in contrast, the average size per each
update propagation messages. The size means an average
number of requests to be propagated in a chunk. Since
PU gathers requests and periodically send them as a chunk,
the size of propagation message is much higher than other
schemes. As the number of secondary servers increases or
the update propagation period is longer, the size even in-



1996
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

Fig. 10 Number of refresh messages per secondary server.

Fig. 11 Size of refresh messages per secondary server.

Fig. 12 Average response time.

creases higher. Thus it can be burden to the network at the
propagation time.

Moreover, it can cause additional delay because of
mass update of secondary server.

5.5 Response Time and Scalability

Figure 12 shows the average response time for update ratios
of 0.1 and 0.2 for 50 clients per secondary server. The right
figure shows higher response time than the left in general,
because it communicates more with the primary server, and
thus it blocks more requests.

We added two extreme environments for the evalua-
tion. For FR1.0, every read request requires fresh data, and
thus it should be blocked until its corresponding data copies
are refreshed, which is the worst-case scenario for our FR

scheme. On the other hand, for FR0.0, all read requests
are served freely at the secondary server. A read request
is blocked only when its preceding requests have not yet
been propagated to the connected secondary server to meet
session consistency. It is as same as PU in the manner of
handling a read request.

Note that the response time for all schemes except PU
does not change rapidly as number of secondary servers in-
creases. The IM scheme shows little latency increase be-
cause it separates write operations and the corresponding
read operations from update requests. A read operation
is never blocked to wait for the preceding write operation.
Therefore, there is no extra overhead in the IM scheme.

Our FR model blocks not only update requests, but also
some read-only requests. As the freshness requirement f r
increases, so does the number of blocked read-only requests.



KIM and MAENG: PARTIALLY EAGER UPDATE PROPAGATION AND FRESHNESS-BASED READ RELAXATION FOR REPLICATED INTERNET SERVICES
1997

Thus, FR0.8 sends more refresh messages to the primary
server and therefore shows longer average response time
than FR0.5. However, The number of messages of FR0.8
is much lower than that of FR1.0. This means that a large
number of read requests can be absorbed at the secondary
server even if the required freshness is relatively high.

There is little difference in the response time of FR0.5
and FR0.0, especially when the update ratio is 0.2. It is
because re f resh read seldom occurs in this case. More-
over, FR schemes with lower freshness requirements per-
form close to IM. A little increase in the response time
mainly comes from update propagation prior to the blocked
read requests.

Interestingly, the number of secondary servers does not
significantly affect the FR schemes too. Although an in-
crease in the number of secondary servers also increases the
number of write operations at the primary server, the pri-
mary server does not propagate its updates unless these are
requested by a secondary server.

Although the PU shows slightly better performance
than FR0.5 when the number of secondary servers is small,
its response time increases rapidly with the number of sec-
ondary servers. This is because the PU scheme reads and
writes data at the primary server for every update request.
As the number of secondary servers increases, a greater
number of update requests from clients connected at each
secondary server are forwarded to the primary server, lead-
ing to a resource contention. This effect is more notable for
an update ratio of 0.2. The PU scheme fails to scale with the
number of secondary servers or update ratio if the primary
server does not have enough capacity.

In this evaluation, we assume that the number of CPUs
in the primary server is 4, which means four times capacity
than secondary servers like Table 1. It means even PU suf-
fers bottleneck with powerful primary server, thus load at
the primary server should be eliminated in order to achieve
scalability.

Traditional lazy update propagation architectures like
PU benefit by reading at the secondary server under low
update ratio. On the other hand, our FR schemes shows
relatively high response times in such case because the sec-
ondary server refreshes its data copy frequently even if there
are no updates. Proper assignment of freshness require-
ments can solve such false-refresh effects.

6. Conclusion and Future Work

In this study we developed an edge-write architecture in
which all client requests are executed at the secondary
server. Every update request at any secondary server is se-
rialized at the primary server first, and then propagated ea-
gerly back to the corresponding secondary server. On the
other hand, updates from other secondary servers are prop-
agated on demand. Our architecture resolves consistency
problems caused by read/update decoupling in the lazy up-
date propagation model. It also eliminates the performance
bottleneck of a single primary server, and thus improves

overall system scalability, in compensation for increased but
bounded response time. Although data version conflict can
occur in our eventual consistency model, primary server can
easily detect the conflict and solve it. Moreover, write seri-
alization prevents the conflict in most cases.

We also proposed a freshness evaluation scheme that
can handle time-restrained read requests for various Inter-
net applications. A read request at the secondary server can
either be read immediately or be blocked to refresh the repli-
cated data by comparing its measured freshness with given
requirements. Our edge-write architecture offers freshness
values that are relatively high compared to traditional peri-
odic update propagation schemes. Furthermore, our scheme
ensures certain lower bounds for the freshness of replicated
data copies.

In conclusion, our edge-write architecture provides a
tradeoff between performance and freshness. This system
can be used for various Internet services which have rel-
atively high update ratio. Many interactive applications
which were yet to be classified as not replicable or dis-
tributable can be classified into this criteria.

Since many factors affect measured freshness, detailed
observations are needed to optimize the performance and
consistency of the whole system. By alleviating consistency
requirements, we can achieve a target level of system perfor-
mance. In contrast, we can serve fresher data to privileged
clients instead achieving a higher throughput. Precise mod-
eling of freshness requirements and measurements will help
for the decision between such tradeoffs.

Acknowledgements

This work was supported by the IT R&D program of
MKE/KEIT [2009-F-039-01, Development of Technology
Base for Trustworthy Computing].

References

[1] F. Akal, C. Türker, H. Schek, Y. Breitbart, T. Grabs, and L. Veen,
“Fine-grained replication and scheduling with freshness and correct-
ness guarantees,” Intl. Conf. on Very Large Data Bases Conference,
Aug. 2005.

[2] Akamai Inc., http://www.akamai.com
[3] Amazon AWS., http://aws.amazon.com
[4] P.J. Braam, M. Callahan, and P. Schwan, “The InterMezzo file sys-

tem,” The Perl Conference 3, O’Reilly Open Source Convention,
Aug. 1999.

[5] J. Cho and H. Garcia-Molina, “Synchronizing a database to improve
freshness,” Technical Report, Stanford University, Oct. 1999.

[6] K. Daudjee and K. Salem, “Lazy database replication with ordering
guarantees,” Intl. Conf. on Data Engineering, March 2004.

[7] K. Daudjee and K. Salem, “A pure lazy technique for scalable trans-
action processing in replicated databases,” Intl. Conf. on Parallel and
Distributed Systems, May 2005.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A.
Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W.
Vogels, “Dynamo: Amazon’s highly available key-value store,”
ACM Symposium on Operating Systems Principles, Oct. 2007.

[9] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar, “Appli-
cation specific data replication for edge services,” ACM Intl. World
Wide Web Conf., May 2003.



1998
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

[10] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of repli-
cation and a solution,” ACM SIGMOD Intl. Conf. on Management
of Data, June 1996.

[11] B. Kemme and G. Alonso, “A new approach to developing and
implementing eager database replication protocols,” ACM Trans.
Database Syst., vol.25, no.3, pp.333–379, Sept. 2000.

[12] A. Labrinidis and N. Roussopoulos, “Balancing performance and
data freshness in web database servers,” Intl. Conf. on Very Large
Data Bases Conference, Sept. 2003.

[13] W. Li, O. Po, W. Hsiung, K.S. Candan, and D. Agrawal, “Engi-
neering and hosting adaptive freshness-sensitive web applications
on data centers,” ACM Intl. World Wide Web Conf., May 2003.

[14] A. Nayate, M. Dahlin, and A. Iyengar, “Transparent information dis-
semination,” ACM/USENIX Intl. Middleware Conf., Oct. 2004.

[15] E. Pacitti and E. Simon, “Update propagation strategies to improve
freshness in lazy master replicated databases,” VLDB Journal, vol.8,
no.3-4, pp.305–318, Feb. 2000.

[16] U. Röhm, K. Böhm, H. Schek, and H. Schuldt, “FAS - A freshness-
sensitive cooprdination middleware for a cluster of OLAP compo-
nents,” Intl. Conf. on Very Large Data Bases Conference, Aug. 2002.

[17] M. Satyanarayanan, “Coda: A highly available file system for a dis-
tributed workstation environment,” IEEE Workshop on Workstation
Operating Systems, Sept. 1989.

[18] S. Sivasubramanian, G. Alonso, G. Pierre, and M. Steen, “GlobeDB:
Autonomic data replication for web applications,” Intl. World Wide
Web Conf., May 2005.

[19] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable Peer-to-Peer lookup serice for internet appli-
cations,” ACM SIGCOMM Conf. on Applications, Technologies,
Architectures, and Protocls for Computer Communications, Aug.
2001.

[20] Transaction Processing Performance Council, TPC Benchmark W
(Web Commerce), Feb. 2001.

[21] Werner Vogels, Eventually Consistent - Revisited,
http://www.allthingsdistributed.com/2008/12/
eventually consistent.html, Dec. 2008.

[22] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar, “Engineering server-
driven consistency for large scale dynamic web services,” ACM Intl.
World Wide Web Conf., May 2001.

[23] C. Yuan, Y. Chen, and Z. Zhang, “Evaluation of edge
caching/offloading for dynamic content delivery,” ACM Intl. World
Wide Web Conf., May 2003.

Ho-Joong Kim received his B.S. and M.S.
degrees in Computer Science from KAIST, in
1998 and 2000 respectively. He is currently in
the Ph.D. course of the Department of Computer
Science, KAIST. His research interests include
cluster computing, internet servers and large-
scale distributed systems.

Seungryoul Maeng received the B.S. de-
gree in Electronics Engineering from Seoul Na-
tional University, Korea, in 1977, and the M.S.
and Ph.D. degrees in Computer Science from
KAIST, in 1979 and 1984, respectively. Since
1984 he has been a faculty member of Depart-
ment of Computer Science of KAIST. From
1988 to 1989, he was with the University of
Pennsylvania as a visiting scholar. His re-
search interests include micro architecture, par-
allel computer architecture, cluster computing,

and embedded systems.


