
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009
2007

PAPER

Static Dependency Pair Method Based on Strong Computability
for Higher-Order Rewrite Systems

Keiichirou KUSAKARI†a), Member, Yasuo ISOGAI†b), Nonmember, Masahiko SAKAI†c), Member,
and Frédéric BLANQUI††d), Nonmember

SUMMARY Higher-order rewrite systems (HRSs) and simply-typed
term rewriting systems (STRSs) are computational models of functional
programs. We recently proposed an extremely powerful method, the static
dependency pair method, which is based on the notion of strong com-
putability, in order to prove termination in STRSs. In this paper, we extend
the method to HRSs. Since HRSs include λ-abstraction but STRSs do not,
we restructure the static dependency pair method to allow λ-abstraction,
and show that the static dependency pair method also works well on HRSs
without new restrictions.
key words: higher-order rewrite system, termination, static dependency
pair, plain function-passing, strong computability, subterm criterion

1. Introduction

A term rewriting system (TRS) is a computational model
that provides operational semantics for functional pro-
grams [22]. A TRS cannot, however, directly handle higher-
order functions, which are widely used in functional pro-
gramming languages. Simply-typed term rewriting systems
(STRSs) [12] and higher-order rewrite systems (HRSs) [17]
have been introduced to extend TRSs. These rewriting sys-
tems can directly handle higher-order functions. For ex-
ample, a typical higher-order function foldl can be rep-
resented by the following HRS Rfoldl:⎧⎪⎪⎪⎨⎪⎪⎪⎩

foldl(λxy.F(x, y), X, nil)→ X
foldl(λxy.F(x, y), X, cons(Y, L))

→ foldl(λxy.F(x, y), F(X,Y), L)

HRSs can represent anonymous functions because HRSs
have a λ-abstraction syntax, which STRSs do not. For in-
stance, an anonymous function λxy.add(x, mul(y, y)) is used
in the HRS Rsqsum, which is the union of Rfoldl and the fol-
lowing rules:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

add(0,Y)→ Y
add(s(X),Y)→ s(add(X,Y))
mul(0,Y)→ 0
mul(s(X),Y)→ add(mul(X,Y),Y)
sqsum(L)→ foldl(λxy.add(x, mul(y, y)), 0, L)

Manuscript received October 28, 2008.
Manuscript revised May 19, 2009.
†The authors are with the Graduate School of Information Sci-

ence, Nagoya Univ., Nagoya-shi, 464–8601 Japan.
††The author is with INRIA & LORIA, France.
a) E-mail: kusakari@is.nagoya-u.ac.jp
b) E-mail: isogai@trs.cm.is.nagoya-u.ac.jp
c) E-mail: sakai@is.nagoya-u.ac.jp
d) E-mail: frederic.blanqui@inria.fr

DOI: 10.1587/transinf.E92.D.2007

Here, the function sqsum returns the square sum x2
1 + x2

2 +

· · · + x2
n from an input list [x1, x2, . . . , xn].

As a method for proving termination of TRSs, Arts and
Giesl proposed the dependency pair method for TRSs based
on recursive structure analysis [1], which was then extended
to STRSs [12], and to HRSs [18].

In higher-order settings, there are two kinds of analy-
sis for recursive structures. One is dynamic analysis, and
the other is static analysis. The extensions in [12] and [18]
analyze dynamic recursive structures based on function-call
dependency relationships, but not on relationships that may
be extracted syntactically from function definitions. When a
program runs, some functions can be substituted for higher-
order variables. Dynamic recursive structure analysis con-
siders dependencies through higher-order variables. Static
recursive structure analysis on the other hand, does not con-
sider such dependencies.

For example, consider the HRS Rsqsum. The dynamic
dependency pair method in [18] extracts the following 9
pairs, called dynamic dependency pairs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

foldl�(λxy.F(x, y), X, cons(Y, L))
→ foldl�(λxy.F(x, y), F(X,Y), L) (a)

foldl�(λxy.F(x, y), X, cons(Y, L))→ F(cx, cy) (b)
foldl�(λxy.F(x, y), X, cons(Y, L))→ F(X,Y) (c)
add�(s(X),Y)→ add�(X,Y) (d)
mul�(s(X),Y)→ add�(mul(X,Y),Y) (e)
mul�(s(X),Y)→ mul�(X,Y) (f)
sqsum�(L)→ foldl�(λxy.add(x, mul(y, y)), 0, L) (g)
sqsum�(L)→ add�(cx, mul(cy, cy)) (h)
sqsum�(L)→ mul�(cy, cy) (i)

Here cx, cy are fresh constants corresponding to the bound
variables x and y. The dynamic dependency pair method
returns the following 15 components, called dynamic recur-
sion components:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{(a)}, {(b)}, {(c)}, {(d)}, {(f)}, {(a), (b)},
{(a), (c)}, {(b), (c)}, {(b), (g)}, {(c), (g)},
{(a), (b), (c)}, {(a), (b), (g)}, {(a), (c), (g)},
{(b), (c), (g)}, {(a), (b), (c), (g)}

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
It is intuitive that this recursive structure analysis may be un-
natural and intractable. The problem is caused by function-
call dependency relationships through the higher-order vari-
able F.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

2008
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

The static dependency pair method, which is based on
definition dependency relationships, can solve the unnatural
and intractable problem above. Since the static dependency
pair method can ignore terms headed by a higher-order vari-
able which are difficult to handle, in this meaning the static
dependency pair method is more natural and more powerful
than the dynamic dependency pair method. In fact, the static
dependency pair method presented in this paper shows that
Rsqsum only has the following 3 static recursion components:

{
foldl�(λxy.F(x, y), X, cons(Y, L))

→ foldl�(λxy.F(x, y), F(X,Y), L){
add�(s(X),Y)→ add�(X,Y){
mul�(s(X),Y)→ mul�(X,Y)

The first result for the static dependency pair method
was given by Sakai and Kusakari [19]. However, this re-
sult demanded that target HRSs be either ‘strongly linear’
or ‘non-nested’, which is a very strong restriction. By re-
constructing a dependency pair method based on the notion
of strong computability, Kusakari and Sakai proposed the
static dependency pair method for STRSs and showed that
the method is sound for plain function-passing STRSs [13].
Note that strong computability was introduced for prov-
ing termination in typed λ-calculus, which is a stronger
condition than the property of termination [7], [21]. ‘Plain
function-passing’ means that every higher-order variable oc-
curs in an argument position on the left-hand side. Since
many non-artificial functional programs are plain function-
passing, this method has a general versatility. In this paper,
we extend the static dependency pair method and the notion
of plain function-passing to HRSs. Since the difference be-
tween STRSs and HRSs is the existence of anonymous func-
tions (i.e. λ-abstraction), extension is necessary. We show
that our static dependency pair method works well on plain
function-passing HRSs without new restrictions.

When proving termination by dependency pair meth-
ods, non-loopingness should be shown for each recursion
component. The notion of the subterm criterion [8] is fre-
quently utilized, as is that of a reduction pair [11], which is
an abstraction of the weak-reduction order [1]. The subterm
criterion was slightly improved by extending the subterms
permitted by the criterion [13]. Since the subterm criterion
and reduction pairs are effective in termination proofs, we
also reformulate these notions for HRSs. An effective and
efficient method of proving termination in plain function-
passing HRSs is obtained as a result. These results can be
used to prove the termination of Rsqsum, which cannot be
achieved with the dynamic dependency pair method in [18].
It can easily be seen that each static recursion component
satisfies the subterm criterion in the underlined positions:

⎧⎪⎨⎪⎩ foldl
�(λxy.F(x, y), X, cons(Y, L))

→ foldl�(λxy.F(x, y), F(X,Y), L){
add�(s(X),Y)→ add�(X,Y){
mul�(s(X),Y)→ mul�(X,Y)

The termination of Rsqsum can thus be shown easily.
The remainder of this paper is organized as follows.

The next section provides preliminaries required later in
the paper. In Sect. 3, we introduce the notion of strong
computability, which provides a theoretical rationale for the
static dependency pair method. In Sect. 4, we describe the
notion of plain function-passing. In Sect. 5, we present the
static dependency pair method for plain function-passing
HRSs, the soundness of which is guaranteed by the notion
of strong computability. In Sect. 6, we introduce the notions
of the reduction pair and the subterm criterion in order to
prove the non-loopingness of static recursion components.
Concluding remarks are presented in Sect. 7.

2. Preliminaries

In this section, we give preliminaries needed later on. We
assume that the reader is familiar with notions for TRSs and
HRSs [22].

The set S of simple types is generated from the set B
of basic types by the type constructor→. A functional type
or a higher-order type is a simple type of the form α → β.
We denote by Vα the set of variables of type α, and de-
note by Σα the set of function symbols of type α. We de-
fine V = ⋃α∈S Vα and Σ =

⋃
α∈S Σα. We assume that the

sets of variables and function symbols are disjoint. The set
T pre
α of simply-typed preterms with simple type α is gener-

ated from sets V ∪ Σ by λ-abstraction and λ-application.
We denote by t↓ the η-long β-normal form of a simply-
typed preterm t. The set Tα of simply-typed terms with a
simple type α is defined as {t↓ | t ∈ T pre

α }. We denote
type(t) = α if t ∈ Tα. We also define the set T of simply-
typed terms by

⋃
α∈S Tα, and the set TB of basic typed terms

by
⋃
α∈B Tα. We write tα to stand for t ∈ Tα. Any term in

η-long β-normal form is of the form λx1 · · · xm.a t1 · · · tn,
where a is a variable or a function symbol. We remark that
λx1 · · · xm.a t1 · · · tn is denoted with λx1 · · · xm.a(t1, . . . , tn)
or λxm.a(tn) in short. The α-equality of terms is denoted by
≡. For a simply-typed term t ≡ λxm.a(tn), the symbol a,
denoted by top(t), is said to be the top symbol of t, and the
set {t1, . . . , tn}, denoted by args(t), is said to be arguments
of t. The set of free variables in t denoted by FV(t). We
assume for convenience that bound variables in a term are
all different, and are disjoint from free variables. We define
the set S ub(t) of subterms of t by {t} ∪ S ub(s) if t ≡ λx.s;
{t} ∪ ⋃n

i=1 S ub(ti) if t ≡ a(t1, . . . , tn). We use t ≥sub s to
represent s ∈ S ub(t), and define t >sub s by t ≥sub s and
t � s. The set of positions of a term t is the set Pos(t) of
strings over positive integers, which is inductively defined
as Pos(λx.t) = {ε} ∪ {1p | p ∈ Pos(t)} and Pos(a(t1, . . . , tn))
= {ε} ∪⋃n

i=1{ip | p ∈ Pos(ti)}. The prefix order ≺ on posi-
tions is defined by p ≺ q iff pw = q for some w (� ε). The
subterm of t at position p is denoted by t|p.

A term containing a special constant �α of type α is
called a context, denoted by C[]. We use C[t] for the term
obtained from C[] by replacing �α with tα. A substitution
θ is a mapping from variables to terms such that θ(X) has a

KUSAKARI et al.: SDP-METHOD BASED ON STRONG COMPUTABILITY FOR HIGHER-ORDER REWRITE SYSTEMS
2009

same type of X for each variable X. We define Dom(θ) =
{X | X � θ(X)}. A substitution is naturally extended to a
mapping from terms to terms.

A rewrite rule is a pair (l, r) of terms, denoted by l→ r,
such that top(l) ∈ Σ, type(l) = type(r) ∈ B and FV(l) ⊇
FV(r)†. A higher-order rewrite system (HRS) is a set of
rules. The reduction relation −→

R
of an HRS R is defined by

s −→
R

t iff s ≡ C[lθ↓] and t ≡ C[rθ↓] for some rule l → r ∈
R, context C[] and substitution θ. The transitive-reflexive
closure of −→

R
is denoted by ∗−→

R
.

Proposition 2.1 [15] If s ∗−→
R

t then sθ↓ ∗−→
R

tθ↓.

A term t is said to be terminating or strongly normal-
izing in an HRS R, denoted by S N(R, t), if there is no in-
finite sequence of R steps starting from t. We simply de-
note S N(R) if S N(R, t) holds for any term t. We also de-
fine TS N(R) = {t | S N(R, t)}, T¬S N(R) = T \ TS N(R), and
T args

S N (R) = {t | ∀u ∈ args(t).S N(R, u)}.
All top symbols of the left-hand sides of rules in an

HRS R, denoted byDR, are called defined, whereas all other
function symbols, denoted by CR, are constructors. We
define the marked term t� by a�(t1, . . . , tn) if t has a form
a(t1, . . . , tn) with a ∈ DR; otherwise t� ≡ t. Here a� is called
a marked symbol.

3. Strong Computability

In this section, we define the notion of strong computabil-
ity, introduced for proving termination in typed λ-calculus,
which is a stronger condition than the property of termina-
tion [7], [21]. This notion provides a theoretical rationale for
the static dependency pair method.

Definition 3.1 (Strong Computability) A term t is said to
be strongly computable in an HRS R if S C(R, t) holds, which
is inductively defined on simple types as follows:

• in case of type(t) ∈ B, S C(R, t) is defined as S N(R, t),
• in case of type(t) = α→ β, S C(R, t) is defined as ∀u ∈
Tα.(S C(R, u)⇒ S C(R, (tu)↓)).

We also define TS C(R) = {t | S C(R, t)}, T¬S C(R) = T \
TS C(R), and T args

S C (R) = {t | ∀u ∈ args(t).S C(R, u)}.

Here we give the basic properties for strong com-
putability, needed later on.

Lemma 3.2 For any HRS R, the following properties hold:

(1) For any (t0 t1 · · · tn)↓ ∈ T , if S C(R, ti) holds for all ti,
then S C(R, (t0 t1 · · · tn)↓).

(2) For any tα1→···→αn→α, if ¬S C(R, t), then there exist
strongly computable terms uαi

i (1 ≤ i ≤ n) such that
¬S C(R, (t u1 · · · un)↓).

(3) S C(R, s) and s ∗−→
R

t implies S C(R, t), for all s, t.
(4) The η-long β-normal form z↓ of any variable zα is

strongly computable, for all types α.
(5) S C(R, tα) implies S N(R, tα), for all types α.

Proof. The properties (1) and (2) are easily shown by in-
duction on n.

(3) We prove the claim by induction on type(t). The case
type(t) ∈ B is trivial. Suppose that type(s) = type(t) =
α → β. Let s ≡ λx.s′, t ≡ λx.t′, and uα be an arbitrary
strongly computable term. Since type(l) ∈ B for every
l → r ∈ R, we have s′ ∗−→

R
t′. From Proposition 2.1,

we have (su)↓ ≡ s′{x := u} ∗−→
R

t′{x := u} ≡ (tu)↓.
Since (su)↓ is strongly computable, S C(R, (tu)↓) fol-
lows from the induction hypothesis. Hence t is strongly
computable.

(4,5) We prove claims by simultaneous induction on α. The
case α ∈ B is trivial. Suppose that α = α1 → · · · →
αn → β and β ∈ B.
Induction step of (4): Assume that z↓ is not
strongly computable for some z ∈ Vα. From (2),
there exist strongly computable terms uα1

1 , . . . , u
αn
n and

(z(u1, . . . , un))↓ ≡ z(u1, . . . , un) is not strongly com-
putable. From the induction hypothesis (5), each
ui is terminating, hence so is z(u1, . . . , un). Since
z(u1, . . . , un) is of basic types, z(u1, . . . , un) is strongly
computable. This is a contradiction.
Induction step of (5): From the induction hypothesis
(4), y↓ is strongly computable for any y ∈ Vα1 , hence
so is (ty)↓. From the induction hypothesis (5), (ty)↓ is
terminating, hence so is t. �

4. Plain Function-Passing

The static dependency pair method defined in the next
section cannot be applied to HRSs in general. For ex-
ample, consider the HRS R = {foo(bar(λx.F(x))) →
F(bar(λx.F(x)))}. Since the defined symbol foo does
not occur on the right hand side, no static recur-
sive structure exists. However, R is not terminating:
foo(bar(λx.foo(x))) −→

R
foo(bar(λx.foo(x))) −→

R
· · ·. The

static dependency pair method therefore requires a suitable
restriction. In [19], we introduced the notions of ‘strongly
linear’ and ‘non-nested’ HRSs. However, these restric-
tions are too tight. For STRSs we presented the notion
of plain function-passing, which covers practical level pro-
grams [13]. Intuitively, plain function-passing means that
higher-order free variables on the left-hand side are passed
to the right-hand side directly. In this section, we extend the
notion of plain function-passing to HRSs.

Definition 4.1 Let R be an HRS and l → r ∈ R. We define
the set safe(l) of safe subterms of l as the following:

args(l) ∪
⋃

l′∈args(l)

{u ∈ safeB(l′, FV(l)) | FV(l) ⊇ FV(u)},

where safeB(λxm.a(tn), X) is defined as {a(tn)} if a ∈ X; oth-
erwise {a(tn)} ∪⋃n

i=1 safeB(ti, X).
†In order to guarantee the decidability of higher-order pattern-

matching, Nipkow restricts rewrite rules by the notion of pat-
tern [17]. Such a restriction, however, is not necessary to our study.

2010
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

We note that safe(l) ⊆ S ub(l) and any t ∈
safeB(l′, FV(l)) is of basic types.

Example 4.2 Consider HRS Rfoldl displayed in the intro-
duction. Suppose that

l ≡ foldl(λxy.F(x, y),Y, cons(X, L)).

For each argument u ∈ args(l), safeB(u, FV(l)) is the follow-
ing:

safeB(λxy.F(x, y), FV(l)) = {F(x, y)}
safeB(Y, FV(l)) = {Y}

safeB(cons(X, L), FV(l)) = {cons(X, L), X, L}

Since FV(F(x, y)) � FV(l), safe subterms safe(l) is the fol-
lowing:

safe(l) = args(l) ∪ {Y, cons(X, L), X, L}
= {λxy.F(x, y),Y, cons(X, L), X, L}

We prepare a technical lemma to show the soundness
of the static dependency pair method.

Lemma 4.3 Let R be an HRS, l → r ∈ R and θ be a sub-
stitution. Then lθ↓ ∈ T args

S C (R) implies S C(R, sθ↓) for any
s ∈ safe(l).

Proof. The case s ∈ args(l) is trivial because sθ↓ ∈
args(lθ↓) follows from top(l) ∈ Σ. Suppose that s ∈
safeB(l′, FV(l)) and FV(s) ⊆ FV(l) for some l′ ∈ args(l).
Then we have S N(R, l′θ↓) from Lemma 3.2(5). Since
type(s) ∈ B from the definition of safeB, it suffices to show
S N(R, sθ↓). We prove by induction on definition of safeB
that s ∈ safeB(t, FV(l)) and S N(R, tθ↓) implies S N(R, sθ↓),
for all t ≡ λx1 · · · xm.a(t1, . . . , tn) ∈ S ub(l′).

The case t ≡ λx1 · · · xm.s is trivial because tθ↓ ≡
λx1 · · · xm.(sθ↓). Suppose that s ∈ sa f eB(t j, FV(l)) for
some j. Without loss of generality, we can assume that
a � Dom(θ) because a � FV(l). Then tθ↓ ≡ λxm.a(tnθ↓).
Hence, S N(R, t jθ↓) holds. From the induction hypothesis,
we have S N(R, sθ↓). �

Definition 4.4 (Plain Function-Passing) An HRS R is said
to be plain function-passing (PFP) if for any l → r ∈ R and
Z(r1, . . . , rn) ∈ S ub(r) such that Z ∈ FV(r), there exists k
(≤ n) such that Z(r1, . . . , rk)↓ ∈ safe(l). We often abbreviate
plain function-passing HRS to PFP-HRS.

Example 4.5 Referencing to Example 4.2. Since F↓ ≡
λxy.F(x, y) ∈ safe(l), HRS Rfoldl is PFP.

Example 4.6 Let R be the following non-terminating HRS:{
foo(bar(λx.F(x)))→ F(bar(λx.F(x)))

Then R is not PFP because:

F↓ � {bar(λx.F(x))} = safe(foo(bar(λx.F(x)))).

Example 4.7 Let R be the following terminating HRS:⎧⎪⎪⎪⎨⎪⎪⎪⎩
mapfun(nilF, X)→ nil
mapfun(consF(λx.F(x), L), X)

→ cons(F(X), mapfun(L, X))

Then R is not PFP because:

F↓ � {consF(λx.F(x), L), L, X}
= safe(mapfun(consF(λx.F(x), L), X))

In any PFP-HRS R, for any subterm Z(r1, . . . , rn)
headed by a higher-order variable in the right hand side of
a rule l → r, there exists a prefix Z(r1, . . . , rk) such that
Z(r1, . . . , rk)↓ ∈ safe(l). Thanks to Lemmas 3.2(1) and
4.3, this property guarantees that Z(r1, . . . , rn)θ↓ is strongly
computable whenever lθ↓ ∈ T args

S C (R) and riθ↓ ∈ TS C(R)
(i = 1, . . . , n). This beneficial property eliminates a depen-
dency analysis through higher-order variables from static re-
cursive structure analysis (cf. Lemma 5.11), and contributes
in obtaining the soundness of the static dependency pair
method (cf. Theorem 5.12).

In the definition of PFP, the case n = 0 must be con-
sidered. That is, any first-order variable in Var(r) should
belong to safe(l). Otherwise Lemma 4.3 does not hold. For
example, consider the HRS R = {foo(F(X)) → X} and the
substitution θ = {F := λx.0}. Then X does not occur in
foo(0) ≡ foo(F(X))θ↓, and we must exclude R from plain
function-passing.

Note that every first-order rewrite system is plain
function-passing.

A termination condition for higher-order rewrite rules
having a specific form of plain function-passing was inves-
tigated under Jouannaud and Okada’s general schema [9],
[10]. The restriction that higher-order variables occur as ar-
guments is weakened by using the notion of computability
closure [3]–[5]. We leave a similar extension of the present
work with computability closure for the future.

5. Static Dependency Pair Method

In this section we present the static dependency pair method
for PFP-HRSs. The recursive structures derived by the static
dependency pair method accord with a programmer’s intu-
ition. Since many existing programs are written so as to
terminate, this method is of benefit in proving that they do
indeed terminate.

First, we describe candidate terms, improving on the
notion of candidate terms in [18]. Candidate terms are a
variant of subterms, and bound variables never become free
in candidate terms. This feature is useful for showing the
soundness of our method (cf. Lemma 5.11).

Definition 5.1 (Candidate Term) The set of candidate
terms of t ≡ λxm. a(tn), denoted by Cand(t), is defined as
follows:

Cand(t) = {t} ∪
n⋃

i=1

Cand(λx1 · · · xm.ti)

KUSAKARI et al.: SDP-METHOD BASED ON STRONG COMPUTABILITY FOR HIGHER-ORDER REWRITE SYSTEMS
2011

Fig. 1 Static dependency graph of Rsqsum.

We consider the case of foo, bar ∈ DR and t ≡
λx.foo(bar, x). Then we have

Cand(t) = {λx.foo(bar, x), λx.bar, λx.x}.

Note that the definition in [18] gave Cand(t) =

{foo(bar, cx), bar}, where cx is a fresh constant correspond-
ing to the bound variable x.

Next, we introduce the notion of static dependency
pairs by using candidate terms. This notion forms the ba-
sis for the static dependency pair method.

Definition 5.2 (Static Dependency Pair) Let R be an HRS.
A pair 〈l�, a�(r1, . . . , rn)〉, denoted by l� → a�(r1, . . . , rn),
is said to be a static dependency pair in R if there exists
l→ r ∈ R such that

• λx1 · · · xm.a(r1, . . . , rn) ∈ Cand(r),
• a ∈ DR, and
• a(r1, . . . , rk)↓ � safe(l) for all k (≤ n).

We denote by S DP(R) the set of static dependency pairs in
R.

Notice that static dependency pairs have no terms
headed by a higher-order variable nor terms of a functional
type.

Example 5.3 For the HRS Rsqsum displayed in the introduc-
tion, the set S DP(Rsqsum) consists of the following seven
pairs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

foldl�(λxy.F(x, y), X, cons(Y, L))
→ foldl�(λxy.F(x, y), F(X,Y), L)

add�(s(X),Y)→ add�(X,Y)
mul�(s(X),Y)→ add�(mul(X,Y),Y)
mul�(s(X),Y)→ mul�(X,Y)
sqsum�(L)→ foldl�(λxy.add(x, mul(y, y)), 0, L)
sqsum�(L)→ add�(x, mul(y, y))
sqsum�(L)→ mul�(y, y)

Notice that we use the extra variables x, y in the sixth and
seventh dependency pairs.

Each static dependency pair expresses nothing but the

local dependency of functions based on dependency rela-
tionships displayed in rules. To analyze the global depen-
dency of functions, in other words, to analyze the static
recursive structure, we introduce notions of a static depen-
dency chain and a static dependency graph.

Definition 5.4 (Static Dependency Chain) Let R be an
HRS. A sequence u�0 → v�0, u

�
1 → v�1, · · · of static depen-

dency pairs in R is said to be a static dependency chain in
R if there exist θ0, θ1, . . . such that v�i θi↓

∗−→
R

u�i+1θi+1↓ and
uiθi↓, viθi↓ ∈ T args

S C (R) for any i.

Definition 5.5 (Static Dependency Graph) The static de-
pendency graph of R is a directed graph, in which nodes are
S DP(R) and there exists an arc from u� → v� to u′� → v′� if
u� → v�, u′� → v′� is a static dependency chain.

Example 5.6 The static dependency graph of the HRS
Rsqsum (cf. Example 5.3) is shown in Fig. 1.

Unfortunately, the connectability of the static depen-
dency pairs is undecidable. Hence, we need suitable approx-
imation techniques. In TRSs, such techniques were stud-
ied [16]. One of simple approximated dependency graphs is
the graph in which an arc from u� → v� to u′� → v′� ex-
ists if v� and u′� have the same top symbol. Note that for
the HRS Rsqsum this approximation gives the precise static
dependency graph shown in Fig. 1.

We now introduce the notions of static recursion com-
ponents and non-loopingness. As usual, the termination of
HRS can be proved by proving the non-loopingness of each
recursion component. These proofs are similar to the other
dependency pair methods.

Definition 5.7 (Static Recursion Component) Let R be an
HRS. A static recursion component in R is a set of nodes in a
strongly connected subgraph of the static dependency graph
of R. Using S RC(R) we denote the set of static recursion
components in R.

Example 5.8 The static dependency graph of Rsqsum
(Fig. 1) has three strongly connected subgraphs. Thus, the
set S RC(Rsqsum) consists of the following three components:

2012
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

{
foldl�(λxy.F(x, y), X, cons(Y, L))

→ foldl�(λxy.F(x, y), F(X,Y), L){
add�(s(X),Y)→ add�(X,Y){
mul�(s(X),Y)→ mul�(X,Y)

Definition 5.9 (Non-Looping) A static recursion compo-
nent C in an HRS R is said to be non-looping if there exists
no infinite static dependency chain in which only pairs in C
occur and every u� → v� ∈ C occurs infinitely many times.

In the remainder of this section, we show the soundness
of the static dependency pair method on PFP-HRSs. That
is, we show that if any static recursion component of PFP-
HRS R is non-looping, then R is terminating. We need two
lemmas.

Lemma 5.10 Let R be a non-terminating HRS. Then TB ∩
T¬S C(R) ∩ T args

S C (R) � ∅.

Proof. Since R is not terminating, T¬S C(R) � ∅ follows from
Lemma 3.2(5). Let t ≡ λx1 · · · xm.a(t1, . . . , tn) be a mini-
mal size term in T¬S C(R). From Lemma 3.2(2), there ex-
ist u1, . . . , um ∈ TS C(R) such that ¬S C(R, t′) where t′ ≡
(t u1 · · · um)↓. Suppose that σ = {x j := u j | 1 ≤
j ≤ m}. Then t′ ≡ (aσ t1σ · · · tnσ)↓. Since the size of
t′i ≡ λx1 · · · xm.ti is less than the size of t, we have S C(R, t′i)
by the minimality of t. Since tiσ↓ ≡ (t′i u1 · · · um)↓,
we have S C(R, tiσ↓) by Lemma 3.2(1). Assume that a ∈
{x1, . . . , xm}. Since aσ↓ ≡ u j ∈ TS C(R), S C(R, t′) follows
from Lemma 3.2(1). This is a contradiction. Hence, we have
a � {x1, . . . , xm}. Therefore we have t′ ≡ a(t1σ↓, . . . , tnσ↓)
∈ TB ∩ T¬S C(R) ∩ T args

S C (R). �

Lemma 5.11 Let R be a PFP-HRS. For any t ∈ TB ∩
T¬S C(R) ∩ T args

S C (R), there exist l� → v� ∈ S DP(R) and a
substitution θ such that t� ∗−→

R
(lθ↓)� and lθ↓, vθ↓ ∈ TB ∩

T¬S C(R) ∩ T args
S C (R).

Proof. From t ∈ T args
S C (R) and Lemma 3.2(5), we have

t ∈ T args
S N (R). From t ∈ TB ∩ T¬S C(R), we have

¬S N(R, t). Hence, there exist l → r ∈ R and a substitu-
tion θ′ such that t� ∗−→

R
(lθ′↓)�, lθ′↓, rθ′↓ ∈ T¬S N(R), and

Dom(θ′) ⊆ FV(l). Since type(l) = type(r) ∈ B, we have
lθ′↓, rθ′↓ ∈ T¬S C(R). Moreover, lθ′↓ ∈ T args

S C (R) follows
from Lemma 3.2(3). Since r ∈ Cand(r) and ¬S C(R, rθ′↓),
we have {r′ ∈ Cand(r) | ¬S C(R, r′θ′↓)} � ∅. Let v′ ≡
λx1 · · · xm.a(r1, . . . , rn) be a minimal size term in this set.

From Lemma 3.2(2), there exist strongly computable
terms u1, . . . , um such that (v′θ′ u1 · · · um)↓ is not strongly
computable. Let v and θ be v ≡ a(r1, . . . , rn) and θ =
θ′ ∪ {xi := ui | 1 ≤ i ≤ m}. Since vθ↓ ≡ (v′θ′ u1 · · · um)↓,
we have vθ↓ ∈ TB ∩ T¬S C(R). Since lθ↓ ≡ lθ′↓ from
xi � FV(l), we have lθ↓ ∈ TB ∩ T¬S C(R) ∩ T args

S C (R).
Since λx1 · · · xm.ri ∈ Cand(r), S C(R, (λx1 · · · xm.ri)θ′↓) fol-
lows from the minimality of v′. Hence, each riθ↓ ≡
((λx1 · · · xm.ri)θ′ u1 · · · um)↓ is strongly computable from

Lemma 3.2(1).
We prove the remaining claims that vθ↓ ∈ T args

S C (R) and
l� → v� ∈ S DP(R).

• Assume that a ∈ {xi | 1 ≤ i ≤ m}. Then S C(R, vθ↓)
follows from S C(R, aθ↓) and Lemma 3.2(1). This is a
contradiction.
• Assume that a ∈ FV(r). Since R is PFP, there

exists k (≤ n) such that a(r1, . . . , rk)↓ ∈ safe(l).
From Lemma 4.3, S C(R, a(r1, . . . , rk)θ↓) holds. From
Lemma 3.2(1), S C(R, vθ↓) holds. This is a contradic-
tion.
• Assume that a ∈ CR. Then ∀i.S N(R, riθ↓) follows from

Lemma 3.2(5). From a ∈ CR, we have S N(R, vθ↓).
From v ∈ TB, we have S C(R, vθ↓). This is a contradic-
tion.
• Assume that a ∈ DR and there exists k (≤ n)

such that a(r1, . . . , rk)↓ ∈ safe(l). From Lemma 4.3,
S C(R, a(r1, . . . , rk)θ↓) holds. From Lemma 3.2(1),
S C(R, vθ↓) holds. This is a contradiction.

As shown above, we have a ∈ DR and a(r1, . . . , rk)↓ �
safe(l) for all k (≤ n). Hence l� → v� ∈ S DP(R). More-
over, vθ↓ ∈ T args

S C (R) holds because vθ↓ ≡ a(r1θ↓, . . . , rnθ↓)
and S C(R, riθ↓) for any i. �

By using the two lemmas above, we can show the
soundness of the static dependency pair method.

Theorem 5.12 Let R be a PFP-HRS. If there exists no infi-
nite static dependency chain then R is terminating.

Proof. Assume that ¬S N(R). From Lemma 5.10, there ex-
ists t ∈ TB ∩T¬S C(R) ∩T args

S C (R). By applying Lemma 5.11
repeatedly, we obtain an infinite static dependency chain,
which leads to a contradiction. �

Corollary 5.13 Let R be a PFP-HRS such that there exists
no infinite path† in the static dependency graph. If all static
recursion components are non-looping, then R is terminat-
ing.

Note that no infinite path condition in this corollary is
always satisfied for finite PFP-HRSs, since nodes are finite
in the static dependency graph.

6. Non-loopingness

In Sect. 5 we showed that a PFP-HRS terminates if every
static recursion component is non-looping. In order to show
non-loopingness, the notion of the subterm criterion [8],
[13] is frequently utilized, as is that of a reduction pair [11],
which is an abstraction of the weak-reduction order†† [1].
These techniques are also effective in termination proofs for
HRSs. We begin with reduction pairs.

Definition 6.1 (Reduction Pair) Let � be a quasi-order
†Each node cannot appear more than once in a path.
††A quasi-order � is said to be a weak reduction order if the pair

(�,�) of � and its strict part � is a reduction pair.

KUSAKARI et al.: SDP-METHOD BASED ON STRONG COMPUTABILITY FOR HIGHER-ORDER REWRITE SYSTEMS
2013

and > be a strict order. The pair (�, >) is said to be a re-
duction pair if the following properties hold:

• > is well-founded and closed under substitution,
• � is closed under contexts and substitutions, and
• � · > ⊆ > or > · � ⊆ >.

Lemma 6.2 Let R be an HRS and C ∈ S RC(R). If there
exists a reduction pair (�, >) such that R ⊆ �, C ⊆ � ∪ >,
and C ∩ > � ∅, then C is non-looping.

Proof. Obvious. �

Next we introduce the subterm criterion for HRSs. In
[8], Hirokawa and Middeldorp proved that the subterm crite-
rion guarantees the non-loopingness in TRSs. The key of the
proof is that the relation −→

R
∪ >sub is well-founded on termi-

nating terms. Since the property also holds in higher-order
rewriting, we directly ported the criterion to STRSs [13]. We
also slightly improved the subterm criterion by extending
the codomain of a function π from positive integers to se-
quences of positive integers [13]. In the following, we ex-
tend the improved subterm criterion onto HRSs, that is to
handle λ-abstraction.

Definition 6.3 (Subterm Criterion) Let R be an HRS and
C ∈ S RC(R). We say that C satisfies the subterm criterion
if there exists a function π fromDR to non-empty sequences
of positive integers such that

(α) u|π(top(u)) >sub v|π(top(v)) for some u� → v� ∈ C, and
(β) the following conditions hold for any u� → v� ∈ C:

• u|π(top(u)) ≥sub v|π(top(v)),
• ∀p ≺ π(top(u)).top(u|p) � FV(u), and
• ∀q ≺ π(top(v)).q = ε ∨ top(v|q) � FV(v) ∪DR.

Lemma 6.4 Let R be an HRS and C ∈ S RC(R). If C satis-
fies the subterm criterion then C is non-looping.

Proof. Assume that pairs in C generate an infinite chain
u�0 → v�0, u

�
1 → v�1, u

�
2 → v�2, · · · in which every u� → v� ∈ C

occurs infinitely many times, and let θ0, θ1, . . . be substitu-
tions such that v�i θi↓

∗−→
R

u�i+1θi+1↓ and uiθi↓, viθi↓ ∈ T args
S C (R)

for each i. From Lemma 3.2(5), uiθi↓, viθi↓ ∈ T args
S N (R). De-

note π(top(ui)) by pi for each i. Since v�i θi↓
∗−→
R

u�i+1θi+1↓, we
have top(vi) = top(ui+1). Hence, from the condition (β) of
the subterm criterion, we have

(u0θ0↓)|p0 ≥sub (v0θ0↓)|p1

∗−→
R

(u1θ1↓)|p1 ≥sub · · · .

From the condition (α) of the subterm criterion, the se-
quence above contains infinitely many >sub. Hence there
exists an infinite sequence starting with (u0θ0↓)| j with re-
spect to −→

R
∪ >sub, where j is the positive integer such that

j � p0. This is a contradiction with u0θ0↓ ∈ T args
S N (R). �

Finally, we present a powerful method for proving ter-
mination of PFP-HRSs.

Theorem 6.5 Let R be a PFP-HRS such that there exists no

infinite path in the static dependency graph. If any static
recursion component C ∈ S RC(R) satisfies one of the fol-
lowing properties, then R is terminating.

• C satisfies the subterm criterion.
• There exists a reduction pair (�, >) such that R ⊆
�,C ⊆ �∪ >, and C ∩ > � ∅.

Proof. From Corollary 5.13 and Lemma 6.2, 6.4. �

As seen in the theorem, proving non-loopingness by
the subterm criterion depends only on a recursion compo-
nent, unlike proving one by a reduction pair. Thus the ap-
proach by the subterm criterion is more efficient than the
approach by reduction pairs.

Example 6.6 We show the termination of PFP-HRS Rsqsum
displayed in the introduction. Let π(foldl) = 3, π(add) =
1, and π(mul) = 1. Then all C ∈ S RC(Rsqsum) (cf. Ex-
ample 5.8) satisfy the subterm criterion in the underlined
positions below:

⎧⎪⎨⎪⎩ foldl
�(λxy.F(x, y), X, cons(Y, L))

→ foldl�(λxy.F(x, y), F(X,Y), L){
add�(s(X),Y)→ add�(X,Y){
mul�(s(X),Y)→ mul�(X,Y)

Hence the termination can be shown by Theorem 6.5.

7. Concluding Remarks

In this paper, we extended the static dependency pair method
based on strong computability for STRSs [13] to that for
HRSs. The following topics remain for future work.

• Argument filtering method for HRSs: Since it is gen-
erally difficult to design reduction pairs, the argu-
ment filtering method was proposed for the dependency
pair method of TRSs [1], and extended to STRSs [12].
However, there is no known argument filtering method
for HRSs. The argument filtering method in [12] can
only be applied to left-firmness systems, in which ev-
ery variable of the left-hand sides occurs at a leaf posi-
tion. It may be possible to adapt the argument filtering
method for HRSs without the left-firmness restriction
because the counterexample shown in [12] is no longer
a counterexample for HRSs.
• Notion of usable rules for HRSs: The notion of usable

rules was introduced for TRSs by Hirokawa and Mid-
deldorp [8], and by Thiemann, Giesl, and Schneider-
Kamp [23] to reduce constraints when trying to prove
non-loopingness by means of reduction pairs. These
proofs are based on Urbain’s proof of an incremental
approach to the dependency pair method [24]. It will
be of benefit to develop the notion of usable rules for
HRSs.
• Extending upon the class of plain function-passing:

2014
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

We have only shown the soundness of the static de-
pendency pair method for the class of plain function-
passing systems. The notions of pattern computable
closure [4] and safe function-passing [14] are promis-
ing techniques by which this may be extended.

Acknowledgements

This research was partially supported by MEXT KAKENHI
#20500008, #18500011, #20300010, and by the Kayamori
Foundation of Informational Science Advancement.

References

[1] T. Arts and J. Giesl, “Termination of term rewriting using depen-
dency pairs,” Theor. Comput. Sci., vol.236, pp.133–178, 2000.

[2] F. Blanqui, “Termination and confluence of higher-order rewrite sys-
tems,” Proc. 11th Int. Conf. on Rewriting Techniques and Applica-
tions, LNCS 1833 (RTA2000), pp.47–61, 2000.

[3] F. Blanqui, J.-P. Jouannaud, and M. Okada, “Inductive-data-type
systems,” Theor. Comput. Sci., vol.272, pp.41–68, 2002.

[4] F. Blanqui, “Higher-order dependency pairs,” Proc. 8th Int. Work-
shop on Termination (WST2006), pp.22–26, 2006.

[5] F. Blanqui, “Computability closure: Ten years later,” Essays Dedi-
cated to Jean-Pierre Jouannaud on the Occasion of His 60th Birth-
day, LNCS 4600 (Rewriting, Computation and Proof), pp.68–88,
2007.

[6] N. Dershowitz, “Orderings for term-rewriting systems,” Theor.
Comput. Sci., vol.17, no.3, pp.270–301, 1982.

[7] J.-Y. Girard, Interprétation fonctionnelle et élimination des coupures
de l’arithmétique d’ordre supérieur. Ph.D. thesis, University of Paris
VII, 1972.

[8] N. Hirokawa and A. Middeldorp, “Dependency pairs revisited,”
Proc. 15th Int. Conf. on Rewriting Techniques and Applications,
LNCS 3091 (RTA04), pp.249–268, 2004.

[9] J.-P. Jouannaud and M. Okada, “A computation model for exe-
cutable higher-order algebraic specification languages,” Proc. 6th
IEEE Symposium on Logic in Computer Science, pp.350–361,
1991.

[10] J.-P. Jouannaud and M. Okada, “Abstract data type systems,” Theor.
Comput. Sci., vol.173, no.2, pp.349–391, 1997.

[11] K. Kusakari, M. Nakamura, and Y. Toyama, “Argument filter-
ing transformation,” Proc. Int. Conf. on Principles and Practice of
Declarative Programming, LNCS 1702 (PPDP’99), pp.47–61, 1999.

[12] K. Kusakari, “On proving termination of term rewriting systems
with higher-order variables,” IPSJ Trans. Programming, vol.42,
no.SIG 7 (PRO 11), pp.35–45, 2001.

[13] K. Kusakari and M. Sakai, “Enhancing dependency pair method us-
ing strong computability in simply-typed term rewriting systems,”
Applicable Algebra in Engineering, Communication and Comput-
ing, vol.18, no.5, pp.407–431, 2007.

[14] K. Kusakari and M. Sakai, “Static dependency pair method for
simply-typed term rewriting and related techniques,” IEICE Trans.
Inf. & Syst., vol.E92-D, no.2, pp.235–247, Feb. 2009.

[15] R. Mayr and N. Nipkow, “Higher-order rewrite systems and their
confluence,” Theor. Comput. Sci., vol.192, no.2, pp.3–29, 1998.

[16] A. Middeldorp, “Approximations for strategies and termination,”
Proc. 2nd Int. Workshop on Reduction Strategies in Rewriting and
Programming, vol.70(6) of Electronic Notes in Theoretical Com-
puter Science, 2002.

[17] N. Nipkow, “Higher-order critical pairs,” Proc. 6th Annual IEEE
Symposium on Logic in Computer Science, pp.342–349, 1991.

[18] M. Sakai, Y. Watanabe, and T. Sakabe, “An extension of the depen-
dency pair method for proving termination of higher-order rewrite

systems,” IEICE Trans. Inf. & Syst., vol.E84-D, no.8, pp.1025–
1032, Aug. 2001.

[19] M. Sakai and K. Kusakari, “On dependency pair method for proving
termination of higher-order rewrite systems,” IEICE Trans. Inf. &
Syst., vol.E88-D, no.3, pp.583–593, March 2005.

[20] T. Sakurai, K. Kusakari, M. Sakai, T. Sakabe, and N. Nishida, “Us-
able rules and labeling product-typed terms for dependency pair
method in simply-typed term rewriting systems,” IEICE Trans. Inf.
& Syst. (Japanese Edition), vol.J90-D, no.4, pp.978–989, April
2007.

[21] T.T. Tait, “Intensional interpretation of functionals of finite type,” J.
Symbolic Logic, vol.32, pp.198–212, 1967.

[22] Terese, Term Rewriting Systems, Cambridge Tracts in Theoretical
Computer Science, vol.55, Cambridge University Press, 2003.

[23] R. Thiemann, J. Giesl, and P. Schneider-Kamp, “Improved modu-
lar termination proofs using dependency pairs,” Proc. 2nd Int. Joint
Conf. on Automated Reasoning, LNAI 3097 (IJCAR2004), pp.75–
90, 2004.

[24] X. Urbain, “Modular & incremental automated termination proofs,”
J. Automated Reasoning, vol.32, no.4, pp.315–355, 2004.

Keiichirou Kusakari received B.E. from
Tokyo Institute of Technology in 1994, received
M.E. and the Ph.D. degree from Japan Ad-
vanced Institute of Science and Technology in
1996 and 2000. From 2000, he was a research
associate at Tohoku University. He transferred
to Nagoya University’s Graduate School of In-
formation Science in 2003 as an assistant pro-
fessor and became an associate professor in
2006. His research interests include term rewrit-
ing systems, program theory, and automated the-

orem proving. He is a member of IPSJ and JSSST.

Yasuo Isogai received the B.E. and M.E. de-
grees from Nagoya University in 2006 and 2008,
respectively. He engaged in research on term
rewriting systems. He is going to work at Hi-
tachi Ltd. from April 2008.

Masahiko Sakai completed graduate course
of Nagoya University in 1989 and became As-
sistant Professor, where he obtained a D.E. de-
gree in 1992. From April 1993 to March 1997,
he was Associate Professor in JAIST. In 1996 he
stayed at SUNY at Stony Brook for six months
as Visiting Research Professor. From April
1997, he was Associate Professor in Nagoya
University. Since December 2002, he has been
Professor. He is interested in term rewriting sys-
tem, verification of specification and software

generation. He received the Best Paper Award from IEICE in 1992. He
is a member of JSSST.

KUSAKARI et al.: SDP-METHOD BASED ON STRONG COMPUTABILITY FOR HIGHER-ORDER REWRITE SYSTEMS
2015

Frédéric Blanqui received his PhD degree
in September 2001 at the University of Paris 11
(Orsay, France). He did a postdoc at Cambridge
University (UK) from October 2001 to August
2002, and at Ecole Polytechnique (Palaiseau,
France) from September 2002 to August 2003.
Since October 2003, he is permanent full-time
INRIA researcher at LORIA (Nancy, France).
He is interested in rewriting theory, type theory,
termination, functional programming and proof
assistants. He received the Kleene Award for the

best student paper at LICS’01, and the French SPECIF 2001 Award for his
PhD.

