2064

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

[PAPER

Load Balancing Scheme on the Basis of Huffman Coding for P2P

Information Retrieval

Hisashi KURASAWA 79, Atsuhiro TAKASU™™, and Jun ADACHI™®, Members

SUMMARY Although a distributed index on a distributed hash table
(DHT) enables efficient document query processing in Peer-to-Peer infor-
mation retrieval (P2P IR), the index costs a lot to construct and it tends to
be an unfair management because of the unbalanced term frequency dis-
tribution. We devised a new distributed index, named Huffman-DHT, for
P2P IR. The new index uses an algorithm similar to Huffman coding with
a modification to the DHT structure based on the term distribution. In a
Huffman-DHT, a frequent term is assigned to a short ID and allocated a
large space in the node ID space in DHT. Throuth ID management, the
Huffman-DHT balances the index registration accesses among peers and
reduces load concentrations. Huffman-DHT is the first approach to adapt
concepts of coding theory and term frequency distribution to load balanc-
ing. We evaluated this approach in experiments using a document collec-
tion and assessed its load balancing capabilities in P2P IR. The experimen-
tal results indicated that it is most effective when the P2P system consists of
about 30,000 nodes and contains many documents. Moreover, we proved
that we can construct a Huffman-DHT easily by estimating the probability
distribution of the term occurrence from a small number of sample docu-
ments.

key words: peer-to-peer, information retrieval, load balancing, Huffman-
coding

1. Introduction

Peer-to-Peer (P2P) systems have low management cost,
high scalability, and good dependability. Furthermore, they
are suitable for developing and maintaining a system on a
large amount of distributed computation resources that are
dynamically reconfigured. However, information retrieval
(IR) and information management in P2P systems are diffi-
cult because documents are distributed on a P2P network.
Although early studies developed efficient query routing
schemes, such as the depth-first search[1] and distributed
hash table (DHT) [2]-[4], they are not suitable when there
is a small amount of network traffic or a need for a pre-
cise search. The search indices of the early schemes mainly
manage data locations, and don’t provide term information,
which is important for judging the relevance of documents.
Recent studies on query routing schemes have tried to adopt
the existing IR techniques for centralized systems to P2P

Manuscript received November 10, 2008.
Manuscript revised June 8, 2009.

"The author is with the Graduate School of Information Sci-
ence and Technology, The University of Tokyo, Tokyo, 101-8430
Japan.

""The authors are with National Institute of Informatics, Tokyo,
101-8430 Japan.
a) E-mail: kurasawa@nii.ac.jp
b) E-mail: takasu@nii.ac.jp
¢) E-mail: adachi @nii.ac.jp
DOLI: 10.1587/transinf.E92.D.2064

systems.

Modern IR methods use the occurrence of term infor-
mation in document collection, such as term frequency (TF)
that denotes the number of term occurrences in a document
and document frequency (DF) that denotes the number of
documents including the term, to measure the relevance be-
tween queries and documents [5]. The calculation of term
information is not an easy task in P2P systems. Thus, early
P2P IR systems did not fully use term information. As a re-
sult, they gathered documents containing less relevant doc-
uments, and this caused heavy network traffic loads.

Recently, several distributed indexing methods for P2P
IR systems have been proposed [6]-[9]. The problem with
distributed indices is that they cost a lot to construct and
have an unfair index management cost. The information
about each term is usually maintained by a specific node.
When processing a query or inserting a new document into
a P2P IR system, we need to access the nodes that keep the
term information in the queries or documents. A distributed
hash table (DHT) is often used for this purpose. It enables
us to access the target node in O(logn) hops for the num-
ber n of nodes in the P2P network. To register a document
to the index, we need to access all the nodes that keep the
term information included in the document. As a result, the
construction of the index increases the traffic. Moreover, it
is empirically known that the term occurrence probability
obeys an exponential distribution, that is, a small number
of terms appear frequently whereas many other terms ap-
pear with lower probability in documents. The nodes that
manage indices of frequent terms receive more registration
and reference accesses than nodes with less frequent terms;
hence, the index management cost is unfair among nodes.

To overcome these problems, we proposed a new dis-
tributed index [10]. Today’s distributed indexing methods
assign terms to nodes and access them in O(log n) hops, re-
gardless of the term probability. Our method allocates term
indices to nodes on the basis of the term distribution, and
also finds a node with less hops for more frequently ap-
pearing terms. To achieve this, we modify the node ac-
cess scheme of the DHT by using a technique from cod-
ing theory. The proposed method uses an algorithm sim-
ilar to Huffman coding, so we call the resultant scheme
Huffman-DHT. We show through simulations that the pro-
posed method reduces the average number of hops for in-
dex accesses in the construction process, and consequently,
balances the traffic load for index construction and manage-
ment.

Copyright © 2009 The Institute of Electronics, Information and Communication Engineers

KURASAWA et al.: LOAD BALANCING SCHEME ON THE BASIS OF HUFFMAN CODING FOR P2P INFORMATION RETRIEVAL

The rest of this paper is organized as follows. We
briefly survey P2P IR systems in Sect. 2, and overview the
indexing schemes for P2P IR systems in Sect. 3. In Sect. 4,
we describe the new peer searching method that balances the
load of peers. Section 5 presents our experimental results.
Section 6 concludes this paper and outlines future research
directions.

2. Related Work

We explain the related workon searching and load balancing
in P2P IR. For realizing a precise search, the P2P IR stud-
ies construct a global index and manage information about
the occurrence of terms in shared documents. In P2P IR
systems using unstructured P2P networks, a node floods a
global index with a gossip algorithm and shares informa-
tion concerning the peers’ document collections [6]. Since
the index is shared by all the nodes, the index cannot be
updated frequently. On the other hand, in P2P IR systems
using structured P2P networks, a node makes a global in-
dex using a DHT [7]-[9]. In structured P2P IR systems, a
term is assigned to the appropriate node, whose hash value
is near the hash value of the term. We call the node an in-
dex node for the term. Every node maintains the part of the
global index related to the assigned terms on the DHT. Two
types of global indices have already been proposed. One
is a term-to-peer index where the terms are indexed by a
peer’s collection[7]. As each node maintains a peer list
for the assigned terms, the term-to-peer index cannot dis-
tinguish between the documents in the same peer’s collec-
tion and has worse search performance than a centralized in-
dex [11]. Many peer selection strategies have been proposed
for more efficient searching, such as CORI[12], the overlap
awareness strategy [13], global document frequency estima-
tion [14], and term co-occurrences [11], [15]. The other type
of index is a term-to-document index where the terms are
indexed by document [8],[9]. We show how to create the
term-to-document index in Sect.3. The term-to-document
index can directly refer to the term frequency of a specific
document without accessing the document, and its search
performance is as good as that of a centralized index. How-
ever, the indexing cost is heavy. A query-driven index can
reduce the cost by indexing only those terms that have oc-
curred in queries. In the index, the terms that are not in-
dexed must be searched via a broadcast, and because of this,
the search efficiency of the query-driven index is inferior to
that of systems using a term-to-document index that has the
information of all the terms in the documents.

In structured P2P IR systems using ordinary DHT,
terms are assigned to nodes on the basis of the hash func-
tion. Owing to this node ID assignment, the nodes re-
sponsible for a frequent term get heavier loads because
they are frequently accessed when documents get regis-
tered in the index. Thus, structured P2P IR systems needs
load balancing techniques. Those load balancing tech-
niques include the virtual server[2], the local and random
probes algorithms [16], pair-wise interactions of peers [4],

2065

and proximity-aware balancing [17]. These techniques can
improve the node ID assignment in a DHT and can be used
in any P2P applications. However, they impose an extra traf-
fic load to modify the IDs.

Search efficiency depends on the quality of the global
index. Although registering a document in the index costs
more in structured P2P IR systems than in unstructured sys-
tems, structured systems can retrieve relevant documents
with higher precision. In particular, the systems using a
term-to-document index have a better search performance.
An ideal P2P IR system can make a precise search for doc-
uments, and constructs an index at a lower cost. To achieve
this goal, we used the term distribution and refined the
DHT structure to overcome the inefficient index construc-
tion drawback.

3. Background

3.1 Indexing and Data Allocation Scheme in P2P IR Sys-
tems

In this section we explain the term-to-document indexing
scheme in P2P IR systems using structured P2P networks.

The global index consists of inverted indices for each
term. An inverted index for a term is held by the appropri-
ate node, whose hash value is similar to the hash value of
the term. The inverted index maintains three values for a
document, the file name, the term weight in the document,
and a pointer to the data of the document. A node regis-
ters document information to the indices of each term in the
document.

The term weight in the indices is usually measured
using the term and document frequencies. For exam-
ple, Concordia [9] uses a probabilistic model and the term
weighting formula proposed by [18], which is a variation of
BM25[19].

When given a query consisting of a set of terms, the
system connects directly to the index nodes for each term in
the query and refers to each index in the nodes. The system
calculates the relevance score of each document to the query,
and gathers relevant documents with high scores from the
network. Figure 1 shows the indexing and retrieving scheme
in P2P IR systems.

DH

indexing |

*Each node is responsible for
terms based on hash table

[Create structured index using DHT | Node A Hash {bird}

\&
Term Weight filename |term weight | data location
D?ﬁ; birds. |y, 1-bid 50 4
7 " 2. wish 43 . Doc 1 50 Hash_x
| wish for a bird. 3 lke 32 K
ke g Doc 3 48

searchl

A K Hash_y
\, Doc 7 21 Hash_z
@) Node B Hash {ike
:. Doc 1 32 Hash_x
- ,'. Doc 4 12 Hash_v
Hash (bird) |+
query ssuss Doc 8 63 Hash_w

Hash wild) | ==« . |
L LY

Fig.1 Indexing scheme in P2P IR.

2066

3.2 Indexing Cost

We compare the term-to-peer index[7] and term-to-
document index [8],[9] from the standpoint of indexing
cost.

Let us first consider the cost T; of a node in P2P IR
methods using a term-to-peer index registering a document
collection summary for every term to the index nodes on the
DHT. Let f(¢) be the cost required for calculating the weight
of t, and W be the set of terms in the collection. Then, T}
can be written as:

T =)).

tew

The number of registrations to the indices in [7] is |W|.

On the other hand, the cost 7> that a node in P2P IR
methods using a term-to-document index needs to register
each document for every term in its collection to the index
nodes on DHT is

=), (Z f(r)],

deC \ ted

where d denotes a document and C denotes a collection. The
number of registrations to the indices in the P2P IR methods
is represented as:

D ldl

deC

where |d| is the length of a document d.

It is clear that the indexing cost in P2P IR methods us-
ing a term-to-document index will be lower if a node reg-
isters a set of documents including the same term. How-
ever, the number of index records is still larger than that
of methods using a term-to-peer index. Although a term-
to-document index costs a lot, it is useful for IR because it
has enough term information to adapt IR algorithms. There-
fore, we would like to refine the term-to-document indexing
method.

4. Huffman-DHT
4.1 System Overview

The proposed P2P system uses the term-to-document in-
dex on top of a structured P2P system to provide the doc-
ument management and retrieval functions. We can use any
structured P2P system that uses a 1-dimension key space
such as Kademlia [3] and Chord [2]. We are currently using
Kademlia for our implementation.

In the initializing phase, a trigger node takes an initial
set of document collection and estimates the probability dis-
tribution of the word frequencies and constructs the coding
tree described in Sect. 4.2. The initially constructed coding
tree is copied to all the nodes attached to the P2P network.
Each node constructs the index of the corresponding terms

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

described in Fig.1 in Sect.3.1. Each node also allocates
the documents and their replicas to the appropriate nodes by
using the data allocation scheme proposed in [7] and [9].
Then, the P2P system initiates the document management
and retrieval services.

In the running phase, a query can be issued from any
node in the P2P network by using the procedure described
in Sect. 4.4. A new document is also registered by any of the
nodes by using the procedure described in Sect. 4.5.

When joining a P2P system, a new node first contacts a
node and participates in the network according to the joining
procedure of the underlying structured P2P system. Then,
the node that is joining the system copies the coding tree
from the contacted node, whereas it copies the index for its
corresponding term from a neighbor node in the underly-
ing structured P2P system. The corresponding term is deter-
mined by using the procedure described in Sect. 4.3. When a
node leaves the system, it searches for the nodes that should
manage its index, and transfers the index to them.

4.2 Huffman Coding

A Huffman-DHT assigns an ID to each node. Let us denote
the ID by a bit vector b1b, ---b;, where b; (1 < i <[)isa
0 or 1. For nodes p and ¢, the distance between p and ¢
is defined as |id(p) — id(q)| where id(-) is the ID of a node.
Each node has a list of addresses of the other nodes in the
same way as in an ordinary DHT.

We need to construct a coding tree for frequent terms,
and we need to know the probability distribution of terms
when coding. We can use the document frequency distribu-
tion for coding, because the document frequency of a term
denotes the number of accesses to index nodes when doc-
uments are registered. We estimate the distribution from a
sample document set S. Let df(,S) denote the document
frequency of a term ¢ in the sample document set S. We
select the top k terms in descending order of df(t, S) as fre-
quent terms, where k is a parameter of the Huffman-DHT.
The remaining terms are assigned to the ID calculated by a
hash function in the same way as in the distributed index [7],
[9]. We estimate the probability of a term ¢ in the frequent
terms T by

=4S
PO= 5 df@s)

Then, we construct the coding tree using the Huffman cod-
ing algorithm [20]. Figure 2 shows an example of a coding
tree. As shown in the figure, we use the binary alphabet for
coding.

The reasons we encode only the frequent terms are:

e we can reduce the size of the coding tree that must be
shared by all nodes,

o the coding is effective for frequent terms, and

e we can estimate the distribution from a small document
sample.

KURASAWA et al.: LOAD BALANCING SCHEME ON THE BASIS OF HUFFMAN CODING FOR P2P INFORMATION RETRIEVAL

Calculate document frequency(DF) ‘
DF Distribution

| Extract frequent terms

Documents

term c
o s __termd

Document Frequency

Huffman-DHT ID
000000
000001

15 15 0001

0 001

01

100

241 101

1 11

term
term a

term b

term c

term d

term e

term f
termg
term h

o|afo|w|n|=|=

@

Fig.2 ID space construction in Huffman-DHT.

4.3 Node Assignment

For a frequent term ¢, let ¢; - - - ¢, be its Huffman code. If
the code length m is longer than the bit vector length / of
the node IDs, the code is truncated to [bits, and the term
is assigned to a node whose ID is closest to the truncated
code ¢ - - - ¢;. Otherwise, a term is assigned to a set of nodes
whose IDs are between c¢;---¢,,0---0 and ¢ ---¢,1---1.

! !
We refer to this node set as an encoded node cluster for t. If

t is not in the frequent terms, it is assigned to the encoded
node cluster for the frequent term whose ID is the closest
to its ID. Note that a more frequent term is encoded with
a shorter code by Huffman coding, and therefore, it is as-
signed to a larger encoded node cluster. Figure 3 shows the
assignment of frequent terms and the node assignment in
Fig. 2.

4.4 Node Search

Suppose a node, referred to as a query node, searches for an
index node of a term ¢.

If ¢ is a frequent term, the query node encodes it by
using the coding tree. Otherwise, the node finds a term ¢’
in a list of the frequent terms whose hash number is nearest
that of #, and assigns ¢ as the code of . The query node
recursively performs the following steps:

1. If the query node knows the address of a node in the
encoded node cluster for ¢, it returns the address.

2. Otherwise, send the query to the node in the address
list whose ID is the closest to one in the encoded node
cluster.

The node search method differs from that in an ordi-
nary DHT where Huffman-DHT finishes searching when it
reaches any one node in the encoded node cluster. We can
find an index node in fewer hops than it would take with
an ordinary DHT. Moreover, we can find index nodes of a
more frequently appearing term with fewer hops, because

2067

Huffman-DHT ID Space

000000 000001

Node ID is assigned,by a hash function

11...11 ID Space 00...00

| term h | | term g | | term f | term a

term b

a term is assigned to an encoded node cluster
based on Huffman-DHT ID space

termc

*usually, # terms >> # nodes,
so most of terms are assigned to one node

Fig.3 Node assignment process.

the encoded node cluster is larger for more frequent terms.

In P2P IR systems using an ordinary DHT, the maxi-
mum number of hops required for searching the node which
manages an objective term # is:

hhaxeline(tk) = 0(108 I’l), (1)

where n is the number of nodes in the P2P network. This
number is the same as the number of hops required for ac-
cessing the objective node using the ordinary DHT.

On the other hand, the maximum number of hops re-
quired for retrieving a term in P2P IR systems using a
Huffman-DHT is based on its document frequency. Accord-
ing to Zipf’s Law, the term occurrence probability of term #
is defined as:

v
P 173 = %V’ (2)
DR

where s is the value of the exponent characterizing the dis-
tribution. In the Tipster 3 collection, s is about 1. According
to the Huffman coding theory, the maximum code length of
tr in a Huffman-DHT created from the top M frequent terms
is:

—logP, +1 (k<M)
—log P, + 1 (otherwise).

max(ly,) = { 3)

2068

As we described in Sect. 4.3, a term is assigned one of the
codes of the top M frequent terms. Therefore, the code
length does not exceed that of #);. The maximum number
of hops in P2P IR systems using Huffman-DHT depends on
the code length of the object and the number of nodes in
the network. When the network is small and the number of
nodes in the encoded node cluster of a term is one, the max-
imum number of hops for retrieving the term is the same as
the number of hops required for accessing the objective node
using an ordinary DHT. On the other hand, when the net-
work is large and the number of nodes in the encoded node
cluster of a term is large, the maximum number of hops for
retrieving the term depends on the document frequency of
the term. The maximum number of hops for retrieving the
nodes which manages # is:

hup(f)
min{—log P, + 1, O(logn)},
(k< M) @
min{—1log P,,, + 1, O(logn)},
(otherwise)

From Egs. (1) and (4) it is clear that the proposed Huffman-
DHT is superior to ordinary DHT in searching a node for an
objective term.

4.5 Document Registration

In the proposed Huffman-DHT, the index for each term is
copied to multiple nodes. In the current implementation,
each index per document represented by 512 bits consisting
of 320 bits for document file name, 32 bits for term weight,
and 160 bits for document location. Although the index size
is small, since the number of nodes can be large for fre-
quent terms, document registration may cause burst traffic
if we access all the nodes in an encoded node cluster for
a frequent term at one time. Therefore, we adopted a two-
phase registration procedure; first the document information
is registered into the index of one node in the corresponding
encoded node cluster, and then propagates the modification
later.

Suppose a node referred to as a register node adds doc-
ument information to the index. In the Huffman-DHT ap-
proach, a document is registered into the index using the
following steps:

1. For each term ¢ in the document:

a. The register node searches for an index node of ¢
by using the procedure described in Sect. 4.4,

b. The register node makes the index node modify
the entry of ¢ so that it contains the document in-
formation.

For the propagation, we introduce the parameter
QOSync, which controls the propagation delay. When a node
receives a registration QSync times, it propagates the mod-
ifications of the index, i.e., the address list of the registered

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

documents, to all the nodes belonging to the same node clus-
ter. When QSync = 1, the registered document information
is immediately propagated, i.e., the index is fully synchro-
nized, but this may cause burst traffic. For a large OSync,
the propagation is delayed, but we can reduce the total traf-
fic for the propagation by merging the QSync modifications
into one propagation.

The propagation cost increases as the number of nodes
in an encoded node cluster increases. Suppose the minimum
and the maximum depth of the Huffman-DHT are d,,;, and
dpayx, respectively. When the number of nodes in the P2P
system exceeds 2%, the Huffman-DHT begins to assign
multiple nodes to frequent terms. When the number reaches
24nax the largest encoded node cluster size then becomes
2¢nax=dmin - For a cluster consisting of m nodes, the propaga-
tion requires m — 1 messages [21]. Therefore, the Huffman-
DHT requires a large amount of traffic for the propagation
of a large cluster. This is the main drawback of the proposed
method.

4.6 Load Balancing in Document Registration

In P2P IR systems, a node has a set of inverted indices of
assigned terms. The number of registration accesses for a
term #; is in proportion to its document frequency df (., C).
In an ordinary DHT, the term ID of #; is determined by its
hash value. Therefore, the term IDs distribute over the hash
space uniformly if the number of terms is large enough. The
size of the space allocated to #; is given by:

1
Spacepyr(t) = W &)

The density of the registration access cost is:

df (%, C)
d ID,) = ———
par(IDy,) Space ()

= WI- Py - Y Idl, (©)

deC

where P, is the appearance probability of term #. From
Eq. (6), it is clear that the index registration access cost is
influenced by not only the node ID assignment but also the
term ID assignment.

On the other hand, in the Huffman-DHT, a frequent
term is assigned to a short ID, and allocated a large space
in the Huffman-DHT ID space. The size of the space allo-
cated to #; and the density of the index registration access
cost in the Huffman-DHT approach is:

1
Spaceyp(ty) = sz ~ P, @)

_ dfw,D)
@mmwgagﬁ—;mm (8)

From Eq. (8), dup(ID;,) is a constant related to the docu-
ment collection. The Huffman-DHT is free from the influ-
ence of the term ID assignment. Therefore, the index reg-
istration cost in Huffman-DHT is influenced by the balance

KURASAWA et al.: LOAD BALANCING SCHEME ON THE BASIS OF HUFFMAN CODING FOR P2P INFORMATION RETRIEVAL

of the coding tree of the Huffman-DHT and the node ID as-
signment.

5. [Experimental Results

The Huffman-DHT aims at assigning statistically balanced
ID groups to terms that have a specific probability distribu-
tion. We conducted four simulation experiments to evalu-
ate the Huffman-DHT. The evaluations were performed on
the Tipster 3 collection that was used at TREC [22]. The
collection consists of 336,310 articles from the San Jose
Mercury News (1991), the Associated Press (1990), U.S.
Patents (1983-1991), and Information from the Computer
Select disks (1991, 1992) copyrighted by Ziff-Davis. We re-
moved the stopwords and converted the remaining words to
stems using the Porter stemmer [23].

5.1 Estimation of DF Distribution

First, we examined the document frequency distribution.
Figure 4 shows the distribution of the Tipster 3 collec-
tion. The collection contains 817,897 terms in the total
53,445,728 words. Figure 5 shows the cumulative distribu-
tion of term occurrences. The terms are sorted by document
frequency and assigned IDs by the hash function. The sum
of the document frequencies of the top 4,580 frequent terms
(0.56% terms in the collection) makes up about 80% of the
total number of document frequencies. Therefore, by bal-
ancing the index construction cost for this small amount of
frequent terms, we can distribute the total index construction
cost among the nodes equally.

Second, we conducted an experiment on estimating the
document frequency distribution over the terms. For the
Huffman-DHT, we need to estimate the document frequency
distribution and extract frequent terms from a small num-
ber of samples of the document collection. We compared
the document frequencies distribution estimated from ran-
domly selected sample documents with the distribution esti-
mated from the whole Tipster 3 collection. Figure 6 plots the
Kullback-Leibler divergence between the two distributions

1e+06

T T
Tipster3 ———

100000 | 1

>
3}
&
@ 10000 | 1
oy
o}
k=
= 1000 |]
C
@
g 100
3 i \]
a AN

1ol \]

1 I I I I I

1 10 100 1000 10000 100000 1e+06

Terms (in order of frequency)

Fig.4 Document frequency distribution.

2069

with respect to the number of sample documents. To handle
terms whose document frequency was zero in the sampled
documents, we smoothed over the distributions estimated
from the sample documents by using the Laplace smoothing
technique. As shown in the graph, the divergence converges
at a small number of sample documents. Therefore, the DF
distribution of frequent terms can be estimated from a small
document collection.

5.2 Hops Required for Node Search

We conducted an experiment to find the number of required
hops to search, a node assigned to an objective term using
the Huffman-DHT. In this experiment we used the top 4,580
most frequent terms in the Tipster 3 collection to create a
Huffman-DHT. These terms occupied 80% of the total doc-
ument frequencies of all the terms. The mininum and the
maximum depth of the resultant Huffman-DHT tree are 8
and 15, respectively.

Figure 7 shows the average number of hops needed to
search a node with respect to the number of nodes in P2P IR
systems. In the graph, the number of nodes is plotted in log
scale. The lines represent a P2P IR system using an ordinary
DHT and a system using the Huffman-DHT.

As shown in the graph, the Huffman-DHT reduced the

Tipster 3 ———
0.9 - 4

0.8 4

06 |- / .
05 - 1
04 1
03 1
02 J

0.1 |- —

Ratio of sum of document frequency

0 L 1 I 1 1 1
0.1 1 10 100 1000 10000 100000 1e+06

Terms (in order of frequency)

Fig.5 Cumulative distribution of term occurrences.

5 T T T T T T T

T
Tipster 3

Kullback-Leibler divergence

0 ! ! ! ! ! ! ! !

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Sample document size

Fig.6 Similarity between estimation and actual distribution.

2070

hops required for node search

o LE L L L L L L

1 10 100 1000 10000 100000 1e+06 1e+07

nodes

Fig.7 Average no. of hops for node search.

required number of hops for searching a node as we dis-
cussed in Sect.4.4. The graph also shows that Huffman-
DHT is more effective for large P2P systems consist of more
than 1,000 nodes. This means the Huffman-DHT is more
scalable than an ordinary DHT. In this experiment, the min-
imum depth d,,;, of the coded tree is 8. Therefore, the effect
of the Huffman-DHT begins to appear when the number of
nodes exceeds 2% because the path to frequent terms in the
tree becomes shorter than that of less frequent terms, and so
do the required hops. When the number of nodes exceeds
the maximum depth 2dmes of the tree where d,,,, = 15 in this
case, the required number of hops for a term becomes ex-
actly the same as the depth of the term in the encoded tree.
Therefore, the required number of hops remains the same
when there are more than 2% nodes.

5.3 Registration Access Balancing

In an ordinary DHT, the index nodes of frequent terms
are accessed frequently for document registration. Hence,
these nodes become “hot spots”. On the other hand, in the
Huffman-DHT, the number of index nodes of a term depends
on the term’s document frequency. Therefore, the document
registration accesses are shared among nodes.

We conducted an experiment on registration access bal-
ancing in a Huffman-DHT. The experiment measured the
accesses to each node to register a document collection in
an ordinary DHT and a Huffman-DHT. Let a(p) denote the
number of accesses at node p. The following ratio of the
maximum to minimum numbers of accesses is the metric of
the load concentration:

max ey a(p)

min,ey a(p)’

where N is a set of nodes in the network. Figure 8 plots
the load concentration with respect to the number of nodes,
where one line represents the load concentration for an ordi-
nary DHT and the other lines represent the load concentra-
tions for the Huffman-DHT for the delay parameter QSyncs
of 1, 5, 10, and 20. The graph shows that the Huffman-DHT
is more effective when a P2P system consists of more than

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

1e+06 — !
r Baseline —+— 4
Huffman-DHT no
Huffman-DHT update every

100000 |-

[}
[0
2w access —x—
8 8 Huffman-DHT update every,/10 access |
% 8 10000 N Huffman-DHT update every 5 access]
“— 8 [Huffman-DHT update eyery 1 access —4&— |
° & i
Q 5 1000} 4
=< . [
s 2 I
E = 100 //s"—‘——\ﬂr&h : =5 4
[SIS b A
o 9 — Ve]
T 10 - , - 4
o r s 1
r e
1 oo o | | [
1 10 100 1000 10000 100000 1e+06 1e+07

nodes

Fig.8 Registration access balancing.

16+06 — ——r T ——
r Huffman-DHT update every 20 access —+—
Huffman-DHT update every 10 access
Huffman-DHT update every 5 access
Huffman-DHT update every 1 acCess x

10000 7]
1000 7]
100 7]
10 7]
1L 1

0.1
1 1000 10000 100000 1e+06 1e+07

100000

synchronization messages for a doc

nodes

Fig.9 No. of messages required for synchronization.

100 nodes, even if synchronization messages are needed. In
an ordinary DHT, as the number of nodes increases, each
node maintains the indices of reduced number of terms.
Then, a node including indices for frequent terms are ac-
cessed more frequently than a node for less frequent terms.
Therefore the load concentration increases as the number of
nodes increases. On the other hand, in the Huffman-DHT,
the term is assigned to a node depending on its frequency.
This mechanism balances the accesses to the nodes in the
P2P system.

For the minimum depth d,,;, of the coding tree, when
the number of nodes exceeds 2% the Huffman-DHT be-
gins to assign frequent terms to multiple nodes and propa-
gates the updated information of an index. Therefore, the
concentration ratios of Huffman-DHT differ from one other
depending on the parameter QSync.

5.4 Overhead Caused by Synchronization
As we described in Sect. 4.5, Huffman-DHT needs to prop-

agate the updated index when the number of nodes exceeds
2dnin where d,,;, denotes the minimum depth of the encoded

KURASAWA et al.: LOAD BALANCING SCHEME ON THE BASIS OF HUFFMAN CODING FOR P2P INFORMATION RETRIEVAL

tree. We registered documents in the corpus and measured
the number of updated indices for synchronization for var-
ious node sizes and the parameter QSync. Let us call an
updated index sent for synchronization a message. Figure 9
shows the average messages sent to register one document
with respect to the number of nodes in the system. As shown
in the figure, the system begins to send messages when the
number of nodes is 297 and number of messages increases
as the number of nodes increases.

6. Conclusion

This paper proposes the Huffman-DHT as a means of bal-
ancing the index registration accesses among peers and re-
ducing the load concentration for P2P IR systems. The
Huffman-DHT assigns the index of a more frequently ap-
pearing term to a larger set of nodes by using the Huffman
coding algorithm. We showed through simulations that the
Huffman-DHT

e reduces the average number of hops to access a node
with the index of the objective term, and

e cqually distributes the index management costs among
nodes

compared to an ordinary DHT in P2P IR.

A Huffman-DHT requires the probability distribution
of the term occurrence and all the nodes keep a copy of the
distribution. We proved that we can estimate the probability
distribution from a small number of sample documents and
this is sufficient for nodes to share the probabilities for a
small set of frequently appearing terms.

The drawback of Huffman-DHT is its overhead in syn-
chronizing the index update among replicas. We found from
the experimental results that Huffman-DHT is effective for
mid-size P2P system.

In order for Huffman-DHT to be effective for larger
P2Ps, we need to improve the index synchronization meth-
ods. We plan to improve the method in two directions. One
direction is to avoid the burst traffic caused by update prop-
agation. The current system introduces a delay parameter
to reduce the concentration of update traffic all at one time.
We want to develop a mechanism to send an updated index
when the network is less crowded. Another direction is to
reduce the update messages.

We need to construct an encoded tree in the Huffman-
DHT first. If the term frequency distribution is not stable
enough for document registration, we need to modify the
encoded tree. We showed that the distribution can be esti-
mated from a small number of documents, but we need a
more efficient encoded tree modification method. This is
another future work of ours.

The other problem is the query processing cost. The
Huffman-DHT was constructed according to the probability
distribution of the terms in the documents. The probabil-
ity distribution of the query terms may be different from the
distribution of the terms in the documents. We need to eval-
uate the effect of the probability distribution discrepancies

2071

on the query processing efficiency. We plan to conduct ex-
periments on this issue in near future.

References

[1] I Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A dis-
tributed anonymous information storage and retrieval system,” Lec-
ture Notes in Computer Science, vol.2009, pp.46—66, 2001.

[2] I.Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for Internet ap-
plications,” Proc. 2001 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communications
(SIGCOMM °01), pp.149-160, 2001.

[3] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the XOR metric,” Proc. IPTPS’02, 2002.

[4] K. Aberer, P. Cudre-Mauroux, A. Datta, Z. Despotovic, M.
Hauswirth, M. Punceva, and R. Schmidt, “P-Grid: A self-organizing
structured P2P system,” SIGMOD Record, 2003.

[5] R.Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval,
ACM Press, 1999.

[6] EM. Cuenca-Acuna, C. Peery, R.P. Martin, and T.D. Nguyen,
“PlanetP: Using gossiping to build content addressable peer-to-peer
information sharing communities,” Proc. 12th International Sym-
posium on High Performance Distributed Computing (HPDC ’03),
2003.

[7] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer,
“MINERVA: Collaborative P2P search,” Proc. 31st International
Conference on Very Large Data Bases (VLDB ’05), 2005.

[8] T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Kharrazi, X. Long,
and K. Shanmugasundaram, “ODISSEA: A peer-to-peer architec-
ture for scalable Web search and information retrieval,” Proc. 6th In-
ternational Workshop on the Web and Databases (WebDB’03), 2003.

[9] H. Kurasawa, H. Wakaki, A. Takasu, and J. Adachi, “Data allocation
scheme based on term weight for P2P information retrieval,” Proc.
9th Annual ACM International Workshop on Web Information and
Data Management (WIDM’07), 2007.

[10] H. Kurasawa, A. Takasu, and J. Adachi, “Huffman-DHT: Index
structure refinement scheme for P2P information retrieval,” Proc.
2008 International Symposium on Applications and the Internet
(SAINT’08), 2008.

[11] S. Michel, M. Bender, and N. Ntarmos, “Discovering and exploiting
keyword and attribute-value co-occurrences to improve P2P routing
indices,” Proc. ACM 15th Conference on Information and Knowl-
edge Management (CIKM’06), 2006.

[12] J. Callan, “Distributed information retrieval,” in Advances in Infor-
mation Retrieval, Kluwer Academic Publishers, pp.127-150, 2000.

[13] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and C. Zimmer,
“Improving collection selection with overlap awareness in P2P
search engines,” Proc. 28th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval
(SIGIR ’05), pp.67-74, 2005.

[14] M. Bender, S. Michel, P. Triantafillou, and G. Weikum, “Global
document frequency estimation in peer-to-peer Web search,” Proc.
9th International Workshop on the Web and Databases (WebDB’06),
2006.

[15] M. Bender, S. Michel, and P. Triantafillou, “P2P content search:
Give the Web back to the people,” Proc. 5th International Workshop
on Peer-to-Peer Systems (IPTPS’06), 2006.

[16] K. Kenthapadi and G.S. Manku, “Decentralized algorithms using
both local and random probes for P2P load balancing,” Proc. Seven-
teenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA’05), 2005.

[17] Y. Zhu and Y. Hu, “Efficient, proximity-aware load balancing
for DHT-based P2P systems,” IEEE Trans. Parallel Distrib. Syst.,
vol.16, no.4, pp.349-361, 2005.

[18] H. Fang, T. Tao, and C. Zhai, “A formal study of information re-

2072

[19]

[20]

[21]

[22]
[23]

trieval heuristics,” Proc. 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval
(SIGIR ’04), pp.49-56, 2004.

S.E. Robertson, S. Walker, S. Jones, M.M.H. Beaulieu, and M.
Gatford, “Okapi at TREC-3,” Proc. TREC-3, pp.109-126, 1994.
D.A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proc. Institute of Radio Enginners (IRE),
pp-1098-1101, 1952.

S. El-Ansary, L.O. Alima, P. Brand, and S. Haridi, “Efficient broad-
cast in structured P2P networks,” Proc. 2nd International Workshop
on Peer-To-Peer Systems (IPTPS’03), 2003.

Text REtrieval Conference (TREC), http://trec.nist.gov/

Porter stemmer, http://www.tartarus.org/martin/PorterStemmer/

Hisashi Kurasawa received the B.E. and
M.E. in Information Science and Technology
from the University of Tokyo, Tokyo, Japan in
2006 and 2008. He is currently a Ph.D. candi-
date in the Graduate School of Information Sci-
ence and Technology at the University of Tokyo.
His research interests are distributed informa-
tion retrieval systems and context-aware com-
puting. He is a student member of IPSJ, and
DBSIJ.

Atsuhiro Takasu received B.E., M.E. and
Dr. Eng. from the University of Tokyo in 1984,
1986 and 1989, respectively. He is a professor
of National Institute of Informatics, Japan. His
research interests are database systems and ma-
chine learning. He is a member of ACM, IEEE,
IPSJ, DBSJ and JSAL

Jun Adachi is Professor in the Digital Con-
tent and Media Sciences Research Division, Na-
tional Institute of Informatics (NII), Japan. He
is also the Director of the Cyber Sceince Infras-
tructure Development Department of NII. His
professional career has largely been spent in re-
search and development of sholarly information
systems, such as NACSIS-CAT and NII-ELS.
He is also an adjunct professor of the Gradu-
ate School of Information Science and Technol-
ogy (Department of Information and Communi-

cation Engineering), University of Tokyo. His research interests are infor-
mation retrieval, text mining, digital library systems, and distributed infor-
mation systems. Adachi received his BE, ME and Doctor of Engineering
in Electrical Engineering from the University of Tokyo in 1976, 1978, and
1981, respectively. He is a member of IPSJ, IEEE, and ACM.

IEICE TRANS. INE. & SYST., VOL.E92-D, NO.10 OCTOBER 2009

