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SUMMARY User Generated Content (UGC) VoD services such as
YouTube are becoming more and more popular, and their maintenance
costs are growing as well. Many P2P solutions have been proposed to
reduce server load in such systems, but almost all of them focus on the
single-video approach, which only has limited effect on the systems serv-
ing short videos such as UGC. The purpose of this paper is to investigate
the potential of an alternative approach, the multi-video approach, and we
use a very simple method called collaborative caching to show that meth-
ods using the multi-video approach are generally more suitable for current
UGC VoD systems. We also study the influence of the major design factors
through simulations and provide guidelines for efficiently building systems
with this method.
key words: VoD, UGC, peer-to-peer, collaborative caching

1. Introduction

Video-over-IP applications have recently attracted a large
number of Internet users. In particular, user generated con-
tent (UGC) VoD services such as YouTube [1] have achieved
unprecedented success. In 2006, comScore [2] announced
the results of an analysis of worldwide video streaming ac-
tivity from YouTube.com, confirming that an average of 100
million video streams were served per day in July 2006.
With the fast deployment of broadband residential access,
video traffic is expected to be the dominant traffic on the
Internet in the near future.

Most applications, including YouTube, employ the ba-
sic client-server service model to stream videos to end users.
With such a method, the bandwidth provision at video
source servers must grow proportionally with the client pop-
ulation. Eventually, the server maintenance cost will grow
to an unacceptable level. It may prevent newcomers from
entering this field and will become a heavy burden for any
existing service providers.

Peer-to-Peer (P2P) networking has recently emerged as
a new paradigm to build distributed network applications.
The upload bandwidth of end users is efficiently utilized to
reduce the bandwidth burden placed on the servers. Many
P2P solutions have been proposed to reduce server load in
video streaming applications, and many have been proven
effective for live streaming systems. Moreover, various
studies on employing P2P in VoD systems have appeared
in recent years. Some of them construct tree-based over-
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lay network [3]–[5], while others prefer to use a mesh-based
overlay to organize peers [6]–[8]. Some combine both meth-
ods [9]. There are also studies on other topologies [10], and
specific subjects such as supporting VCR (Video Cassette
Recorder) operation [11] and prefetching [12]. Some re-
searchers have even implemented and validated their meth-
ods in the real world [13], [14]. However, in almost all of
these studies, a peer only redistributes the video that he/she
is currently watching. We call this approach the single-video
approach. Furthermore, most systems taking the single-
video approach segment a video into many small pieces,
which can be exchanged between the users watching that
video. We call it the segmented video method in this paper.
Although such solutions have been proven to be effective for
traditional VoD systems, they are not necessarily effective
for UGC VoD systems. In fact, they have very limited ef-
fect on such systems because of the short video length. Re-
cent measurements [15], [16] show that the length of UGC
video is shorter by two orders of magnitude than non-UGC
video. As a result, in UGC VoD systems such as YouTube,
the chance of having enough peers watching a video simul-
taneously is far smaller than in traditional VoD systems.
This fact has a disastrous effect on single-video methods.
In this paper, we investigate the potential of an alternative
approach, the multi-video approach. This approach is very
intuitive, and it is derived from the basic concept of P2P file-
sharing. It simply makes users cache the played videos for
future use, so they can exchange not only with others who
are currently playing the same video, but also anyone who
has recently played and has cached that one. The purpose
of this paper is not to propose a specific system or method,
but to show the fact that methods using the multi-video ap-
proach are generally more suitable for current UGC VoD
systems, e.g. YouTube, than those using the single-video ap-
proach. In order to quantitatively evaluate and analyze the
multi-video approach, we devised a method called collabo-
rative caching, and refer to it as CCaching in the legends of
the graphs in this paper. Furthermore, we also devised some
guidelines for efficiently building systems with this method.

The rest of the paper is organized as follows. In
Sect. 2 we define a presumed conservative system model
with the least possible changes to the model of the tradi-
tional YouTube-like systems. The simulation is described in
Sect. 3. In Sect. 4, we use the results of the simulation to
prove the effectiveness of the collaborative caching. We in-
vestigate the influence of the major design factors in Sect. 5
and conclude in Sect. 6.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Example of viewing video V.

2. Presumed System Model

In this section, we define the system model that we shall
presume throughout this paper.

First, to ensure that our model is simple, and as few
differences from the model of the actual systems as possible,
we introduce the following two premises.

• No replication or prefetching. Users do not down-
load anything other than what they intend to play. The
videos downloaded from the server in our model are in
a subset of those downloaded in actual systems.
• No multi-source downloads. A video stream is always

fed by a single provider who holds the complete copy
of that video.

The major change from the traditional model is that
each end user has a cache. A video is put into the cache
after it is downloaded and played if there is free space. If
the cache is full, the new video may be discarded, or cache
replacement may occur. If the latter is the case, the video to
be replaced is selected from all those in the cache in a way
depending on the cache algorithm.

Another change is that the server has to track all online
users and the content of their caches in order to keep the
information about each video’s cache location up to date.
This change may put an extra load on the server, but while
it works much like a BitTorrent [20] tracker server, we be-
lieve that the load it causes is negligible compared to what
it saves.

The process for an end user U to play a video V is
shown below and is illustrated in Fig. 1.

1. U sends a request to the server.
2. The server replies to U with a list of users who have a

copy of V in their cache.
3. U downloads V from a user U′ on the list (how U’ is

selected depends on the specific system design), un-
less all users on the list do not have enough free upload
bandwidth. In that case, U downloads from the server.

4. After V is completely downloaded and played, it is put
into the cache or discarded depending on the decision
of the cache algorithm.

3. Simulation Procedure and Settings

We built a simulator to evaluate the performance, and to in-

vestigate the influence of various design factors on collabo-
rative caching. The basic procedure and parameter settings
are described in this section.

3.1 Simulation Procedure

First of all, we have some videos stored on the server and
a group of users who sometimes go online and play the
videos. Typically, the number of concurrent users at a cer-
tain point of time is far smaller than the total user popula-
tion. In our simulator, the video set is static, which means
that no new videos are added during the simulation, but the
users may join and leave. Whenever a user leaves, another
user joins and replaces the one who has left. Therefore, the
number of concurrent users remains constant, i.e., it equals
the initial user population. The period between a user’s join
and leave is called a session. For each user, there is a pre-
set parameter indicating how many videos he plays during
a single session, and there is an short interval between two
consecutive plays. Each time, the video which a user plays
is decided by the request pattern (see Sect. 3.4). We also
assume a users always plays a video to its full length. As
a result, our simulation is composed of the online users’s
reiteration of play and wait.

3.2 Simulation Settings

The number of concurrent users (same as the initial user
population) is set proportional to the total number of videos
in the system. The ratio is set to 1 : 50 for the follow-
ing reasons. We estimated the number of concurrent users
of YouTube. According to comScore [2], the number of
daily visitors on average was 6.2 million worldwide in 2006.
Moreover, according to Nielsen/NetRatings [17], the aver-
age session time of YouTube users was 28 minutes then. If
we assume that their arrivals are uniformly distributed dur-
ing 24 hours, the expected number of concurrent users is
a little more than 120000. Moreover, the total number of
videos hosted by YouTube was reported to be 6.1 million
by The Wall Street Journal [18] in 2006. It is roughly 50
times the estimated number of concurrent users. That is
why the ratio is 1 : 50. In the simulation, the total number of
videos and the total user population are both set by default to
30000, or approximately 1/200 of the reported size in 2006.
Since some of our estimates are based on daily data, the total
simulation time is 24 hours (virtual time).

For convenience, all videos have the same length, 3.5
minutes. The cache capacity is determined by the number
of videos it can hold, and the default size is 8. The number
of videos a user plays during one session follows a Pareto
distribution with a minimum of 1 and parameter k of 1.25.
Since too long a session is unlikely to exist, if the result-
ing number of plays is greater than 100, it is set to 100 in-
stead. This parameter setting results in an average of about
8 videos, which is equal to the cache capacity. The interval
before a user starts another video after he finishes the last
one is uniformly distributed from 3 to 30 seconds. All the
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parameter settings are summarized in Table 1.
A video can be played at most once during the same

session, but it can be played again in a later session, i.e., the
user has left the system for at least once between the two
plays. By default, the cache of a user is cleared when he
leaves.

3.3 Evaluation Methods

We also defined two new terms. The first is the Average
Server Uploads per User, which is the average number of
video streams uploaded by the server at any instant divided
by the number of online users. It will be used as the eval-
uation metric of server load in the simulations throughout
in this paper. The other one, MaxU p, indicating how many
video streams he can serve simultaneously, is defined for
each user.

All data shown in the figures are average values of 5
runs. For each run, we take the data from the last 21 hours
to calculate the average server uploads per user, since it rep-
resents the performance of the stable state.

3.4 Request Pattern

We prepared four request patterns.
The first pattern has a skewed popularity distribution.

It follows a Zipf distribution with the parameter s set to
1.0. We chose Zipf because, according to [15], it is the
strongest candidate for the underlying UGC popularity dis-
tribution. The parameter of 1.0 can be roughly inferred from
the plot of video ranks against views of videos aged 1 day on
YouTube. We believe that it is the closest plot to the short-
term popularity distribution in actual systems. This is the
default request pattern in this paper. The second one also
follows a Zipf distribution, but with s set to 2.0. This distri-
bution is used to investigate the performance under extremly
skewed popularity distribution. The third pattern has a uni-
form popularity distribution. It is not likely to happen in the
real world, but is still a good comparison. For the last one,
we utilized the MovieLens data set [19] as a case study. The
detail will be described in the next subsection.

For convenience, we will refer to these four request pat-
terns as Zipf, Zipf2, Uniform, and MovieLens, respectively.

Table 1 Simulation settings.

Parameter Value
Number of videos 30,000
Total user population 30,000
Number of concurrent users 600
Video length 210 seconds
Default cache size 8 videos
Number of videos played in 1 session 1–100
Average number of videos played in 1 session roughly 8
Play interval 3–30 s
Simulation time 24 hours

3.5 MovieLens Data Set

The MovieLens data set contains 1,000,209 anonymous rat-
ings of 3,952 movies made by 6,040 users of a movie recom-
mendation website called MovieLens. We simply mapped
the movies and users to the videos and users in the simula-
tion. We use the ratings to calculate the user’s genre inter-
est, the recommendation list shown after playing each video,
and the number of videos a user plays during a session.

There are two ways for a user to decide which video
to request next: Interest based, which means that a genre
based on a user’s pre-calculated interest is initially chosen
and a random video of that genre is selected; and recom-
mendation based, which means that a random video in the
recommendation list of the last played one is selected. The
first request after a user joins is always interest based, but
the subsequent one can be either of the two. The probabil-
ity of deciding the next video by using the recommendation
based method was 80%. Since the recommendation lists of
different videos overlap a lot, the resulting popularity dis-
tribution is a little more skewed than Zipf and less skewed
than Zipf2.

4. Effectiveness of Collaborative Caching

Here, we compare the performance of collaborative caching
with that of the client-server and ideal single-video meth-
ods to show that a multi-video method, even as simple as
collaborative caching, is an effective way of reducing server
load.

Figure 2 shows the server load of the basic client-
server, ideal single-video, and three variations of collabo-
rative caching. The x-axis stands for system scale, which is
adjusted by changing the number of concurrent users while
the number of videos is always 50 times its value. Ideal
single-video assumes unlimited user bandwidth; that is, no
matter how many users are watching a same single video,
the server only needs to serve one video stream to them in
total, and they somehow relay the video stream to every-
one by themselves. Please note that the popular segmented

Fig. 2 Server load of client-server, ideal single-video, and CCaching vs.
system scale.
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video methods fall within the single-video approach. Ideal
single-video actually shows the lower bound of server load
when such kind of methods are in use. Ideal CCaching as-
sumes unlimited user bandwidth (MaxU p) and cache capac-
ity; that is, all the videos that have been viewed by currently
online users in their current session, can be provided with-
out adding any server load. The remaining two variations
have the default cache capacity (which is 8) and a conser-
vative MaxU p (which is set to 1 for all users). CCaching
FIFO and CCaching LRU mean that the simplest FIFO or
LRU is used as the cache algorithm. Their performances are
almost the same so that the marks overlap on each other in
the graph. The request pattern is Zipf.

We can tell three things from Fig. 2. First, collabo-
rative caching roughly halves the server load under con-
servative settings, and then halves them again when it be-
comes ideal. Second, compared with the ideal single-video
method, collaborative caching keeps a lead of more than
10% under conservative settings, and even more for the ideal
one. Third, the average server uploads per user of all meth-
ods become lower as the system scale grows. From these
results, we think there is enough reason to expect collabora-
tive caching to be effective and to have a better performance
than any methods using the single-video approach (includ-
ing segmented-video methods, which is a subset of it) in the
real system scale. We also find that the performance is al-
most the same regardless of whether FIFO or LRU is used as
the cache algorithms. Since LRU is more complicated than
FIFO, its evaluation will be omitted from this paper. At last,
please note that Average Server Uploads per User of client
server is little lower than 1 because of the short interval be-
tween two consecutive plays of a user.

Finally, we can see that there is still a wide gap between
ideal and non-ideal collaborative caching, which means it is
possible to improve the performance of the non-ideal case
further. We will explore how to do so in the next section.

5. Design Principle

Here, we investigate the influence of several of the main de-
sign factors, and devise design principles for building sys-
tems using collaborative caching. Since it is a very basic
method, the findings are likely to be useful in building more
cimplicated systems in the real world using multi-video ap-
proach, too.

The design factors are the cache algorithm, request pat-
tern, video to user ratio, user cooperation, video length,
cache capacity, system scale, and other optional optimiza-
tions.

5.1 Cache Algorithm

The cache algorithm may be the most important design fac-
tor because the most fundamental thing about collabora-
tive caching is the cache. Here, we try to improve perfor-
mance by using more advanced cache algorithms than FIFO
or LRU.

First we list below the statistics which can be easily
obtained by the service provider. A good cache algorithm
should only use such data, or else, collecting the data may
become a heavy burden for the server.

Number of requests for a video. Almost all UGC
VoD sites display this statistic along with the video title.
Both the total accumulated amount and an amount accumu-
lated in a shorter period (one day, one hour) are useful and
easy to obtain.

Number of server uploads of a video. In collabora-
tive caching, the number of times for which the server has
uploaded a certain video is not equivalent to its number of
requests. This statistic, the total accumulated amount or the
amount accumulated in a shorter period, can be easily ob-
tained in the same fashion as the number of requests.

Number of cached copies of a video. Since the server
has to be able to provide a list of users who have a particu-
lar video in their cache, such a list should already be main-
tained. The number we need is simple the size of that list,
which is trivial to obtain.

For convenience, the above statistics are abbreviated
as Nreq, Nsvu, and Ncac. We constructed the following
candidate cache algorithms with them.

Least Server Uploads (LSU): Delete the video that
has the lowest Nsvu. Videos that are rarely uploaded by
the server can be the ones that have been cached by enough
users or the ones that are simply so unpopular that hardly
anyone has requested them. In either case, they are not wor-
thy of being cached anymore.

Lowest Server Upload Rate (LSUR): Delete the
video that has the lowest Nsvu/Nreq. Compared with LSU,
this algorithm favors unpopular videos more. Videos that
are seldom requested, but mostly served by the server, are
harder to be replaced.

Highest Availability (HA): Delete the video that has
the highest availability, where availability is defined as
Ncac2/Nreq. Ncac is squared to give it more influence on
the result. The purpose of this algorithm is intuitive. Videos
that are cached a lot, but seldom requested, are discarded.
The exponent of Ncac in the definition of availablility can
also be set to values other than 2. We experimented with
exponent of 1, 2, 3, and 4, but found that the overall perfor-
mance is best when it is set to 2. We think the reason is that
when the exponent is too small, videos that are cached by
only one user may be discarded too easily, and when the ex-
ponent is too big, the effect of this algorithm becomes close
to that of MC.

Most Cached (MC): Delete the video that has the
Highest Ncac. This algorithm tends to keep the Ncac aver-
age, so among all four algorithms it favors unpopular videos
the most.

Figure 3 compares the performances of FIFO and the
four new cache algorithms for different MaxU p settings.
The y-axis represents the average server uploads per user.
We found that the four algorithms show different properties.
LSU performs a little better than FIFO, while LSUR unex-
pectedly performs even worse than FIFO for all MaxU p set-
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Fig. 3 Performance of the cache algorithms under Zipf.

tings. HA is a little better than LSU for all MaxU p settings,
and it has the best performance of the four. MC shows con-
trastive performance under low and high MaxU p settings,
even worse than FIFO when MaxU p is 1, but as good as HA
when MaxU p is larger. We think LSRU’s low performance
is due to its policy of discarding videos with high cache hit
rate and not necessarily with many cached copies. When
using FIFO, such videos are at least kept in the cache for
a certain period of time, so the performance is even better
than LSRU. Another thing worth mentioning is that, even
for HA, the best of the four algorithm, the improvement rel-
ative to FIFO is not as big as we expected, (only about 15%
in most cases). However, we can also see in Fig. 1 that the
server load of the ideal case (unlimited cache capacity and
MaxU p) is about 0.25 (which is also the minimum value on
the y-axis of Fig. 3). This result is not that bad, when we
realize that HA reduces the performace gap between FIFO
and the lower bound by almost 50%.

As long as the lower bound exists, it is difficult to im-
prove the performance further by only changing cache al-
gorithms. There are three main factors limiting this lower
bound in our system model: the request pattern, the video
to user ratio, and the average session time. The long tail
effect of the Zipf distribution, causes many requests to be
scattered among numerous unpopular videos that get only a
few views per day. The average session time, which is about
30 minutes, is typically far shorter than the request intervals
of such videos. At the same time, because of the large video
to user ratio (50 : 1), even if all online users use their caches
to cache different videos, only 16% of all the videos can be
cached. As a result, the large variety of requests caused by
long tail effect can not be covered. Therefore, to further im-
prove performance, some of the limiting factors mentioned
above must be changed to lower the boundary. These factors
are discussed in the following subsections.

5.2 Request Pattern

In this subsection, we investigate the server load of the cache
algorithms for different request patterns. Since there are
only 3952 movies in the MovieLens data set, we downsized
the system scale (the numbers of videos in system) to 3952

Fig. 4 Server load vs. request pattern.

Fig. 5 Server load vs. video to user ratio.

for four request patterns. The number of initial users was
still 1/50 of the number of videos. Since we want to investi-
gate the influence of the design factors in a realistic environ-
ment, considering that there is widespread broadband resi-
dential access, we set MaxU p to a moderate level. Half of
the users are set to 1 and the other half to 5. This MaxU p is
used in all of the subsequent simulations, unless mentioned
otherwise.

From Fig. 4, we can intuitively conclude that the more
skewed the popularity distribution is, the more effective col-
laborative caching becomes (skewness: Uniform < Zipf <
MovieLens < Zipf2), since the overall performance of all al-
gorithms, including the ideal case, is better when the request
patterns are heavily skewed. We can also see that the differ-
ences between FIFO and the candidate cache algorithms are
relatively bigger when the skewness is high. With LSU sur-
passed by FIFO in Zipf2, only HA and MC are always no
worse than FIFO for all four patterns. HA is again the best
of the four cache algorithms.

5.3 Video User Ratio

Figure 5 shows the server load of all the cache algorithms
and the ideal case for video to user ratios from 250 : 1 to 2 : 1.
A smaller video to user ratio means more chance for multi-
ple users to request the same video during a given time span;
this makes collaborative caching more effective. Therefore,
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Fig. 6 Server load vs. extra upload time.

the overall performance of the cache algorithms improves
as the video to user ratio becomes smaller. The improve-
ment is especially obvious in the ideal case, which drops
below 1% of the client-server case, when the video to user
ratio becomes 2 : 1. Moreover, we can see that while LSU
and HA keep a stable lead over FIFO, LSUR and MC have
dramatically different performances for small video to user
ratios. Especially for MC, When the video to user ratio is
2 : 1, it becomes the best cache algorithm with a quite ob-
vious lead. We think the reason is that, since the cache
capacity is more abundant when the video to user ratio is
small, popular videos are always plentifully cached; This
makes caching of unpopular ones the key factor, and MC is
the cache algorithm that favours unpopular videos the most.
Same reasoning can also be applied to LSUR, which also
favors unpopular videos.

5.4 User Cooperation

In a real system, there may be some cooperative users who
do not mind offering part of their bandwidths to help oth-
ers after they have finished watching. There may also be
freeriders who are unwilling or unable to help when they
are using the service. We investigate the influence of these
two kinds of users in this subsection.

Figure 6 shows the server load when all users keep up-
loading for an extra period. The x-axis is the length of that
period. We can see that the extra upload time greatly re-
duces server load, and its influence on the performance of
the cache algorithms is similar to that of the video user rate.
MC is again better than the other cache algorithms when the
extra upload time is long. The reason is similar to what we
mentioned in the last subsection. With the far higher cache
availability due to altruistic users, popular videos already
have enough caches. MC makes users keep more unpopular
videos in their cache, thus reducing server load in the un-
popular part. The effect for changing the third factor that
limits the ideal performance, i.e., the average session time,
is similar to the effect of setting extra upload time.

Figure 7 shows how the server load savings of FIFO
and the other two relatively good cache algorithms (HA and
MC) are affected by freeriders. The low, moderate and high

Fig. 7 Server load vs. proportion of freeriders.

Fig. 8 Server load vs. cache capacity.

MaxU p represent the case when MaxU p is 1 for all users,
the case when half of the users have a MaxU p of 1 and other
half have a MaxU p of 5, and the case when it is unlimited,
respectively. From the figure, we can see that, except for
the low MaxU p case, the server load rises gently with the
freerider rate. The reason is that when the sum of MaxU p is
larger than that of the request, some of the spare bandwidth
of cooperative users can be ultilized to cover the loss due to
freeriders. This ensures that a small number of freeriders do
not have a detrimental impact on the system if users have
moderate bandwidth or more. Since the residential access
speed is high and keeps growing, we believe this assump-
tion will hold true. As to the difference between cache al-
gorithms, HA is the best in all three cases. In contrast, MC
is even worse than FIFO, especially when MaxU p is low or
the proportion of freerider is large.

5.5 Cache Capacity

In this subsection, we investigate the influence of cache ca-
pacity. Figure 8 shows the server load of the three cache
algorithms for different cache capacities and MaxU ps. We
can see that a larger cache is not always better for the server
load, especially when MaxU p is low and the cache algo-
rithm is HA. The server load of HA with low MaxU p
touches the bottom at a cache capacity of about 32, and it
rises by a little at much larger cache capacities. This may be
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due to that only users who have played more videos than the
cache capacity have a chance to do cache replacement. Too
large a cache makes cache algorithms meaningless. Even
though it enables more videos to be cached, if most of them
are already highly available and MaxU p is low, they will
only use up the precious MaxU p of the users who have
cached the less-available videos. This eventually causes per-
formance to deteriorate.

In the case of a moderate MaxU p, a very large cache
does not make sense either. Server load stops dropping
eventually since the number of videos a user plays during
a session is limited. As to the cache algorithms, HA is still
the best. MC does not do so well with a small cache or low
MaxU p.

5.6 Optional Optimizations

So far, we have been evaluated collaborative caching un-
der very conservative conditions (share video after playing,
cache cleared on leaving). In this subsection, we shall see
how far it can go with more optimistic assumptions.

In basic collaborative caching, users do not share a
video before they have finished playing it. This policy does
not have much effect when the video length is short, be-
cause it will only cause a short delay in the start of sharing,
but it does not have an effect for longer video because the
delay also becomes longer. The first optional optimization,
called on-the-fly uploading, lets users start sharing a video
as soon as they start playing it. The improvement is not ob-
vious for the current parameter setting because the videos
are short, but is useful in certain cases (see next subsection).
In second optimization, called persistent cache, users do not
clear their cache when they leave, so that the cached videos
become available at the beginning of the next session. We
also fill all caches with videos (follow the same distribu-
tion as the request pattern) before starting the simulation, to
simulate the state after a sufficiently long time has passed.
As shown in Fig. 9, this optimization dramatically improves
performance. However, applying both optimizations does
not yield any further improvements over second optimiza-
tion alone. In the real world, on-the-fly uploading might be

Fig. 9 Server load vs. optional optimizations.

difficult to implement and persistent caching might be too
demanding on users. As we perfer to evaluate collabora-
tive caching with conservative settings, we did not consider
these optimizations in the evaluations before.

5.7 Video Length

Although we now know that the multi-video approach is
more effective than the single-video approach for short
videos, we still don’t know exactly what length qualifies
as short or how big an influence video length is on perfor-
mance. In this subsection, we vary the video length and try
to gain some insight into these questions.

Figure 10 shows how the server loads of basic client-
server, ideal single-video method, and three variations of
collaborative caching are affected by varying the video
length. In this simulation, the number of plays per session
of all users is the same value, instead of following a Pareto
distribution, and it varies with the video length in order to as-
sure a session time of about 30 minutes for any video length.
The cache capacity is set to the number of plays and the
MaxU p condition is moderate.

From the figure, we can see that all three variations
of collaborative caching perform worse for longer video
lengths, whereas the ideal single-video method gets better,
and eventually surpasses simple FIFO. However, when on-
the-fly uploading is used, the rise in server load becomes
gentler. This result proves that the optimization is more ef-
fective for longer videos. We applied the other optimiza-
tion and found that the performance improves dramatically.
These results show that the multi-video methods such as col-
laborative caching are most effective for short videos. For
longer videos, one should use it with the option of on-the-fly
uploading, persistent cache, or even both. However, these
optimizations will becomes useless if the video length keeps
growing, since eventually the cache capacity and the num-
ber of plays per session both become 1, which is equivalent
to some sort of single-video method. Therefore, when the
length is comparable to the session time, the single-video
approach is a better choice.

Fig. 10 Server load vs. video length.
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Fig. 11 Server load vs. system scale.

5.8 System Scale

In Sect. 4, we confirmed that collaborative caching with
FIFO is scalable. In this final subsection, let us see whether
the other cache algorithms are as scalable as FIFO. Fig-
ure 11 shows the server load per user as the system scale
grows. Note that the video to user ratio is always 50 : 1, as
in Fig. 2. The result is similar to what we found in Fig. 2,
which proves that they are indeed scalable. The reason is
that the wider choice of cache providers lowers the chance
of cache conflicts. A cache conflict can occur when simulta-
neous requests to a user’s cached videos exceed his upload
capacity (MaxU p).

6. Conclusion and Future Works

We investigated the potential of using the multi-video ap-
proach to reduce the server load in short-video on demand
systems, such as UGC VoD systems, through a very sim-
ple method, called collaborative caching. We proved that
the multi-video approach is more effective than the single-
video approach when the videos are short (which is the ma-
jor feature of current UGC VoD systems), and we also inves-
tigated the influence of several design factors and devised
some design principles for building systems using collabo-
rative caching. Our findings are summarized below.

• Collaborative caching is more effective under the fol-
lowing conditions: skewed popularity distribution,
small video to user ratio, long session time, and large
system scale.
• An advanced cache algorithm will not greatly improve

performance, but it does reduce server load at little ad-
ditional cost. Regarding the choice of algorithm, HA is
good under most conditions, while MC is good only in
a system where cache for popular videos is guaranteed.
• If user upload ability is not too low, a small proportion

of freeriders does not seriously affect performance.
• A larger cache does not always contribute to perfor-

mance, and sometimes even makes it worse if the user
upload capacity is low.
• Some optimizations can greatly improve performance,

but also require more cooperation among users.
• One should use the single-video approach if the videos

are long enough to be comparable to the session time.

Since collaborative caching is a very basic method,
these findings are likely to be useful in building more com-
plicated systems in the real world using multi-video ap-
proach, too.

Regarding future work, we plan to consider the case in
which videos have various lengths. Moreover, in the sim-
ulations described in this paper, the uploader is randomly
selected from those who have cache and idle bandwidth; we
think that it would be better if we knew how to select an op-
timistic uploader. Furthermore, many problems about pop-
ularizing and implementing such peer-assisted systems are
still unsolved. For example, since some client software may
be necessary to make user uploading possible, convincing
users to install it will be a major problem. In real systems,
it is impossible to continuously provide a complete list of
users holding the cache of a certain video. Therefore, we
need to find a way to make a good subset of this list. Fi-
nally, we need to find a way to shorten the waiting time, i.e.
the time it takes for a user to find an appropriate uploader on
the list.
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