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PAPER

Multiple Object Category Detection and Localization Using
Generative and Discriminative Models

Dipankar DAS†a), Yoshinori KOBAYASHI†, Nonmembers, and Yoshinori KUNO†, Member

SUMMARY This paper proposes an integrated approach to simultane-
ous detection and localization of multiple object categories using both gen-
erative and discriminative models. Our approach consists of first generat-
ing a set of hypotheses for each object category using a generative model
(pLSA) with a bag of visual words representing each object. Based on the
variation of objects within a category, the pLSA model automatically fits
to an optimal number of topics. Then, the discriminative part verifies each
hypothesis using a multi-class SVM classifier with merging features that
combines spatial shape and appearance of an object. In the post-processing
stage, environmental context information along with the probabilistic out-
put of the SVM classifier is used to improve the overall performance of
the system. Our integrated approach with merging features and context
information allows reliable detection and localization of various object cat-
egories in the same image. The performance of the proposed framework
is evaluated on the various standards (MIT-CSAIL, UIUC, TUD etc.) and
the authors’ own datasets. In experiments we achieved superior results to
some state of the art methods over a number of standard datasets. An ex-
tensive experimental evaluation on up to ten diverse object categories over
thousands of images demonstrates that our system works for detecting and
localizing multiple objects within an image in the presence of cluttered
background, substantial occlusion, and significant scale changes.
key words: object detection and localization, SVM, pLSA, merging feature,
context information

1. Introduction

Multiple object category detection and localization in real,
cluttered images is one of the most complex tasks in com-
puter vision. It is critical in many applications such as ser-
vice robots, image searching, image auto-annotation, and
scene understanding. We are currently developing a service
robot that can identify an object requested by a user. For this
purpose, the robot needs to possess a vision system that can
detect and localize various categories of objects in everyday
environments. However, this task is still an open problem
due to the complexity of objects within an image. Moreover,
solving the localization problem requires not only detecting
an object, but also determining the precise location of the
object within an image. Recent research on object recog-
nition has made great advances with a reasonable recogni-
tion rate on many standard datasets. However, most state of
the art methods can only solve a binary classification prob-
lem [1]–[3]. They are not able to provide information on
object location or extent within the image.

Different authors define object localization and detec-

Manuscript received November 25, 2008.
Manuscript revised June 15, 2009.
†The authors are with the Department of Information and Com-

puter Sciences, Saitama University, Saitama-shi, 338–8570 Japan.
a) E-mail: dipankar@cv.ics.saitama-u.ac.jp

DOI: 10.1587/transinf.E92.D.2112

tion in different ways. Some techniques define object local-
ization by identifying object parameters [4], [5]. Hierarchi-
cal parts-based models giving an estimate of object center as
well as its constituent parts have been described in [6], [7].
Some contour segmentation network based approaches have
also been described in [8], [9]. However, these seek salient
edge groups that are difficult to locate within complex, clut-
tered backgrounds. Another common approach is to provide
a map of the image plane that codes how likely an object is
to be presented in a specific pixel [10]. This approach, how-
ever, does not explicitly specify the exact location of the
object or if there is more than one object present. We have
chosen here to localize and detect an object as the place-
ment and evaluation of probable bounding boxes around the
object of interest using both generative and discriminative
models.

In recent years, the pLSA model with the bag of visual
words (BOVW) [2] has been used for categorizing objects
because it automatically identifies aspects (topics) from im-
ages with semantic meaning. Generative models like pLSA
show considerable robustness with respect to partial occlu-
sion, viewpoint, and scale changes [5], [7], [11]. Despite
these advantages, the model tends to produce a significant
number of false positives. This is particularly true for object
classes that share a high visual similarity.

On the other hand, the discriminative method enables
the construction of flexible decision boundaries, resulting in
classification performance that is often superior to those ob-
tained by purely probabilistic or generative models. Thus,
the integration of generative and discriminative models has
been used by some authors in order to improve classification
performance [16], [17], [27]. However, most state-of-the-art
methods have restricted their approach to a single object per
image. They are not able to provide information on object
locations for multiple objects per image. Moreover, they
consider a small number of feature-rich object categories in
their experiments. Determining the exact positions of mul-
tiple objects within an image is much more difficult than
simply saying whether or not there is an object present at
all. One has to recognize all objects instead of relying on
just the most discriminative ones (as in the case of a single
object per image). Also, the image background and other
object features in an image are strongly correlated with the
presence of certain object features. Perhaps this is the rea-
son why there has been significantly less work done on ob-
ject detection and localization for multiple objects per image
than for a single object per image.
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In this paper, we improve the integrated approach of
the generative and discriminative models to detect and local-
ize multiple objects of various categories by introducing an
efficient hypothesis generation method and using an appro-
priate combination of features. Our approach differs from
existing ones both in the generative and discriminative lev-
els. In the generative stage, the pLSA model is fitted to
the training data without knowledge of labels of bounding
boxes, and topics are assigned based on the image specific
topic probability under each category. In our flexible learn-
ing strategy, a single object category can be represented with
multiple topics and the model can be adapted to diverse ob-
ject categories with large appearance variations. In the test-
ing stage, an algorithm is proposed and implemented to ef-
ficiently generate promising hypotheses for multiple object
categories with their positions and scales. For this purpose,
our algorithm considers the BOVW extracted from the im-
age and the number of sub-topics generated during the learn-
ing stage. Then an initial region of interest (ROI) containing
all visual words belonging to a topic is defined based on the
maximum topic specific word probability and is searched
for a final probable object’s locations (promising hypothe-
ses). The initial ROIs reduce the search space and speed up
the hypothesis generation stage.

Once hypotheses have been generated, a discrimina-
tively trained SVM classifier verifies these hypotheses us-
ing merging features. Since the hypothesis generation stage
effectively acts as a pre-filter, the discriminant power is ap-
plied only where it is needed. Thus, our system is able to
detect and localize multiple objects with a large number
of categories. Much of the recent research on object cat-
egory recognition has developed models focused on single
feature− either appearance patches or edge fragments [2],
[6], [12]. This is not ideal, as some classes cannot be dis-
tinguished by single feature type alone. In this paper we
investigate the benefits of merging features over one type of
feature alone for the discriminative part of the system. Our
merging feature is computed using pyramid HOGs (PHOG)
and pre-computed (in the generative stage) visual words
based on SIFT descriptors. In order to improve the detection
and localization performance we use the category-specific
weighted merging features and context information in the
post-processing stage.

In this paper we present our object recognition method.
Then we demonstrate its performance in experiments using
ten diverse object categories of everyday objects that service
robots may need to handle.

2. Related Work

The most common approach to generic object detection and
localization is a sliding window principle [13]–[15]. The
method applies a classifier function subsequently to the sub-
images within an image and takes the maximum of the clas-
sification score as an indication of the presence of an object
in this region. However, it is computationally too expen-
sive to evaluate the quality function exhaustively for all of

the image sub-regions. In this paper, the system evaluates
the quality function for only probable regions and reduces
the computational cost. Our method is inspired by [11]. In-
stead of creating the doublets vocabulary for segmentation
and localization, which require too many doublet probabil-
ities to estimate, all the generated hypotheses are evaluated
and verified. Although it was shown that the interest point
is able to generate nearly accurate hypotheses about local-
ization of objects in the images for a small number of object
categories, there is a proportion of visual synonyms and pol-
ysemy for relatively large object categories. For images, the
visual synonyms represent several visual words describing
the same object or object parts. On the other hand, visual
polysemy is a word describing several different objects or
object parts. For statistical classification both of the above
terms are problematic. This is why only statistical text anal-
ysis methods alone are often not powerful enough to deal
with the visual words. It has been recently shown that com-
bining the power of generative modeling with a discrimi-
native classifier allows us to obtain good localization and
categorization [16], [17]. However, the proposed hybrid ap-
proach in [16] was mainly used for scene classification and
did not provide any location information of the object. On
the other hand, in [17] the same feature is used for both
generative and discriminative classifiers and is not sufficient
enough to distinguish complex object categories with mul-
tiple objects per image. Our approach differs from these in
using different features and techniques for both generative
and discriminative classifiers.

Some studies [18], [19] for object detection and lo-
calization have been conducted to improve both accuracy
and speed. Stefan and Manuela proposed and evaluated a
method that used PCA-SIFT in combination with a clustered
voting scheme with reasonable performance [18]. However
they typically restricted their experiments to only two ob-
jects. Erik and Jochen demonstrated the feasibility of their
approach for relatively large datasets reducing the computa-
tional cost [19]. However, the performance of their approach
is highly dependent upon the object viewpoints. Moreover,
both of the above methods were used to detect and localize
specific texture rich objects. Our proposed approach goes
beyond these with respect to the following: (i) our discrimi-
native classifier uses both shape and appearance features and
can detect and localize object categories with little and no
texture (ii) we do experiments over some standard datasets
to compare the performance of our method with some state
of the art recognition frameworks.

3. Overview of the Proposed Approach

Our proposed approach for multiple object detection and lo-
calization is shown in Fig. 1. In the training stage, all the
labeled training datasets containing multiple objects per im-
age are presented to the system. In the generative part, the
pLSA model [20] is learned for multiple topics using the bag
of visual words detected on the uniformly sampled points
on the object edges. At the same time the SVM classifier is
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Fig. 1 Fundamental steps of the proposed system.

learned using both a pyramid histogram of oriented gradi-
ent (PHOG) and a bag of visual words (BOVW). From the
labeled training images we also compute the co-occurrence
table to generate the context information. During the testing
phase, when a new test image is given, the system generates
a set of promising hypotheses with a bag of visual words
using the pLSA model. Then we extract the PHOG fea-
tures from the generated hypotheses and combine them with
BOVW features. These merging features and their corre-
sponding locations are verified using the multi-class SVM
classifier to detect and localize multiple objects within an
image. In the post-processing stage, the generated context
information is used with the probabilistic output of the SVM
classifier to improve the performance of the system.

4. Hypothesis Generation Using pLSA Model

In order to generate a promising hypotheses for the test
image, the pLSA model is first learned using the training
datasets.

4.1 pLSA Model

To fit the pLSA model, we first seek vocabulary of visual
words for training images that will be insensitive to change
in viewpoint, scale, and illumination. These visual words
are formed by vector quantizing the SIFT descriptors [21]
using the K-means clustering algorithm. The SIFT descrip-
tors are computed on uniformly sampled points in object
edges over the circular patch with radius r = 10. Uniform
sample on the object’s edges makes the model shape infor-
mative, which is important to get an overall estimate of the
object boundary. Therefore, during hypothesis generation,
in addition to possible object locations it also gives an esti-
mate of possible object shape. After constructing the visual
vocabulary, in the formulation of pLSA for images [11], a
co-occurrence table is computed where each image is repre-
sented as a collection of visual words. For instance, suppose
we have N images containing words from a visual vocabu-
lary of size M. The data is a M × N co-occurrence table of

count Ni j = n(wi, d j), where n(wi, d j) stores the number of
co-occurrence of word wi in an image d j. In addition, there
is a latent topic variable z ∈ Z = {z1, z2, . . . , zK} with each
occurrence of a word wi in an image d j. The joint probabil-
ity of P(w, d, z) is defined as P(w, d, z) = P(w|z)P(z|d)P(d).
Marginalizing out the latent variable z gives:

P(w, d) =
∑

z∈Z
P(w, d, z)

= P(d)
∑

z∈Z
P(w|z)P(z|d) (1)

Since P(w, d) = P(d)P(w|d), we obtain P(w|d) as

P(w|d) =
∑

z∈Z
P(w|z)P(z|d) (2)

Therefore, each image is modeled as a mixture of topics,
the histogram for a particular document (image) being com-
posed from a mixture of the histogram corresponding to
each topic (object). Here our goal is to determine P(w|z)
and P(z|d) by using the maximum likelihood principle with
the objective function:

L = log P(D,W) =
∑

d∈D

∑

w∈W
n(w, d) log P(w, d) (3)

The model is fitted for all training images without knowl-
edge of labels of bounding boxes using the Expectation
Maximization(EM) algorithm as described in [20] and
P(w, d) is given by Eq. (1). Then topics are assigned based
on the image specific topic probability under each category.

4.2 The Promising Hypotheses Generation

The pLSA model determines the mixture coefficients
P(zk |d j) for each object d j. An object d j is then classified
as to maximum P(zk |d j) over the number of topics, k. An
object category may belong to multiple sub-topics. When a
new test image is given, all visual words are extracted from
objects and background in the image and each visual word
is classified under the topic with the highest topic specific
probability P(wi|zk). Then it is used to detect the region of
interest (ROI) for each object category in the image. The
ROI is the smallest rectangular region within the image that
contains all possible visual words for a particular object cat-
egory. As an example, Fig. 2 (a) shows the original image
with four target object categories, namely coffee jar, coffee
mug, spoon, and cup noodle. For simplicity, among four
detected ROIs Fig. 2 (b) shows one of the ROIs and its cor-
responding possible visual words. Visual words are drawn
in small circles on the image. As shown in this figure, ROIs
are generally large because of existence of visual words de-
rived from other objects and background than target objects
due to visual polysemy. The following algorithm can effi-
ciently generates promising hypotheses within those ROIs.

1. For all object categories repeat the following steps with
their corresponding rectangular ROI.
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Fig. 2 Hypotheses generation and SVM verification results: (a) original
image with four target objects (b) detected ROI for the object cup noodle
(c) local maxima for cup noodle and (d) detected target objects with their
extents.

2. Compute the average aspect ratio, Mai of the window
for each object category i as Mai = Mwi/Mhi , where
Mwi and Mhi are mean width and height of the object i
computed during the training stage using ground truth
bounding boxes.

3. For each object category, slide the window with the av-
erage aspect ratio, Mai and count the number of visual
words, Nvw =

∑
z∈ts

nvwiz , where nvwiz is the number of
visual words for object category i and sub-topics ts. A
category may belong to one or more sub-topics.

4. Determine the local maxima (Fig. 2 (c)) based on the
average number of visual words at each column po-
sition calculated as: Navg =

1
R

∑R
r=1 Nvw where R is

the number of rows for which sliding window repeats
within ROI.

5. For all local maxima regions within an image find and
suppress the windows, if any, which overlap by 75%
or more with the window that contains the maximum
number of visual words for each local region. This
step is almost similar to the non-maximum suppression
technique.

6. After suppressing the non-maximum windows in each
neighborhood the remaining windows are selected as
the promising hypotheses.

5. SVM Verification with Merging Features

It has been shown in [16] that pLSA provides a better in-
termediate representation of images using a bag of visual
words. On the other hand, object detection and localization
algorithms that use discriminative methods combined with
global and/or local representation have been shown to per-
form well in the presence of clutter, viewpoint changes, par-
tial occlusion, and scale variations [22]. In our approach,

along with pLSA, a multi-class support vector machine
(SVM) classifier is also learned in parallel using shape and
appearance features. To represent the shape of an object,
spatial shape descriptors are extracted from the object of in-
terest. In order to describe the spatial shape of an object we
follow the scheme proposed by Anna Bosch et al. [14]. Here
the object is represented by its local shape and spatial layout.
The local shape is represented by orientations of an edge
histogram within an object’s subregion quantized into K-bin
and each edge’s contribution is weighted by its magnitude.
Therefore, each bin in the histogram represents the number
of edges that have orientations within a given angular range.
The spatial layout is given by tiling the object into regions
at multiple resolutions. As a result, the final shape descrip-
tors consist of a histogram of orientation gradients over each
object sub-region and at each resolution level− a Pyramid
Histogram of Orientation Gradient(PHOG). The final shape
descriptor of the entire object is a vector with dimensional-
ity K

∑
l∈L 4l and is normalized to sum to unity so that some

objects (edge rich) are not weighted more strongly than oth-
ers. Although shape representation is a good measure of ob-
ject similarity for some objects (e.g. coffee mug, CD), shape
features are not sufficient enough to distinguish among all
types of objects (e.g. keyboard, book). In this case, object
appearance represented by the bag of visual words is a better
feature to find the similarity between them. The appearance
patches and descriptors are computed in a similar manner
as described in Sect. 4. Then the normalized histogram of
visual words for each object is calculated. Finally, the com-
bination of both shape and appearance features for an object
O, are merged as:

H(O) = αHS (O) + βHA(O) (4)

where both α and β are weights for the shape histogram,
HS (O) and appearance histogram, HA(O), respectively.
The multi-class SVM classifier is learned using the above
merged feature giving the higher weight to the more dis-
criminative feature. The values of α and β in Eq. (4) are
determined for each object category separately on the cross-
validation dataset. We use the LIBSVM [23] package for
our experiments in a multi-class mode with the rbf expo-
nential kernel.

In the verification step, merging features are extracted
from regions of the image bounded by windows of the
promising hypotheses. For all windows in the test image,
shape and appearance descriptors are combined according
to the Eq. (4) and fed into the multi-class SVM classifier in
recognition mode. Only the hypotheses for which a positive
confidence measurement is returned are kept for each ob-
ject. Objects with the highest confidence level are detected
as the correct objects, (Fig. 2 (d)). The confidence level is
measured using the probabilistic output of the SVM classi-
fier. Our SVM verification stage is very fast because only a
few locations per image need to be verified. In the testing
phase, visual words generation takes a longer time due to
calculation of SIFT descriptors. However, it only needs to
be done once, so the cost is amortized when searching for
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windows of all object categories.

6. Post-Processing Using Context Information

In the task of object category recognition, environmental
context information can play an important role of reducing
ambiguity in an object’s visual appearance. Rabinovich et
al. [24] used a semantic context of inter-class dependencies
to improve object detection performance. Their method seg-
ments the image and classifies all segments jointly based
on a conditional random field. However, this requires the
object dependencies to be specified a priori, whereas our
method learns environment-related context information dur-
ing the training process and uses this information along with
probabilistic output of the SVM classifier to improve object
detection and localization performance. To incorporate con-
text information in our system, we first construct context
matrices. These are symmetric, non-negative matrices that
contain co-occurrence frequency among object labels in the
training sets of the database. Then fully connected context
graphs are constructed from these co-occurrence matrices.
Thus, a separate context graph is built for every environ-
mental dataset in our experiment. Edges and vertices of
the graph are represented by the co-occurrence frequencies
and object categories, respectively. During post-processing
stage, first the base context is determined by using the out-
put of the SVM classifier. For this purpose, both number
of detected objects and their probabilities are used. A con-
text graph that belongs to the maximum number of detected
objects is selected as a base context. If the number of de-
tected objects are equal for multiple context graphs, then
the context graph that belongs to the maximum total prob-
ability of the detected objects is used to select it. The base
context information is then used to give the flexible margin
for the context-related (the relation is determined using the
context graph) objects and hard margin for non-contextual
objects. In some cases, the context information incremen-
tally increases the false positive rate for intra-contextual ob-
jects. However, it decreases the overall false positive rate
and increases the overall detection rate. In this research, it
is mainly used to improve the detected performance of the
SVM classifier. For example, suppose that in an office en-
vironment, an image consists of five target objects (book,
CD, computer monitor, computer keyboard, and computer
mouse) as shown in Fig. 3 (a). In order to verify the pres-
ence of an object and its extent, a threshold margin is set
for the probabilistic output of the SVM classifier. With-
out context information this threshold margin is set to 0.4
for the ten object categories in the experimental evaluation
on our dataset. In this case, the system detects four target
objects (book, computer monitor, computer keyboard, and
computer mouse) and two false objects (coffee mug and cup
noodle). The other object CD is detected with a low con-
fidence level (0.37) and is not included in our intermediate
result (Fig. 3 (b)). However, using the context information
the threshold margin is set to 0.75 for non-contextual ob-
jects (coffee mug and cup noodle). On the other hand, if

Fig. 3 Performance improvements using context: (a) original image with
five target objects (b) detected objects without context and (d) detected ob-
jects with context.

an object is detected correctly then no restriction is set for
context-related object (CD). The relationship of objects with
the base context is determined by using the context graph.
Figure 3 (c) shows the final result of using context in the pos
t-process ing stage.

7. Datasets

We evaluate our detection and localization algorithm on dif-
ferent datasets. In order to compare our approach with [5],
[17], [25] the same four categories of objects, namely cars
from UIUC and TUD car datasets, cows from TUD cow
dataset, horses from Weizmann horse dataset and motor-
bikes from CalTech motorbike dataset, are used. Most of
these datasets are taken from the PASCAL database collec-
tion [26] and contain a single object per image. For multiple
objects per image the performance of the system is eval-
uated on two different datasets: the MIT-CSAIL static of-
fice dataset and our own dataset. The MIT-CSAIL office
datasets are collected from PASCAL VOC 2007 database
collection for three categories of objects: computer moni-
tors, computer keyboards, and bookshelves. The datasets
contain multiple objects per image and these categories were
selected because they occurred more frequently in images.
From different static office datasets a total of 125 images
containing 252 objects are used for our experiment. Among
them the training dataset contains 65 images of 133 anno-
tated objects. In the remaining 60 images, a total of 119
objects are used for testing purposes. Finally, we evalu-
ate the performance of the system on our own datasets. It
consists of 10 categories of everyday objects related to our
application (service robot) in different environments against
cluttered, real-world background with occlusion, scale, and
minor viewpoint changes. Our datasets are created with
ground truth bounding boxes that contain multiple objects
per image. There are a total of 774 images containing
2002 objects. Among them 293 images (with 582 objects)
are used for training purposes and the rest of the 481 im-
ages (with 1420 objects) are used for testing. Since ob-
jects were presented randomly within an image, there exist
differences in depth, position, rotation, and lighting. The
depth changes caused a significant amount of scale varia-
tion among objects. Ten categories of objects were grouped
into two datasets. Dataset-1 consists of five categories of
kitchen environment objects, namely coffee jar, coffee mug,
spoon, hand soap, and cup noodle. Dataset-2 consists of
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another five categories of office environment objects: com-
puter monitor, computer keyboard, computer mouse, CD,
and book.

8. Experimental Results

In this section we carry out a set of experiments to inves-
tigate the benefits of our integrated approach with merging
features and context information. Given a completely un-
labeled image of multiple object categories, our goal is to
automatically detect and localize objects in the image. In
our approach, object presence detection means determining
if one or more categories of objects are present in an image
and localization means finding the location of an object in
that image. Based on the object presence detection and lo-
calization, an object is counted as a true positive object if the
detected object boundary overlaps by 50% or more with the
ground truth-bounding box for that object. Otherwise, the
detected object is counted as false positive. In the experi-
mental evaluation, the detection and localization rate (DLR)
is defined as:

DLR =
# of true positive objects

# of annotated objects
(5)

The false positive rate (FPR) is defined as:

FPR =
# of false positive objects

# of annotated objects
(6)

To understand how the proposed method performs, in the
following subsections we investigate four areas: parameter
optimization, comparisons with other methods, benefits of
the integrated method, and performance on MIT-CSAIL and
the authors’ own datasets. For simplicity, we start by finding
the optimal parameter values on our own dataset. For the
rest of the experiments we apply similar techniques to find
the optimal parameter values.

8.1 Parameter Optimization

In this section, we investigate how detection and localization
performance is affected by the various parameters: number
of visual words (W), number of topics (Z), values of α and
β, cost parameter (C) and kernel parameter (γ) of SVM, and
threshold margins of post-processing stage.

The number of visual words (W) and the number of
topics (Z) directly affect the performance of the accurately
generated hypotheses. Thus, we optimize the parameters W
and Z on a validation dataset based on the performance of
the hypotheses generation accuracy. Our validation dataset
consists of 104 images of 307 objects. Figure 4 shows the
performance variation for two parameters W and Z. The
best performance is obtained with W = 600 and Z = 20 as
indicated by the circular markers on the graph. With Z =
20, the pLSA model sub-divides the object and background
categories as shown in the Table 1.

Since the values of α, β,C, and γ are directly related to
the recognition results of the SVM classifier, we determine

Fig. 4 Validation set performance under variation in parameters for the
ten category authors’ dataset: (a) performance vs W (Z = 20), (b) perfor-
mance vs Z (W = 600).

these values during a training period using five-fold cross
validation (v = 5). We first determine the values of C and γ
using the grid search technique of the SVM classifier. The
best values of C and γ for our experiments are 66 and 0.5,
respectively. Then the pairs (α, β) are tried for each cate-
gory separately and the one with the best cross-validation
accuracy is picked. In this case, the values α and β are var-
ied within the range 0 to 1 by step 0.5. The example values
of (α, β) for different categories of objects with final cross
validation accuracy of 98.97% are shown in Table 2.

The threshold margins of the post-processing stage are
determined using the validation dataset. Without context,
the threshold margin of 0.4 is selected as the lowest prob-
ability among correctly detected objects on the validation
dataset. With context, the threshold margin of 0.75 is se-
lected as the average probability of all correctly detected
objects on the same dataset.

8.2 Comparison with Other Methods

The performance of our system is compared to the integrated
representative and discriminative (IRD) representation of
Fritz et al. [17], the implicit shape model (ISM) of Leibe
et al. [5] and local kernels (LK) representation of Wallraven
et al. [25], using the same datasets that are tested in [17].
For each dataset we use the SVM classifier with PHOG fea-
ture to verify the hypotheses generated by our algorithm as
discussed in Sect. 4. Table 3 summarizes the performance
of our experiment with other methods. The test is per-
formed on images of each category versus 200 Caltech-101
and Caltech-256 background images. Each image in these
datasets contains only one target object as shown in Fig. 5.
Although the recognition task is different from our multiple
object detection and localization, we performed this exper-
iments to compare basic performance of our method with
others.

Note that in the majority of cases better results are ob-
tained with three categories of objects. The classification
result of our approach on UIUC car dataset is slightly less
than [17]. However, the result is better than the other two
methods. We also evaluated the performance of our method
on TUD car datasets and obtained recognition accuracy of
98.3%. The superior performance compared to [17] could
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Table 1 Example sub-categories with Z = 20 for the authors’ dataset.

Category Coffee Coffee Spoon Hand Cup Monitor Keyboard Mouse CD Book Back-
jar mug soap noodle ground

#of topics 2 2 1 2 1 3 2 1 2 2 2

Table 2 The values of α and β with five-fold cross validation (v = 5) accuracy 98.97%.

Category Coffee Coffee Spoon Hand Cup Monitor Keyboard Mouse CD Book
jar mug soap noodle

α 1 1 1 1 0.5 1 0.5 1 1 0.5
β 1 0.5 1 1 1 1 1 0.5 0.5 1

Table 3 Performance comparison of our algorithm with other methods.

Category and Dataset LK [25] ISM [5] IRD [17] Authors
Horse (Weizmann) 77.8% 88.5% 88.5% 97.0%
Cow (TUD) 95.3% 96.1% 97.1% 98.6%
Motorbike (CalTech) 87.6% 93.8% 96.5% 98.3%
Car (UIUC) 61.0% 94.7% 99.4% 97.1%
Car (TUD) − − − 98.3%

Fig. 5 Detection results on the horse, cow, motorbike and car datasets.

be due to the use of better features and how they are used in
our approach. In [17], they used the same feature for both
generative and discriminative classifiers. In our approach
different features are used for both generative and discrim-
inative parts. Example detection and localization results on
different datasets are shown in Fig. 5.

8.3 Benefits of the Integrated Method

In this section we will investigate the benefits of our SVM
verification stage instead of using only pLSA for detection
and localization purpose. As we previously mentioned, the
generative model alone is not sufficient enough to detect
multiple objects in an image. This is due to visual poly-
semy. The problem becomes apparent when we consider
how an image is represented in the bag of visual words doc-
uments model. All visual words in an object are represented
by a single histogram, and lose all spatial and neighborhood
relationships. In the following experiments, we use our own

Fig. 6 Results of the integrated method: (a) the original test image, (b)
number of visual words and window size for the object, coffee mug, (c)
windows for the object, coffee mug on the image and, (d) verified coffee
mug object along with other two objects by SVM classifier.

dataset containing four object categories: coffee jar, cof-
fee mug, spoon, and hand soap. The training and testing
datasets consist of 111 images of 160 objects and 130 im-
ages of 420 objects, respectively. In our experimental result,
let us consider the original image of Fig. 6 (a). In this case,
the number of visual words generated for coffee mug object
in different probable windows is given in Fig. 6 (b) and their
corresponding regions of windows are shown in Fig. 6 (c).
From the illustration it is clear that a significant amount of
visual words are generated from the other areas than the cof-
fee mug object due to the visual polysemy nature of objects
and/or object parts and complex backgrounds. However,
there is strong evidence among the generated hypotheses for
the coffee mug object in the image and is verified by the
SVM classifier. Figure 6 (d) shows the final detected results
of our integrated method for the coffee mug object along
with two other objects(coffee jar and spoon).

In this section, we also investigate how our pLSA
method performs for generating the promising hypotheses.
Table 4 shows the detected objects by our hypotheses gen-
eration method, where wi, i = 1 . . . 7, indicates the correctly
detected hypothesis window. Using only pLSA, if we take
the maximum number of visual words that belong to w1 win-
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Table 4 Hypotheses generation and SVM verification results.

Category Detected objects Unde-
tected
object

SVM ver-
ification
results

w1 w2 w3 w4 w5 w6 w7

Coffee jar 65 28 8 3 − − − 2 90
Coffee mug 9 11 18 11 16 11 9 26 76
Spoon 62 23 3 − − − − 2 90
Hand-soap 20 23 19 14 12 12 9 2 89

Avg. (%) 37 20 11 7 7 6 4 8 80

dow for classification purposes then only 37% objects are
detected. Similarly, the window containing a second maxi-
mum number of visual words (w2) detects only 20% of the
total numbers of objects, and so on. However, from Table 4
it is clear that all of the generated hypotheses are able to
detect 92% objects. Using the SVM verification stage on
the generated hypotheses our system detects 80% of total
objects as shown in the last column of Table 4.

8.4 Performance on MIT-CSAIL and Authors’ Datasets

In this section we measure the detection and localization
performance of our approach on MIT-CSAIL and our own
datasets. In the training period, both the pLSA and SVM
models are fitted for all training object categories. The val-
ues of different parameters are obtained over validation and
cross-validation datasets using the technique as described in
Sect. 8.1.

8.4.1 Results—— MIT-CSAIL Dataset ——

Table 5 summarizes the performance achieved on the MIT-
CSAIL static office datasets for three categories of objects.
Experiments were done using the shape feature, appearance
feature, and finally a combination of both of them. As can
be seen in this table, poor performance is obtained for the
dataset when we use only the shape or only the appearance
feature. However, there is a significant improvement in the
results when merging features and object specific weighted
merging features are used. The average detection and local-
ization result for the weighted merging feature is 82% with
a false positive rate of 0.29. Weighted merging features in-
crease the average detection and localization rate by 16%
compared to appearance features alone (66%). Figure 7
shows two examples of detection and localization results
on this dataset. Our final result is comparable with Sivic
et al. [11] for some categories of objects. In their approach,
15 out of 20 computer screen (75%) and 17 out of 20 book-
shelves (85%) are are correctly detected. On the other hand,
in our approach the detection and localization accuracy for
computer screen and bookshelf are 84% and 93%, respec-
tively. Our better performance compared to [11] could be
due to the integration of both generative and discriminative
classifiers instead of using only generative model.

Table 5 Experimental results on MIT-CSAIL dataset.

Category Appearance
feature

Shape fea-
ture

Merging
feature

Weighted
merging
feature

DLR FPR DLR FPR DLR FPR DLR FPR
Monitor 0.67 0.12 0.71 0.06 0.78 0.08 0.84 0.14
Keyboard 0.60 0.08 0.68 0.04 0.70 0.09 0.77 0.11
Bookshelf 0.87 1.00 0.87 2.20 0.93 1.80 0.93 1.47

Avg. Rate 0.66 0.21 0.71 0.32 0.76 0.30 0.82 0.29

Fig. 7 Detection and localization results on MIT-CSAIL.

8.4.2 Results—— Authors’ Dataset ——

In a series of experimental evaluations, we finally evaluate
the performance of the system in our own dataset. In most
of the studies [11], [17], [18], [22], a small number of cate-
gories (two to five) were used for categorization purposes.
Thus, we collected the dataset consisting of ten categories
of objects in different environments and backgrounds. A de-
tailed description of the dataset is given in Sect. 7. Table 6
shows the detection and localization rate at the false posi-
tive rate indicated in their adjacent column. In this experi-
ments, during the training period both the pLSA and SVM
model are fitted for all ten categories of objects. Based on
the variation of objects within a category our pLSA model
automatically fits for multiple topics. For the experiments
on our dataset the pLSA model is fitted for 20 topics (two
topics for background and the rest 18 topics for 10 object
categories). Images with multiple objects along with their
ground truth bounding boxes are used to determine the con-
text information (a matrix of label co-occurrence count).
Since the merging feature outperforms the single feature,
we have used the merging feature with weight and context
information for this experiment. As shown in Table 6, the
merging feature without any weight and context information
produces an average DLR 66%. On the other hand, using the
same feature with context information as a post-processing
stage, the system incrementally increases the average DLR
to 68% with a reduction of the false positive rate from 37%
to 24%. Since some objects are best described by their shape
feature (e.g. coffee mug, CD) and others by their appearance
(e.g. computer keyboard, book), the weighted merging fea-
ture gives us the best performance (77%) for all ten object
categories. Although the context information incrementally
increases the detection and localization performance, it sig-
nificantly decreases the false positive rate. Some detection
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Table 6 Experimental results on authors’ datasets.

Category Merging
feature

Merging fea-
ture with
context

Weighted
merging
feature

Weighted
merging
feature with
context

DLR FPR DLR FPR DLR FPR DLR FPR
Coffee jar 0.81 0.12 0.81 0.09 0.80 0.22 0.81 0.13
Coffee mug 0.30 0.09 0.31 0.05 0.58 0.74 0.73 0.40
Spoon 0.76 0.08 0.80 0.19 0.75 0.11 0.78 0.08
Hand soap 0.55 0.12 0.55 0.11 0.70 0.56 0.74 0.28
Cup noodle 0.81 0.75 0.83 0.48 0.79 1.11 0.84 0.54
Monitor 0.80 0.08 0.81 0.05 0.86 0.25 0.88 0.03
Keyboard 0.90 0.11 0.90 0.07 0.97 0.21 0.97 0.05
Mouse 0.60 0.91 0.60 0.95 0.60 1.44 0.63 0.67
CD 0.46 0.83 0.47 0.26 0.58 1.31 0.58 0.50
Book 0.63 1.80 0.68 0.91 0.64 1.91 0.68 0.76

Avg. Rate 0.66 0.37 0.68 0.24 0.73 0.68 0.77 0.30

Fig. 8 Example detection and localization results on authors’ datasets.

and localization results on our own datasets are shown in
Fig. 8. Based on object appearance and viewpoint changes
our system sub-categorizes an object category into one, two
or three sub-topics. Thus the system is able to detect objects
with minor viewpoint changes as shown in Fig. 7 and Fig. 9.

Fig. 9 Detected image region with viewpoint change.

9. Conclusion

In this paper, we have proposed an approach of integrating
both the generative and discriminative classifiers for multi-
ple object category detection and localization. Our system
has shown the ability to accurately detect and localize many
objects even in the presence of cluttered background, sub-
stantial occlusion, and significant scale changes. Our exper-
imental results demonstrate that the hypotheses generation
algorithm is able to generate nearly accurate hypotheses for
all object categories. The SVM verification stage, on the
other hand, uses the merging features and category specific
weighted merging features to enrich the performance of the
system. Finally, the environmental context information in
the post-processing stage compensates for ambiguity in an
object’s visual appearance.

One of the fundamental problems in 3D object recog-
nition how to deal with object appearance changes depend-
ing on the viewpoint. The current system can handle small
viewpoint changes. And, in theory, if the training data con-
sist of images with large viewpoint changes, then the gener-
ative model automatically subcategorize objects in a given
category into multiple topics and generate nearly accurate
hypotheses. However, to do this, we need to show many
images from various viewpoints. And the number of sub-
categories may increase greatly. We are now working on
how to deal with this problem. We will explore the possi-
bility of detecting objects with large viewpoint changes by
automatically sub-categorizing the object categories into the
appropriate number and using the variable size object win-
dows based on detected visual words. We also plan to use
the environmental context information in more meaningful
ways to detect and localize missing objects within an image
depending on the base context environment.
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