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PAPER

Dependency Parsing with Lattice Structures for Resource-Poor
Languages

Sutee SUDPRASERT†a), Asanee KAWTRAKUL†, Members, Christian BOITET††,
and Vincent BERMENT††, Nonmembers

SUMMARY In this paper, we present a new dependency parsing
method for languages which have very small annotated corpus and for
which methods of segmentation and morphological analysis producing
a unique (automatically disambiguated) result are very unreliable. Our
method works on a morphosyntactic lattice factorizing all possible segmen-
tation and part-of-speech tagging results. The quality of the input to syntac-
tic analysis is hence much better than that of an unreliable unique sequence
of lemmatized and tagged words. We propose an adaptation of Eisner’s al-
gorithm for finding the k-best dependency trees in a morphosyntactic lattice
structure encoding multiple results of morphosyntactic analysis. Moreover,
we present how to use Dependency Insertion Grammar in order to adjust
the scores and filter out invalid trees, the use of language model to rescore
the parse trees and the k-best extension of our parsing model. The highest
parsing accuracy reported in this paper is 74.32% which represents a 6.31%
improvement compared to the model taking the input from the unreliable
morphosyntactic analysis tools.
key words: dependency parser, under-resourced languages, morphosyn-
tactic lattice structure, Dependency Insertion Grammar, k-best parsing

1. Introduction

Dependency representations date back to Tesnière and have
been used extensively in NLP by Western and Eastern
European and Japanese research groups since the early
1960’s, notably for Machine Translation (MT). Constituent
or “phrase-based” representations have also been used,
mainly because of their good formal characterization by
context-free grammars (CFG), and the existence of polyno-
mial all-path algorithms∗. The constituent representations
have been applied, primarily for other applications such as
Natural Language (NL-)based information retrieval∗∗.

Enriched constituent trees were then produced by
CFGs enriched by various means, such as attributes
(used in MT at Grenoble since 1961), complex categories
(GSPG [1]), feature structures (LFG [2], HPSG [3], and
TAG [4]), and logical terms (metamorphosis grammars [5],
DCG [6], and slot grammars for LMT [7]).

Mixed constituent and dependency tree representations

Manuscript received October 27, 2008.
Manuscript revised June 13, 2009.
†The authors are with the NAiST (special research unit on NAt-

ural language processing and Intelligent information System Tech-
nology), Department of Computer Engineering, Kasetsart Univer-
sity, Bangkok, Thailand.
††The authors are with the GETALP Group (Study Group on

Machine Translation and Automated Processing of Languages
and Speech), LIG (Grenoble Informatics Lab), Université Joseph
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have also been used and are used in NLP (Vauquois’ multi-
level structure, proposed in 1974 for MT, Starosta’s lexicase
trees, and HPSG).

Nowadays, projective and non-projective dependency
structures have recently become quite fashionable in various
NLP areas, such as MT [8], Information Extraction [9], Text
Summarization [10], and Ontology [11].

There are several reasons for that:

• they are more economical (they have fewer nodes) and
hence perspicuous than constituent structures;

• they can represent some discontinuous constituents in
a projective way. For example, in “he gave the money
back to the vendor”, gave. . . back is a discontinuous
constituent which cannot be represented by a con-
stituent tree having a projective correspondence with
the sentence. However, the following dependency tree
is projective:

That is not always possible. For example, “Ces
femmes, les hommes ne les ont pas encore tous com-
prises.” (“These women, the men did not yet under-
stand themwomen allmen.”) has no reasonable projective
dependency tree.

• they represent long-distance dependencies and
predicate-argument relations (information needed in
these applications) in a clearer way.

Figure 1 shows an example of discontinuous con-
stituents represented by a dependency structure. In this case,
there is no way to draw the correspondence lines between
the nodes of the dependency tree and the words of the sen-
tence (written as usual linearly) without any crossing pair of

∗Notably one is CYK algorithm, for CFG in Chomsky normal
form, and one is Earley, for any CFG.

∗∗For example, in the LUNAR project around 1972-74, for
which W. Woods and his team used ATNs.
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Fig. 1 Example of discontinuous constituents: the noun phrase “a boy
who was your son” and the verb phrase “saw yesterday” are “shuffled”.

lines†. We then say that the tree is “non-projective”.
So far there have been two different approaches to an-

alyze utterances into dependency structures: with or with-
out an explicit Dependency Grammar (DG). One is rule-
based [12]–[17], the rules being given manually, possibly
augmented with probabilities. The problem with this ap-
proach is that it is difficult to write all rules manually. In
addition, as the size grows, it becomes practically impossi-
ble to modify them to improve their quality in a systematic
and monotonic fashion.

The other approach is corpus-based: knowledge is ex-
tracted automatically from annotated corpora and then trans-
formed into parameters (i.e. probabilities or actions of shift-
reduce parsers) for building the parser.

This approach has the potential to overcome many of
the problems of the rule-based approach. Of course, a
rich set of training data and accurate knowledge are cru-
cial for this method. Various methods have been proposed
for the learning part of this approach: learning actions of
a deterministic parser [18], [19], learning similarity of tree
structures [20], [21], and learning the scores of dependen-
cies [22]–[24].

Among all these approaches there is one that tries to
strike a balance between rule-based and corpus-based ap-
proaches. It infers parsing rules automatically on the basis
of a tree-annotated corpus [25]. That approach has the ad-
vantage of both methods, allowing experts to refine and cor-
rect the learned rules in order to improve parsing accuracy.
While our work falls into this category, we consider, in ad-
dition, scenarios without the use of high quality morphosyn-
tactic analyzers or richly tree-annotated corpora. Obviously,
in such a situation, one cannot assume the parser input to
be a perfectly disambiguated string, neither can one expect
high quality and very general rules.

In recent years, various researchers have started to
build parsers with or without small annotated corpora. For
example, Jinshan, et al. [26] proposed a method to build a
dependency parser for Chinese. They used a purely statisti-
cal approach and relied only on part-of-speech information.
Hwa, et al. [27] proposed a method for building a parser
based on a parallel corpus, by inducing parse trees on the
basis of parallel text. To do so, they need a parallel cor-
pus and a reliable parser of the source language. However,
all of them assume that the morphosyntactic analysis work
properly.

Written Thai, the language we are working on, does
not have word delimiters, and there are no reliable word

Fig. 2 The morphosyntactic lattice that encodes all possible word seg-
menting and part-of-speech tagging results of a Thai text that means “I
stand (to) expose to (the) air” (the bold lines represent the correct result).
Please see the abbreviation of part-of-speeches in Appendix A.1.

segmenters and part-of-speech taggers for this language.
Unlike many other languages, syntactic analysis of Thai
should start from multiple results of a morphosyntactic lat-
tice (see Fig. 2), rather than from a dubiously disambiguated
string††. Previous work is generally based on the assumption
that the input is a disambiguated morphosyntactic string.
Unfortunately, this is not very realistic for a language like
Thai with its potential ambiguities due to word segmenta-
tion and part of speech tagging. This is why we propose
an extended parsing technique, able to handle an input as a
morphosyntactic lattice, with multiple ways of segmentation
and part-of-speech tagging.

In fact, the idea of parsing multiple versions of a given
sentence is not new. Since 1986, Tomita [28] proposed an
efficient word lattice parsing algorithm that can be viewed
as an extended LR parsing algorithm for context-free phrase
structure grammars. Dependency parsing of word graphs
has also already been proposed [29]. The parser was an
extended version of the Constraint Dependency Grammar
(CDG) parser developed by Maruyama [30]. It actually
was used to eliminate multiple sentence hypotheses pro-
duced by the speech recognizer. The complexity of the
parser is O(n4), where binary constraints were used (the
complexity will increase with the number of constraints).
In recent work, Collins, et al. [31] extended head-driven
parsing models [32] to parse word lattices, in order to use
as a simultaneous language model and a parser for large-
vocabulary speech recognition. The system experimented
on Wall Street Journal treebank shows better accuracy than
the standard n-gram language model.

†The expression “tree without crossing lines” if often found in
the literature but is faulty, as a tree can always be drawn on a plane
without any crossing branches. The thing which is projective or
not is the correspondence between the string and the tree, which
should better be represented by “liaison elements”, as in entity-
relation diagrams.
††A dubiously disambiguated string means a string disam-

biguated by an unreliable morphosyntactic analyzer.
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Fig. 3 Type-A and Type-B elementary trees. Note: the @ symbol repre-
sents the head node of the tree.

Those previous works intended to be used for improv-
ing the accuracy of continuous speech recognition. In this
paper, we present a different method, a data-driven parser,
based on Eisner’s algorithm [33]. Using our algorithm, the
time complexity of the parser is O(n3), the same as Eisner’s.
Moreover, our parser can be augmented with a Dependency
Insertion Grammar (DIG) [34], increasing accuracy by elim-
inating illegal trees, which is useful when a training corpus
is small.

The method we present here deals with the above-
mentioned problems. First, we allow the input to be more
than a single string. We propose a possible solution, parsing
a morphosyntactic lattice. Second, we try to combine a “sta-
tistical” and an“expert” approach in order to optimize the
parser performance. We also use the DIG which is automat-
ically extracted from a tree-annotated corpus, and we pro-
pose methods used for rescoring sub-trees with a language
model, which is necessary where the Eisner’s algorithm is
applied to parse a morphosyntactic lattice. Moreover, those
extensions do not increase the time complexity, and the time
complexity of k-best parsing is only increased by a multi-
plicative factor, O(k log k).

The rest of this paper is organized as follows. In the
next section, we briefly describe the DIG and how to auto-
matically acquire them from a tree-annotated corpus. Sec-
tion 3 presents our dependency parsing algorithm which can
handle a morphosyntactic lattice. In Sect. 4, we report on
our experiments based on NAiST Dependency Treebank and
analyze the results.

2. Dependency Insertion Grammar

2.1 Basis of DIG

The DIG formalism [34] consists of two important parts: el-
ementary trees and insertion operation. Each node in an el-
ementary tree consists of: a lexical item, a corresponding
part-of-speech and a local word ordering. The elementary
trees are of two types: Type-A and Type-B. The difference
between them (see Fig. 3) is that the root node of Type-A
is lexicalized and is the head of the tree, while the root of
Type-B is not lexicalized but one of the lexicalized nodes is
the head of the tree.

Insertion is the only operation used for DIG derivation:
when an unlexicalized node of an elementary tree is of the
same type, i.e. category, as the head node of another elemen-
tary tree, the two can be unified into a single node and a new
elementary tree can be built (see Fig. 4).

Fig. 4 The insertion operation in DIG where −2, −1, +1, and +2 are
relative positions.

Fig. 5 Three forms of elementary trees. Note: the“c” and “a” functions
stand respectively for “complement” and “adjunct”.

2.2 The Extended Forms of Elementary Trees

The DIG formalism itself does not have any constraints con-
cerning the shape of the elementary trees, as long as they
satisfy the requirements of Type-A and Type-B elementary
trees. Therefore, given a corpus, there can be a number of el-
ementary trees, each of which covers the corpus. To say that
some elementary trees cover the corpus implies that each de-
pendency tree in the corpus can be generated by combining
the elementary trees by the insertion operation.

Like Xia [35] who proposed a method for extract-
ing LTAGs (Lexicalized Tree-Adjoining Grammars) from a
bracketed corpus, we need to define extended forms of ele-
mentary trees in order to ensure that the extracted grammar
is both compact and linguistically sound (the smallest set
of grammars that can recognize all sentences in the training
data.).

We consider extended elementary trees of the follow-
ing forms (see Fig. 5):

• Type-I tree: a type A tree with only complement func-
tions† (syntactic arguments, i.e. strongly bound com-
plements).

• Type-II tree: a type B tree with only two nodes, the
unique arc bearing an adjunct function (circumstantial
complements).

• Type-III tree: a combination of Type-I and Type-II.

Given the fact that our tree-annotated corpus is very
small, it is unavoidable to run into a data sparseness prob-
lem. In order to minimize this problem, we used relative
direction instead of relative position i.e. position ≤ −1 be
left(L) and position ≥ +1 be right(R).

Figure 6 shows an elementary tree corresponding to
“eat [VT]” (transitive verb). The left-hand side tree is a nor-
mal elementary tree of Type-I, waiting for “PPER” at posi-

†The grammatical functions used for annotating our treebank
consist of 30 types that can be divided into 2 main types, i.e. com-
plement and adjunct.
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Fig. 6 An example of the relaxation of DIG.

Algorithm 1 ExtractDIG(T )
Input: T a parse tree object
Output: a set of elementary trees
1: ElementaryTrees← [ ]
2: for all x in T.nodes() do
3: T1 ← new tree(x.word, x.pos)
4: for all y in x.children() do
5: if y. f unction = ‘c’ and x. f unction = ‘c’ then
6: T1.connect at root(null, y.pos)
7: else if y. f unction = ‘a’ then
8: if y.children() = [ ] then
9: T2 ← new tree(null, x.pos)

10: T2.connect at root(y.word, y.pos)
11: ElementaryTrees.append(T2)
12: else
13: T3 ← new tree(null, x.pos)
14: tmp← new tree(y.word, y.pos)
15: for all z in y.children() do
16: if z.label = ‘c’ then
17: tmp.connect at root(null, z.pos)
18: end if
19: end for
20: T3.connect at root(tmp)
21: ElementaryTrees.append(T3)
22: end if
23: end if
24: end for
25: ElementaryTrees.append(T1)
26: end for
27: return ElementaryTrees

tion −1 and “NCN” at position +1. When the constraints
are relaxed, the elementary tree is changed to the right-hand
side tree.

2.3 Extracting Elementary Trees from the Treebank

Psuedo-code of the algorithm shown in Algorithm 1 is used
for extracting elementary trees of the above three mentioned
forms from the treebank. The algorithm starts from the root
node and traverses each node in order to recognize the pat-
tern of the extended form.

Given a training dependency tree, the algorithm tra-
verses each node of the tree (line 2). At any visited node
x, if inward edge is complement function (c) then a Type-
I tree will be built where the visited node is the root and
the part-of-speech of its children which have complement
function are Type-I tree’s children (line 3-6, 25). If an ad-
junct relation (a) with an outward edge is found, there are
two possible cases: if a child of a visited node y doesn’t
have any children, a Type-II tree will be built immediately
by using the part-of-speech of the visited node x as the root
and its child node y as the child (line 8-11). Otherwise, if a
child of the visited node y has children, the algorithm will
do like constructing a Type-I tree in order to produce a sub-

Fig. 7 An example of extracting the extended forms of elementary trees
from a parse tree.

tree (line 14-19). A Type-III tree will be built by using the
part-of-speech of the visited node x as the root, connecting
the produced sub-tree tmp to the root. If the child of the vis-
ited node y does not have any children, a Type-II tree will
be built instead (line 20-21).

Figure 7 shows an example of DIG elementary trees
extracted from the annotated-tree text “I ate boiled rice with
my friend”.

3. Dependency Parsing Technique

The dependency parsing technique we use is based on the
assumption that the score (probability) of a dependency tree
is the sum of the scores of all edges in the tree, and that
the best parse tree is the one with the highest score. This
approach consists of two processes: searching the best tree
among all possible trees and computing the scores of edges.

3.1 Searching the Best Tree

3.1.1 Eisner’s Algorithm

In the traditional approach, the input is a disambiguated
morphosyntactic string w1 . . .wN where N is the number of
words in the string. A N × N Dependency Matrix, DM, is
built, where DM

[
i, j
]

contains the best relation rel between
wi and wj, with a score s.

DM
[
i, j
]
=

⎧⎪⎪⎨⎪⎪⎩
(rel, s) if i � j

empty otherwise
(1)

We can apply Eisner’s algorithm [33] † to find the best
tree from all possible results in the dependency matrix
within O(n3). The Eisner’s algorithm is a bottom-up parsing
algorithm just like the CKY parsing algorithm: it finds op-
timal subtrees for substrings of increasing length. The idea
is to parse the left and right dependents of a word indepen-
dently, and combine them later. That requires only two ad-
ditional binary variables to specify the direction of the item

†See [24], [33] for more details.
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Algorithm 2 Eisner’s algorithm
Input: DM a dependency matrix size n × n; n > 1
Output: a score of the best parse tree
1: for all p, d, c in {1..n} × {⇐,⇒} × {0, 1} do
2: C[(p, p, d, c)]← 0.0
3: end for
4: for m = 1 to n do
5: for p = 1 to n − m do
6: t ← p + m
7: for r = p to t do
8: if r < t then
9: C[(p, t,⇐, 0)]← max(C[(p, t,⇐, 0)],C[(p, r,⇒, 1)] +C[(r + 1, t,⇐, 1)] + DM[t, p]) {create left incomplete items}

10: C[(p, t,⇒, 0)]← max(C[(p, t,⇒, 0)],C[(p, r,⇒, 1)] +C[(r + 1, t,⇐, 1)] + DM[p, t]) {create right incomplete items}
11: C[(p, t,⇐, 1)]← max(C[(p, t,⇐, 1)],C[(p, r,⇐, 1)] +C[(r, t,⇐, 0)]) {create left complete items}
12: else if r > p then
13: C[(p, t,⇒, 1)]← max(C[(p, t,⇒, 1)],C[(p, r,⇒, 0)] +C[(r, t,⇒, 1)]) {create right complete items}
14: end if
15: end for
16: end for
17: end for
18: return C[(1, n,⇒, 1)]

and whether the item is complete, i.e., d and c which will be
explained more in the following.

In the dynamic programming table C of Eisner’s al-
gorithm, C[(p, t, d, c)] stores the score of the best subtree
from position p to position t, with direction d and complete
value c. The variable d indicates the direction of the subtree
(whether it gathers left (⇐) or right (⇒) dependents). The
variable c indicates whether a subtree is complete (c = 1, no
more dependents) or not (c = 0, needs to be completed).

The pseudo-code of Eisner’s algorithm† is shown in Al-
gorithm 2. Consider the line 9 in Algorithm 2. It says to find
the best score for an incomplete left subtree from position p
to t, C[(p, t,⇐, 0)]. We need to find the index p ≤ r < t that
gives the best (maximum) possible score for combining two
complete subtrees, C[(p, r,⇒, 1)] and C[(r+1, t,⇐, 1)]. The
score of combining these two complete trees is the score of
these subtrees plus the score of a dependency relation from
wi to wj. This is guaranteed to be the score of the best sub-
tree because we are considering all possible combinations
by enumerating over all values of r. By forcing a root node
at the left-hand side of the sentence, the score of the best
tree for the sentence is C[(1, n,⇒, 1)].

3.1.2 Extended Parsing Technique for Handling Lattice
Structure

In order to extend parsing technique for handling lattice
structure, we still use exactly the same Dependency Matrix
as in (1), but adding one more condition to check whether
there is a non-empty path from wi to wj in the lattice, which
is acc(i, j) in (2). Algorithm 3 shows the adaptation of Eis-
ner’s algorithm to find the projective dependency trees.

DM
[
i, j
]
=

⎧⎪⎪⎨⎪⎪⎩
(rel, s) if i � j and acc(i, j)

empty otherwise
(2)

The modification to Eisner’s original algorithm con-
sists just in adding a condition IsLegal (line 9, 14 and 17

Fig. 8 An example of parsing with a) a correct morphosyntactic analyzed
text and b) a morphosyntactic lattice.

in Algorithm 3) and a function get next (in line 8) to vali-
date the built subtrees along the lattice structure. The call
get next(n) returns all next adjacent nodes of n, and

IsLegal(p, r, q, t) = acc(p, r) ∧ acc(q, t) (3)

In order to illustrate this, let’s take a look at Fig. 8,
showing the parsing processes respectively of Eisner’s al-
gorithm (Algorithm 2) and ours (Algorithm 3).

Figure 8 a) shows how to find the best incomplete sub-
tree corresponding to the sub-string p . . . t of Eisner’s algo-
rithm. The best incomplete sub-tree for sub-string p . . . t is
the combination of sub-trees p . . . r and r + 1 . . . t plus a de-
pendency between wp and wt, which have received the high-
est score when p ≤ r < t.

If the input is a morphosyntactic lattice, not every sub-
†The pseudo-code shows only computing the score of the best

parse tree. We must also store back pointers so that it is possible
to reconstruct the best tree from the chart item that spans the entire
sentence. For simplicity, we assume that the output is an unlabeled
dependency tree, therefore DM contains only scores.
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Algorithm 3 Modified Eisner’s algorithm for handling a lattice input
Input: DM a dependency matrix size n × n; n > 1
Output: a score of the best parse tree
1: for all p, d, c in {1..n} × {⇐,⇒} × {0, 1} do
2: C[(p, p, d, c)]← 0.0
3: end for
4: for m = 1 to n do
5: for p = 1 to n − m do
6: t ← p + m
7: for r = p to t do
8: for all q in get next(r) do
9: if r < t and IsLegal(p, r, q, t) then

10: C[(p, t,⇐, 0)]← max(C[(p, t,⇐, 0)],C[(p, r,⇒, 1)] +C[(q, t,⇐, 1)] + DM[t, p])
11: C[(p, t,⇒, 0)]← max(C[(p, t,⇒, 0)],C[(p, r,⇒, 1)] +C[(q, t,⇐, 1)] + DM[p, t])
12: end if
13: end for
14: if r < t and IsLegal(p, r, r, t) then
15: C[(p, t,⇐, 1)]← max(C[(p, t,⇐, 1)],C[(p, r,⇐, 1)] +C[(r, t,⇐, 0)])
16: end if
17: if r > p and IsLegal(p, r, r, t) then
18: C[(p, t,⇒, 1)]← max(C[(p, t,⇒, 1)],C[(p, r,⇒, 0)] +C[(r, t,⇒, 1)])
19: end if
20: end for
21: end for
22: end for
23: return C[(1, n,⇒, 1)]

tree can be combined to generate a new sub-tree. Only a
combination which is in a trajectory† can be generated. By
looking at Fig. 8 b) we can see that the selectable sub-strings
need to contain a link between a starting node and an ending
node. For example, sub-string 1 . . . 2 cannot be selected,
because there is no path from 1 to 2 (validated by IsLegal
condition). Moreover, when we try to combine two sub-
trees, we also have to check that there is an arc connecting
the last node of the first sub-tree, r, to the first node of the
second sub-tree, q (limited by get next function).

The computing time is increased by testing the condi-
tion and looking for all nodes q directly connected from r.
Both can be done in constant time equaling the branching
factor††. Hence we are still in O(n3) where n is the number
of nodes in the lattice. Hence, there is no increase in time
complexity.

3.2 Computing the Scores of Edges

In fact, a function for computing the scores of edges can
easily be estimated by using machine learning models such
as Maximum Entropy Models or SVM. But in our case that
a training corpus is very small, the use of machine learn-
ing model alone may leads the parser produces invalid parse
trees. In addition, we assumed that dependencies in a sen-
tence are independent of each other, hence the score of a
dependency tree is the sum of the scores of all its edges.
However, relying solely on the score of edges is not appro-
priate to compute the score of dependency trees for each
possible output from a morphosyntactic analyzer (which are
encoded in a lattice structure). Because it is possible that the
parser will select a parse tree that has the highest score but
the parse tree is not necessary to be a correct morphosyntac-

tic analysis. See an example of parsing a simple sentence
“\chan(I) \kin(eat) \kaw(rice)”. It can be encoded into a
morphosyntactic lattice

that \chan has two possible part-of-speeches i.e. personal
pronoun (pper) and transitive verb (vt) while \kin and \kaw
have one possibility, transitive verb and common noun (ncn)
respectively. In this context, \chan should be personal pro-
noun. But the parser will produce

instead of

Since, in Thai, subjects are often omitted that makes the
score of the first word being transitive verb and root of a

†We call trajectory of such any sequence of directly linked ver-
tices in a lattice beginning with I and ending with F. The pth tra-
jectory has the form Tp = I → wp1 → . . .→ wplp → F.
††Maximum number of outward edges of each node in the lat-

tice.
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Algorithm 4 K-best version of the modified Eisner’s algorithm for lattice structure combining with DIG and language model
Input: DM a dependency matrix size n × n; n > 1, k ≥ 1, b ≥ 0, and e > 0
Output: a list of k-best parse tree
1: for all p, d, c in {1..n} × {⇐,⇒} × {0, 1} do
2: C[(p, p, d, c)]← [ ]
3: for i = 1 to k do
4: C[(p, p, d, c)].append(new TreeOb ject())
5: end for
6: end for
7: for m = 1 to n do
8: for p = 1 to n − m do
9: t ← p + m

10: for r = p to t do
11: for all q in get next(r) do
12: if r < t and IsLegal(p, r, q, t) then
13: C[(p, t,⇐, 0)]← merge≤k(C[(p, t,⇐, 0)], dig mult≤k(C[(p, r,⇒, 1)],C[(q, t,⇐, 1)],DM[t, p], b, e)
14: C[(p, t,⇒, 0)]← merge≤k(C[(p, t,⇒, 0)], dig mult≤k(C[(p, r,⇒, 1)],C[(q, t,⇐, 1)],DM[p, t], b, e)
15: end if
16: end for
17: if r < t and IsLegal(p, r, r, t) then
18: C[(p, t,⇐, 1)]← merge≤k(C[(p, t,⇐, 1)], dig mult≤k(C[(p, r,⇐, 1)],C[(r, t,⇐, 0)], 0, b, e)
19: end if
20: if r > p and IsLegal(p, r, r, t) then
21: C[(p, t,⇒, 1)]← merge≤k(C[(p, t,⇒, 1)], dig mult≤k(C[(p, r,⇒, 0)],C[(r, t,⇒, 1)], 0, b, e)
22: end if
23: end for
24: end for
25: end for
26: return C[(1, n,⇒, 1)]

sentence very high . But if we look in morphosyntactical
context, “\chanvt \kinvt \kawncn” is invalid (The abbrevia-
tion of grammatical functions is given in Appendix A.2).

In order to surpass these problems, we will introduce
two more methods for computing a score of a parse tree:
adjusting the score of edges computed and filtering out in-
valid trees by applying the DIG and the rescoring sub-trees
by using a Language Model (LM).

In addition, as our parsing algorithm is inspired by Eis-
ner’s algorithm allows for k-best extensions, we can also ex-
tend our adapted algorithm to compute the k-best trees. With
the k-best extension, if the function f that computes a new
score by merging two sub-trees is monotonic, the complex-
ity of the parsing algorithm will be increased by a multi-
plicative factor, O(k log k) [36].

We will present a method that efficiently computes the
score of the best tree for the morphosyntactic lattice, and is a
monotonic function. That will increase the time complexity
of k-best parsing only by a multiplicative factor O(k log k).

The pseudo-code of the complete parsing algorithm is
shown in Algorithm 4. In the algorithm, there are three
parts that is different to Algorithm 3. First, items of table
C is a list of TreeOb ject containing a tree structure with its
score (line 2-5). Second, dig mult≤k is used to find k-best
trees of all multiplication between two lists of trees (line
13,14,18,21). Third, we replace max with merge≤k (line
13,14,18,21). The detail of dig mult≤k and merge≤k will be
described in the Sects. 3.2.2 and 3.2.3 respectively.

3.2.1 The Scores of the Edges

The scores of edges are a score measuring the probability
of the dependency relations established between two words.
This score has been used in many researches and can be
computed in various ways, for example, by using machine
learning methods such as Maximum Entropy Models [22],
Support Vector Machines [23], and MIRA [24] or condi-
tional probabilistic models [26], [33], to estimate the score
from kinds of linguistic features related with the two words.

In our work, we used Maximum Entropy Models for
learning the score s. The features for training the model
used here are similar to the first-order features used in [24].
But, we added more back-off features by adding a new tag
set which is a POS (part-of-speech) generalization. For ex-
ample, the seven tags of noun i.e., ‘NCN’, ‘NCT’,‘NNUM’,
‘NORM’, ‘NPN’, ‘NTIT’, and ‘NLAB’, and a personal pro-
noun, ‘PPER’ will be reassigned to ‘N’. The generalized
part-of-speech has 18 different tags. Moreover, we discard
5-gram prefix feature† because it does not appropriate for
Thai††. The model was used to estimate dependency proba-
bilities. These probabilities will then be used as scores. In
the implementation, we take the logarithm of the probabili-
ties to avoid floating overflow.

†The 5-gram of a surface word will used as a feature if the
word is longer than 5 characters, for instance the 5-gram feature of
“general” is “gener”.
††Thai is isolating languages and consists of more than 60 char-

acters (excluding symbolic characters). Therefore it is highly pos-
sible that words having the same 5-gram prefix are not related.
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We use Maximum Entropy Modeling Toolkit for
Python† for implementing the computing score model. The
model is a two-class classifier, deciding whether a pair of
words should have a dependency relation or not. In this
work, we focus primarily on unlabeled dependencies, but
the model can be extended to assign grammatical functions
to the dependency structure by using a single-stage (joint
labeling) or two-stage method (see [24] for more detail).

3.2.2 Adjusting the Score of Edges and Filtering Out In-
valid Trees

Since, our corpus is small (resource-poor languages), the
use of the scores of edges mentioned above (in Sect. 3.2.1)
is not enough. This work, then, propose the use of DIG for
adjusting the scores. We adjust the scores of edges by check-
ing whether the tree satisfies a given DIG. If it does not, the
score of the edge used to build the tree is decreased and if
the number of unsatisfactoriness is greater than a constant b,
the tree will be filtered out. In order to filter out the invalid
tress, we build larger subtrees and derive their correspond-
ing elementary trees as the same time. If the elementary
trees cannot be derived, we will adjust the score of the built
dependency trees. The score will be decreased by a positive
constant e if the insertion of two smaller elementary trees
fails. An example of adjusting the score of edges is shown
in Fig. 9.

Figure 9 gives an example of computing the score of a
new subtree where there are two possibilities to build a new
subtree from T [1− 2] and T [3− 3]: connecting “I” to “fast”
and “run” to “fast” (see 9a). But, the insertion between their
elementary trees satisfies only the connection from “run” to
“fast” (as 9b), hence the score of the tree constructed from
connecting “fast” to “I” is decreased by the constant e (as
9c), while the score of connecting “fast” to “run” is com-
puted normally (as 9d).

If all possible elementary trees corresponding to each
substring are kept, the time complexity of the parsing algo-
rithm will be O(gnn3), where g is the maximal number of
corresponding elementary trees per a smallest substring (a
lexicon). In fact, we do not need to keep all possible com-
plete elementary trees. We can keep only the status of the
elementary trees corresponding to each word, since the pars-
ing algorithm considers only building dependency relation
between two words.

In fact, when the insertion is performed, only the cat-
egory and relative position of the elementary tree of the in-
serted tree are considered. Let us consider again at Fig. 9 b.
It shows that the insertion of “I” and “run” into elementary
trees correspond to “fast”. We do not need to know the el-
ementary trees of “I run”. We consider only what the ele-
mentary trees of “fast” are waiting for (in this case “fast” is
waiting for “V”). Therefore, the time complexity becomes
O(gn3).

The operation of adjusting the scores of edges and the
filtering out the invalid trees are embedded into the opera-
tion dig mult≤k (see Algorithm 5) i.e. the modified version

Fig. 9 An example of adjusting the scores of edges by using DIG for “I
run fast”.

Algorithm 5 dig mult≤k(C1,C2, score, b, e)
Input: C1 and C2 are two lists of TreeOb jects, k > 0,

score ≥ 0, b ≥ 0, and e > 0
Output: a list of TreeOb jects
1: results← [ ]
2: for all t1,t2 in mult≤k(C1,C2) do
3: if badness(t1, t2) ≤ b then
4: tree← combine(t1, t2)
5: if check dig(t1, t2) then
6: tree.score← t1.score + t2.score + score − e
7: else
8: tree.score← t1.score + t2.score + score
9: end if

10: results.append(tree)
11: end if
12: end for
13: return results

of mult≤k [36], the multiplication operation that produces
k-best trees of all multiplication between two lists of trees.
The time complexity of the operation mult≤k is O(k log k).

In Algorithm 5, the badness(t1, t2) function returns the
number of dependencies that do not satisfy the DIG if t1 and
t2 are combined, and check dig(t1, t2) returns true if combi-
nation of t1 and t2 is satisfied by DIG, otherwise f alse. Fi-
nally, combine(t1, t2) returns a new sub-tree which is a com-
bination of t1 and t2. The b†† constant is used for limiting the
value “badness” (the number of dependencies not satisfying
DIG) that is allowed to occur in the parse trees.

By adding the operation of adjusting the score of edges
and filtering out invalid trees processes into the k-best pars-
ing, the multiplicative factor is still O(k log k). However, the
best sub-tree is no longer optimal because the penalization
will be only applied to the k-best sub-trees in each step, so
that it is possible that an other sub-tree that is not penal-
ized will have higher scores than a sub-tree in the k-best list
which is penalized. Therefore, the value of k has an effect on
the parsing accuracy: if we increase k, the search space of
finding the best sub-trees is also increased. Even though this
method does not guarantee the optimum solution, the pars-
ing accuracy can be improved with a small k (see Sect. 4.2
for the detail of the experiments).

†http://www.homepages.inf.ed.ac.uk/s0450736/
maxent toolkit.html
††The b will be increased dynamically by one if any parse tree

cannot be generated.
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Algorithm 6 merge≤k(C1,C2)
Input: C1 and C2 are two lists of TreeOb jects and k > 0.
Output: a list of TreeOb jects
1: R← [ ]
2: L1 ← rescore by lang model(C1)
3: L2 ← rescore by lang model(C2)
4: while len(L1) > 0 and len(L2) > 0 and len(R) < k do
5: if L1. f irst ≥ L2. f irst then
6: R.append(L1. f irst)
7: L1.remove(L1. f irst)
8: else
9: R.append(L2. f irst)

10: L2.remove(L2. f irst)
11: end if
12: end while
13: while len(L1) > 0 and len(R) < k do
14: R.append(L1. f irst)
15: L1.remove(L1. f irst)
16: end while
17: while len(L2) > 0 and len(R) < k do
18: R.append(L2. f irst)
19: L2.remove(L2. f irst)
20: end while
21: return rescore by edges score(R)

3.2.3 Rescoring Sub-Trees by Using Language Model

Rescoring sub-trees by using a LM is very important for
finding the best parse tree from all possible segmented
words and part-of-speech tagged sentences, since the use of
the score of dependencies does not guarantee that the tree
with the highest score will correspond to the best word seg-
mented and best part-of-speech tagged sentence (as men-
tioned in Sect. 3.2). We use a LM to help the parser select
a good parse tree which is also a good morphosyntactically
analyzed text. Here, we use trigram model on part-of-speech
to represent the LM.

P(t1,n) =
n∏

i=1

P(ti|wi)P(ti−2, tt−1|ti) (4)

where ti and wi are part-of-speech and word at position i in
a given sentence respectively. n is a length of the sentence.

In this work, we use the trigram model because it is
fast, simple and easy to implement. Other methods could
also give us a reasonable score of morphosyntactic analyzed
input, such as Conditional Random Fields, that is theoret-
ically better than the trigram model, but more complex to
implement.

The trigram model was trained on 40,494 part-of-
speech tagged sentences containing 49 tags, 18,396 words
and 548,431 tokens. Table 1 shows the detail of the train-
ing corpus related to the part-of-speech ambiguity that we
found.

The accuracy of the word segmenter and of the part-of-
speech tagger by using the trigram model is about 95% and
90% respectively.

We added a rescoring process into the function
merge≤k, which takes two sorted lists of length k (or fewer)

Table 1 The ambiguity of the training corpus for LM.

ambiguity words tokens
1 16,262 (88.40%) 239,810 (43.73%)
2 1,789 (9.73%) 144,429 (26.34%)
3 270 (1.47%) 94,036 (17.15%)
4 56 (0.30%) 28,241 (5.15%)
5 14 (0.08%) 19,919 (3.63%)
6 5 (0.03%) 21,996 (4.01%)

as input, and outputs the top k in sorted order of the 2k el-
ements. For parsing a single input, the elements (sub-trees)
are sorted by the score of edges, but here, for parsing a mor-
phosyntactic lattice, the elements are sorted by the score of
LM instead. This can be done in O(k log k) then the overall
multiplicative factor (dig mult≤k and merge≤k operations) is
still O(k log k). The pseudo-code is shown in Algorithm 6.

In fact, the rescoring process can be added into the final
parse trees, but we may have to set k extremely high in order
to find the true best parsing (taking the LM into account).

4. Experiments

4.1 NAiST Dependency Treebank

The NAiST Dependency Treebank is the first Thai depen-
dency treebank. It contains 816 sentences collected from
various domains such as agricultural news, encyclopedia,
and healthcare. Out of them, about 500 are aligned with En-
glish sentences, and they are useful resources for machine
translation.

All of the parse trees in the treebank have projective
dependency structures, because Thai is a strongly projective
language. Non-projective structures rarely appear in writing
text, although, they appear quite often in spoken dialogues.

For preparing the treebank, sentences were first seg-
mented into words and part-of-speech tagged. This tagging
comprised 49 categories and was done automatically by t3
tagger† trained on our part-of-speech tagged corpus. Then,
the sentences were uploaded to Tred†† [37], a web-based
tree editing component, and then experts will correct and
annotate them. We used 30 grammatical functions (12 com-
plements and 18 adjuncts) for labelling the dependency re-
lations.

4.2 Results and Analysis

To evaluate our methods, we set up three experiments. In
the first, we assume that inputs are correctly word seg-
mented and part-of-speech tagged. In this experiment, we
can straight compare our method to the others. In the second
experiment, we will not assume that the inputs are perfect,
but we will convert the inputs into morphosyntactic lattices
to test our method. For the others, the inputs will be an-
alyzed by the existing morphosyntactic tools. Finally, we

†http://acopost.sourceforge.net
††http://naist.cpe.ku.ac.th/tred
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study the oracle parse [38], or the best parse among the top
k parses in order to measure the performance of the k-best
parsing.

For the experiments, we used 716 sentences of the
NAiST treebank for training and the other 100 sentences
for testing. We measure Dependency Precision (DP), Com-
plete Rate (CR) and Root Accuracy (RA) to evaluate the
parsing results. We measured only the correctness of the
dependency structures without considering the grammatical
functions.

DP =
number of correct dependencies

total number of reference dependencies

CR =
number of complete parse trees

total number of sentences

RA =
number of correct root nodes

total number of sentences

In the second and third experiments, we also measured
the correctness of the morphosyntactic analysis. We used
Token Precision (TP), Token Recall (TR), and Token F-
measure (TF).

TP =
number of correct tokens

total number of reference tokens

TR =
number of correct tokens

total number of hypothesis tokens

TF =
2 × TP × TR

TP + TR

Here, the number of correct tokens means the to-
kens that are correctly word-segmented and part-of-speech
tagged.

4.2.1 Extracted Elementary Trees

The extended forms of elementary trees were extracted from
the training corpus, 716 sentences, there are 8,172 tokens, of
which 1,996 are type-I, 4,342 are type-II and 1,834 are type-
III.

In the elementary trees extracted using the algorithm
described in Sect. 2.3, there are 981 different types of el-
ementary trees (175, 400 and 406 for Type-I, Type-II and
Type-III, respectively), and 497 of them appear only once.
Some of these elementary trees are abnormal structures es-
pecially those of low number of occurrence in the corpus.

Obviously, the extracted elementary trees do not cover
all the words. Therefore, if the lexicalized elementary trees
(the head is a lexicon with its part-of-speech) can not be
found, the unlexicalized elementary trees (the head is a part-
of-speech) will be matched instead. We allow specifically
the unlexicalized elementary trees which have a high num-
ber of occurrence in the corpus (> 3) will be used in order
to avoid using noisy elementary trees.

4.2.2 Parsing with Perfect Inputs

Although parsing with the perfect input is not the main focus

Table 2 Results comparing our systems with MSTparser where the input
is perfect (for MAXDIG , we set k = 1, b = ∞ and e = 2).

DP CR RA
MAX (baseline) 86.03 21.00 90.00
MS Tpro j 83.40 15.00 94.00
MAXDIG 88.66 27.00 92.00

of this work, observing the accuracy of parsing with a per-
fect input can help investigate the performance of combining
DIG with a data-driven parsing method, and also with other
parsers. Here, we use the MSTparser†, a statistical depen-
dency parser freely available on the web. The MSTparser
was trained with the parameters, k = 5 and N = 10 that
was reported [24] yielding a good accuracy and training the
model in reasonable time.

For our parsing algorithm, there are three parameters
which can affect the performance i.e. k, e, and b. There-
fore, we set up another experiment for observing the effect
of these parameters by letting them vary.

Having experimented, we found that increasing k does
not improve the accuracy. Moreover, the accuracy dropped
at some higher k. The idea of using b does not seem to work
in this case, because the accuracy improves if b is disabled
(set to ∞). The e that can improve the accuracy from the
baseline (e = 0 and b = ∞) is 0 < e ≤ 2.

From the experiments, we should prioritize the score
of edges computed from a data-driven model rather than
weighting the score by DIG for parsing with perfect inputs.

Results of parsing with perfect inputs are shown in Ta-
ble 2. We use subscript DIG to denote the use of DIG while
MAX represents our learning model i.e. Maximum Entropy
Models and MS Tpro j is MSTparser using projective parsing
algorithm for training the model.

For overall performance, MAXDIG is the best one. It
confirms that the use of the DIG can improve the parsing
accuracy of a data-driven parsing model. The accuracy of
MS Tpro j is lower than the baseline, even if MSTparser uses
the learning model, MIRA [39], that is theoretically better
than the model used in the baseline. We think that this is due
to the 5-gram prefix features used in MSTParser that does
not make sense for Thai, and the simplified part-of-speech
features that was added into the baseline model. Also, we
see that the better performance of MIRA via the root accu-
racy of MS Tpro j is higher than the others, because MIRA
learns the scores of edges by using a whole dependency tree
rather than each pair of dependency nodes.

4.2.3 Parsing with Morphosyntactic Lattices

In this experiment, we created a morphosyntactic lattice by
mapping a dictionary using a dynamic backtracking algo-
rithm [40], and generating all the possible word segmenta-
tions and part-of-speech tagging results. Here, we assume
there is no unknown word in the input text, in order to assure
that there is a correct homophrase†† in the lattice. For the

†http://sourceforge.net/projects/mstparser
††The homophrase associated to a trajectory Tp is simply the

sequence Hp = wp1 . . . wplp .
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Table 3 Results comparing our systems with the MSTparser where the
input is the lattice or the text analyzed by the morphosyntactic analyzer (for
MAX∗DIG and MAX∗DIG-LM , we set k = 10, b = 0 and e = 5).

DP CR RA
MAXd (baseline) 68.01 4.00 75.00
MAXd

DIG 68.39 5.00 77.00
MS T d

pro j 65.99 4.00 78.00

MAX∗ 66.42 4.00 76.00
MAX∗DIG 68.39 4.00 79.00
MAX∗LM 73.43 5.00 79.00
MAX∗DIG-LM 74.32 6.00 81.00

Table 4 Results comparing the accuracy of morphosyntactic analysis.

TR TP TF
trigram model 88.64 87.34 87.99
MAX∗ 87.12 88.08 87.59
MAX∗DIG 88.11 88.88 88.49
MAX∗LM 92.86 93.27 93.06
MAX∗DIG-LM 93.15 93.49 93.32

other methods that cannot take the lattice structure as input,
we used input texts that were morphosyntactically analyzed
by the analyzer† instead.

Like in the previous experiment, we also observe the
effect of varying the parameters. As we expected, the result
is the opposite to experiment with the perfect inputs. The
parsing accuracy improved when k increased and was stable
where k ≥ 10 (k varied from 1 to 20). The accuracy is the
highest when b = 0 and 4 ≤ e ≤ 5.

The experiment shows that we can trust the use of DIG
more than in the score computed by the learning model, un-
like in the previous experiment, because when the input is
a lattice, the effect of the independence assumption is more
evident, then many invalid dependencies are produced. So,
the use of DIG plays an important role in this experiment.

Table 3 compares the results. We use the superscript ∗
to indicate methods taking a lattice as input, and superscript
d to indicate that the input is a dubiously disambiguated
string. We also used subscript the LM to indicate the use
of a language model for rescoring.

The MAX∗DIG-LM method is the best one, the accuracy
is far better that the parsers used on inputs produced by the
used morphosyntactical analyzer. Moreover, the accuracy of
morphosyntactic analysis of the results is also improved, as
shown in Table 4.

The MAX∗ method is the worst: the accuracy of parse
trees and the accuracy of morphosyntactic analysis are lower
than the baseline. That is similar to the MAX∗DIG method,
which shows that using only the DIG can slightly improve
the parse accuracy only, but does not improve the mor-
phosyntactic analysis. Because the score of morphosyntac-
tic analysis is not taken into account. The use of DIG can
improve the parsing accuracy, but it is not enough. By con-
trast, MAX∗LM uses only the LM but obviously improves the
accuracy of morphosyntactic analysis and that of the parse
trees.

The results show that if we perform morphosyntactic

Table 5 The accuracy of oracle parse in the 10-best parses.

DP CR RA
MAXd 72.44 7.00 89.00
MAXd

DIG 73.03 9.00 90.00
MAX∗ 74.43 12.00 84.00
MAX∗DIG 78.02 13.00 93.00
MAX∗LM 76.03 11.00 84.00
MAX∗DIG-LM 76.42 11.00 84.00

analysis and syntactic analysis simultaneously by using their
information to help each other (here we use the score of
morphosyntactic analysis to rescore the parse trees), the ac-
curacy of that combination is better than that of the usual
sequence (morphosyntactic analysis followed by syntactic
analysis).

4.2.4 K-Best Parsing

The next experiment is on k-best parsing. We use the same
algorithm with the best parameter settings (b = 0 and e = 5)
as in the previous section, and we also study the oracle parse,
or the best parse, among the top 10 parses. The result is
shown in Table 5. Note that the MSTparser which we used
cannot produce k-best parse trees, hence its result is absent.

For the oracle parse, the MAX∗DIG method becomes the
best one. In addition, if we increase k to 100, MAX∗ also
outperforms MAX∗LM and MAX∗DIG-LM . It shows that the
models using a LM for rescoring worse in the oracle parse.

We notice that the methods using a LM for rescoring
produce a lot of parse trees having duplicated patterns of
morphosyntactic analysis. This is because the rescoring by
the LM method lets the parsing process consider the score
of LM first and the score of dependencies later. In other
words, the text of highest score of LM is first selected and
as many corresponding parse trees as possible will be gen-
erated. It leads to the imbalanced decision making by the
parser, that over-emphasizes the score of LM. This problem
occurs only in the k-best parsing, it does not affect the best
parsing. Therefore, in k-best parsing the rescoring method
should not be used.

Figure 10 and 11 show the DP and the TF of the oracle
on k-best parsing where k is 10, 20, 30, 50 and 100.

The DP and the TF of oracle in 100-best parsing with
the MAX∗DIG method are 81.21% and 95.18%, respectively,
and both tend to continuously increase if k increases even
more. That is similar to other methods for which the in-
put is a morphosyntactic lattice. Unlike the methods where
the input is a dubiously disambiguated string, the DP of or-
acle tends to improve at first, but slightly increase when k
increases even more and becomes saturated when k ≥ 50:
the accuracy of the morphosyntactic analysis cannot im-
prove anymore. In other words, the parsing accuracy is first
limited by the accuracy of morphosyntactic analysis of the
input. Conversely, if we increase k when inputs are mor-

†We used the trigram model trained by the same corpus that
was used in the LM rescoring process.
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Fig. 10 DP of the k-best oracle on the test data.

Fig. 11 TF of the k-best oracle on the test data.

phosyntactic lattices, the search space for finding both the
best morphosyntactic analysis and the best parse tree is en-
larged. Hence, the chance of finding the better a best parse
tree among k-parse trees is higher than when the inputs are
dubiously disambiguated strings.

Clearly, the use of a morphosyntactic lattice as input,
in case of the k-best parsing, significantly and decisively
improves the accuracy (relative to the oracle parse) of the
morphosyntactic analysis and the parsing process.

5. Conclusion

We have proposed a dependency parsing method for lan-
guages without reliable morphosyntactic analysis tools. For
this, we represent the input as a morphosyntactic lattice
structure and apply an adaptation of Eisner’s algorithm to
find projective dependency trees. From the experimental re-
sults, our method performs better than those made on dubi-
ously disambiguated strings. Moreover, we have also shown
how to use Dependency Insertion Grammar (DIG) to adjust
the scores computed by the statistical parsing models, and
rescore the parse trees by the LM and k-best extension of
the parser.

The results show that our methods can significantly
improve the parsing accuracy. The highest parsing accu-
racy (DP) reported in this paper is 74.32% which represents
6.31% improvement compared to the model taking the input
from the unreliable morphosyntactic analysis tools. Even
that accuracy is not enough for high-level NLP applications

such as MT, Information Extraction and Text Summariza-
tion, it is still useful for corpus preparing process that re-
quests a parser which can produce reasonable k-best parse
trees in order to let annotators start from the best tree among
k-best trees rather than from a doubtful parse tree.

There are two points in our parsing model that can
be improved in the future. The first one is the combi-
nation of morphosyntactic and syntactic process. In this
work, we have used the rescoring technique (as mentioned
in Sect. 3.2.3). In order to select the best dependency tree
more correctly, one might find a better way to seamlessly
combine the scores from those two processes together. The
second one is utilizing linguistic knowledge for data-driven
parsing model. Here, we have used DIG and the adjusting
score technique (as mentioned in Sect. 3.2.2). However, it is
still worth to try using other dependency grammars that is
more sophisticated than DIG.
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Appendix A: Abbreviation of Thai Part-of-Speeches
and Grammatical Functions

A.1 Part-of-Speeches

1. npn (proper noun)
2. nnum (cardinal number)
3. norm (ordinal number marker)
4. nlab (label noun)
5. ncn (common noun)
6. nct (collective noun)
7. ntit (title noun)
8. pper (personal pronoun)
9. pdem (demonstrative pronoun)

10. pind (indefinite pronoun)
11. ppos (possessive pronoun)
12. prfx (reflexive pronoun)
13. prec (reciprocal pronoun)
14. prel (relative pronoun)
15. pint (interrogative pronoun)
16. vi (intransitive verb)
17. vt (transitive verb)
18. vcau (causative verb)
19. vcs (complementary state verb)
20. vex (existential verb)
21. prev (pre-verb)
22. vpost (post-verb)
23. honm (honorific marker)
24. det (determiner)
25. indet (indefinite determiner)
26. adj (adjective)
27. adv (adverb)
28. advm1 (adverb marker1)
29. advm2 (adverb marker2)
30. advm3 (adverb marker3)
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31. advm4 (adverb marker4)
32. advm5 (adverb marker5)
33. cl (classifier)
34. conj (conjunction)
35. conjd (double conjunction)
36. conjncl (noun clause conjunction)
37. prep (preposition)
38. prepc (co-preposition)
39. int (interjection)
40. pref1 (prefix1)
41. pref2 (prefix2)
42. pref3 (prefix3)
43. aff (affirmative)
44. part (particle)
45. neg (negative)
46. punc (punctuation)
47. idm (idiom)
48. psm (passive voice marker)
49. sym (symbol)

A.2 Grammatical Functions

Complements

1. subject (subj)
2. clausal subject (csubj)
3. direct object (dobj)
4. indirect object (iobj)
5. prepositional object (pobj)
6. prepositional complement (pcomp)
7. subject or object predicative (pred)
8. clausal predicative (cpred)
9. conjunction (conj)

10. subordinating conjunction (sconj)
11. nominalizer (nom)
12. adverbalizer (advm)

Adjuncts

1. parenthetical modifier (modp)
2. restrictive modifier (modr)
3. mood modifier (modm)
4. aspect modifier (moda)
5. locative modifier (modl)
6. parenthetical apposition (appa)
7. restrictive apposition (appr)
8. relative clause modification (rel)
9. determiner (det)

10. quantifier (quan)
11. classifier (cl)
12. coordination (coord)
13. negation (neg)
14. punctuation (punc)
15. double preposition (dprep)
16. parallel serial verb (svp)
17. sequence serial verb (svs)

Appendix B: Examples of NAiST Dependency Tree-
bank, Extracted Elementary Trees, and
k-Best Parse Trees

B.1 NAiST Dependency Treebank

1. \bang(some) \tua(one) \me(is) \si(color) \tau(gray)

2. \pieng(just) \lod(decrease) \pariman(quantity) \long(down) \tau-

nan(only)

B.2 Extracted Elementary Trees

Top 5 of the most occurrence relaxed elementary trees of
transitive verb (vt)

B.3 K-Best Parse Trees

Input: “\mare(mother) \kuay(buffalo) \liang(take care)
\look(kid) \keng(well)”

Output: 5-best unlabeled parse trees
1. score=2.863449

2. score=2.760695
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3. score=-0.622163 (correct tree)

4. score=-0.724917

5. score=-0.840073
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