
2152
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

LETTER

Utilization Bound of Non-preemptive Fixed Priority Schedulers

Moonju PARK†a) and Jinseok CHAE†b), Members

SUMMARY It is known that the schedulability of a non-preemptive
task set with fixed priority can be determined in pseudo-polynomial
time. However, since Rate Monotonic scheduling is not optimal for non-
preemptive scheduling, the applicability of existing polynomial time tests
that provide sufficient schedulability conditions, such as Liu and Layland’s
bound, is limited. This letter proposes a new sufficient condition for non-
preemptive fixed priority scheduling that can be used for any fixed priority
assignment scheme. It is also shown that the proposed schedulability test
has a tighter utilization bound than existing test methods.
key words: real-time system, non-preemptive scheduling, fixed priority

1. Introduction

Although the Earliest Deadline First (EDF) algorithm is op-
timal for preemptive [1] and non-preemptive [2] real-time
scheduling on a uniprocessor, fixed priority scheduling such
as the Rate Monotonic (RM) algorithm has been more
widely used in real-time systems because it is very easy
to implement [3]. Generally, preemptive schedulers pro-
vide better schedulability than non-preemptive schedulers.
However, it can be shown that in the context of fixed prior-
ity scheduling, preemptive schedulers do not dominate non-
preemptive schedulers [4]. Non-preemptive schedulers are
useful for I/O-bound applications, they can avoid synchro-
nization problems, and can be used for DSP systems [5].

Unlike dynamic priority scheduling, there is no opti-
mal algorithm for non-preemptive fixed priority scheduling;
RM is optimal for preemptive scheduling, but not optimal
for non-preemptive scheduling [6]. George et al. showed in
[6] that the worst case response time can be computed using
the concept of the level-i busy period. The test based on the
worst case response time in [6] can determine the schedula-
bility of a task set exactly, but the complexity of the exact
test is pseudo-polynomial, and thus it is not applicable if the
number of tasks is large [3].

In many cases, schedulability tests based on utiliza-
tion bounds in polynomial time are used because of their
simplicity and efficiency. For non-preemptive scheduling,
we can apply utilization bounds of preemptive scheduling,
such as Liu and Layland’s bound, by regarding the proces-
sor as a shared resource [3], [7]. However, they can only be
applied to RM priority assignment. Since RM is not op-

Manuscript received May 12, 2009.
Manuscript revised June 11, 2009.
†The authors are with the Department of Computer Science

and Engineering, University of Incheon, Korea.
a) E-mail: mpark@incheon.ac.kr
b) E-mail: jschae@incheon.ac.kr

DOI: 10.1587/transinf.E92.D.2152

timal for non-preemptive scheduling, we need to develop
a utilization bound for non-RM priority assignments. This
letter presents a new schedulability test for non-preemptive
scheduling. The present test can be used for fixed priority
scheduling (RM and others), and it is shown to be less pes-
simistic than the existing tests.

The rest of the letter is organized as follows. Section 2
summarizes the assumptions and notations that are used in
this letter. Section 3 proposes a new schedulability test for
non-preemptive fixed priority scheduling. Simulation re-
sults for evaluating the performance of the proposed method
are presented in Sect. 4. Finally Sect. 5 concludes this work.

2. Task Model and Assumptions

A periodic task is denoted as τi. A periodic task set is rep-
resented by the collection of periodic tasks, τ = {τi}. Each
τi is a two-tuple (Ti,Ci) where Ti is the period and Ci is the
worst case execution time. Note that Ti ≥ Ci > 0. This
requires that if the first instance of τi is invoked at time tx,
the following instances are invoked periodically at tx + kTi,
where k = 1, 2, 3, . . ., and τi must be allocated Ci units of
processor time in the interval [tx + (k − 1)Ti, tx + kTi].

When an instance of τi is invoked at time t and finishes
at time t′, t′ − t is called “response time” of the instance. The
worst case response time of τi is defined as the maximum
possible response time among all instances.

A concrete task has a specified release time, which is
the time of the first activation. A concrete task set is schedu-
lable if and only if the worst case response time of any con-
crete task τi in the set is not larger than Ti. A periodic task
set is defined as schedulable if and only if all concrete task
sets that are generated from the periodic task set are schedu-
lable. In this letter, we consider only periodic task sets.

A summary of the assumptions used in this letter is
given. Scheduling overhead can be ignored. Tasks are sorted
in non-increasing order according to priority. For any pair of
tasks τi and τ j, if i < j, then, τi has higher priority than τ j.
Time is represented by an integer; therefore, time is discrete
and clock cycles are indexed according to integers, as in [2].
Tasks are all independent and cannot suspend themselves.

For a given task τi, we define hp(τi) as the subset of τ
consisting of tasks with higher priority than τi. On the other
hand, lp(τi) is the set of tasks with lower priority than τi.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



LETTER
2153

3. Utilization Bound of Non-preemptive Tasks

As described in Sect. 1, we can apply utilization bounds
of preemptive scheduling by regarding the processor as a
shared resource. A higher-priority task that becomes ready
when a non-preemptible lower-priority task is executing is
blocked until the lower-priority task completes. The de-
lay due to the non-preemptible lower-priority task is called
“blocking time.” The worst case blocking time of τi is the
longest delay caused by the tasks in lp(τi).

Based on the well-known Liu and Layland’s bound
(called the LL bound in this letter), it was shown in [7] that
a task set is schedulable by RM if it satisfies the following
condition:

i−1∑
j=1

C j

T j
+

Ci + Bi

Ti
≤ i

(
2

1
i − 1

)
(1)

for ∀τi ∈ τ where Bi is the worst case blocking time of τi.
Similarly, the hyperbolic bound [3] can be used to de-

termine whether non-preemptive tasks can be scheduled by
RM. A periodic task set τ is schedulable by RM if

(
1 +

Ci + Bi

Ti

) i−1∏
j=1

(
1 +

C j

T j

)
≤ 2 (2)

for ∀τi ∈ τ. The above tests run in polynomial time (O(n2))
when the number of tasks is n, and they can only be used for
RM priority assignment.

In [6], George et al. showed that the concept of the
level-i busy period is also useful in non-preemptive schedul-
ing. The level-i busy period is a processor busy period in
which only instances of tasks with priority higher than or
equal to that of τi are processed.

Lemma 1: (From [6]) If tasks are non-preemptive, a peri-
odic task τi has the worst case response time in a level-i busy
period obtained by releasing all tasks τ j with τ j ∈ hp(τi)
and τi simultaneously at time t = 0, while releasing task τk

such that τk ∈ lp(τi) with Ck = max{Cl|τl ∈ lp(τi)}, at time
t = −1.

Lemma 1 implies that the maximum interference
for task τi caused by lower priority tasks is given by
max{0,max{Ck |τk ∈ lp(τi)} − 1}. Based on Lemma 1, Geo-
rege et al. also developed an exact schedulability test in [6]
that can be performed in pseudo-polynomial time, but the
complexity is high if the number of tasks is large.

To compute the upper bound of the maximum interfer-
ence caused by higher priority tasks, we introduce the fol-
lowing function:

Gi(t) =
∑
τ j∈hp(τi)

⌈
t

T j

⌉
C j. (3)

The function Gi(t) represents the execution time requested
by tasks with priority higher than that of τi, from time 0 to

time t, if these tasks are released at time 0. The following
lemma presents an upper bound of the maximum interfer-
ence due to higher priority tasks using the above function.

Lemma 2: For a non-preemptive task τi, the maximum in-
terference caused by a task τ j ∈ hp(τi) is less than or equal
to; ⌈

Ti

T j

⌉
C j , i f Gi

(⌊
Ti

T j

⌋
T j

)
+ Bi ≥

⌊
Ti

T j

⌋
T j

⌊
Ti

T j

⌋
C j , otherwise

where Bi = max{0,max{Ck |τk ∈ lp(τi)} − 1}.
Proof: The last activation of the task τ j prior to Ti occurs

at time Ti − (Ti mod T j), which is given by
⌊

Ti

T j

⌋
T j. Let Li j

represents this value. By Lemma 1, the worst case response
time is achieved by releasing all tasks in hp(τi) and τi si-
multaneously at time t = 0, while releasing the task with the
largest execution time at time t = −1. Thus, the maximum
interference for the execution of τi is less than or equal to

Gi

(⌊
Ti

T j

⌋
T j

)
+ Bi.

If the total execution time requested by hp(τi) prior to
Li j + Bi is greater than or equal to Li j, τi might not run prior
to Li j because the processor must serve higher priority tasks.
In this case, the last instance of task τ j may be executed prior
to τi, but, if Ti mod T j = 0, the last instance of τ j interferes
with the subsequent instance of τi. Thus, the maximum in-

terference caused by τ j is less than or equal to
⌈

Ti

T j

⌉
C j.

When the total execution time requested by hp(τi) prior
to Li j + Bi is less than Li j, τi must have a chance of being
scheduled prior to Li j. Since tasks are non-preemptive, once
task τi is executed it runs until completion, so, the last acti-
vation of τ j does not interfere with τi. Thus, the maximum

interference caused by τ j is given by
⌊

Ti

T j

⌋
C j.

In the following theorem, we present a sufficient con-
dition for non-preemptive fixed priority scheduling.

Theorem 1: A non-preemptive periodic task set τ is
schedulable if

Bi +Ci +
∑
τ j∈hp(τi)

Ii j ≤ Ti (4)

for ∀τi ∈ τ, where Bi = max{0,max{Ck |τk ∈ lp(τi)} − 1} and

Ii j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⌈
Ti

T j

⌉
C j, if Gi

(⌊
Ti

T j

⌋
T j

)
+ Bi ≥

⌊
Ti

T j

⌋
T j

⌊
Ti

T j

⌋
C j, otherwise

Proof: By Lemma 2, the maximum interference caused
by tasks with higher priority than τi is less than or equal
to

∑
τ j∈hp(τ) Ii j. By Lemma 1, the maximum interference

caused by tasks with lower priority than τi is given by
Bi. Therefore if Bi + Ci +

∑
τ j∈hp(τi) Ii j ≤ Ti, τi meets its

deadline.



2154
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.10 OCTOBER 2009

The schedulability test in Theorem 1 runs in polyno-
mial time with time complexity O(n3) when the number of
tasks is n. But, it can be applied to priority assignments
other than RM. Furthermore, the following theorem shows
the proposed test can accept more task sets than the other
two tests.

Theorem 2: Non-preemptive task sets with utilization less
than or equal to the LL bound or hyperbolic bound satisfy
the condition in Theorem 1.

Proof: Since Eqs. (1, 2) are applicable to RM scheduling,
we only need to consider the RM priority ordering. In RM
priority ordering, a higher priority task has shorter period
than a lower priority task. So if i < j, then Ti < T j. Let
us assume that the number of tasks is n. The ratio between
the maximum and minimum period, Tn/T1, is called “period
ratio.”

The proof consists of two parts. First, we show the
theorem holds when period ratio is less than 2. Then we
show that general task sets can be converted to have period
ratio less than 2, thus the theorem holds for all task sets.

(Part 1) Task sets with period ratio less than 2.
The conditions in Eqs. (1, 2) are based on the fact that

the following task set (the hard-to-schedule task set) has the
minimum utilization and fully utilizes the processor if tasks
are scheduled by RM in a preemptive context [1]:

• T1 < Ti < 2T1

• Ci = Ti+1 − Ti for i < n, Cn = Tn − 2
∑n−1

j=1 C j

Equations (1, 2) are obtained by applying above conditions
to each task τi by replacing n = i and Ci = {Ci + Bi} [7].
Thus the above conditions can be modified for each task τi:

• T1 < T j < 2T1

• C j = T j+1 − T j for j < i, Ci = Ti − 2
∑i−1

k=1 Ck − Bi

If a subset {τ1, . . . , τi} has higher utilization than the hard-
to-schedule task set, the task set does not satisfy Equation
either (1) or (2). From the above conditions, it is clear that∑ j

k=1 Ck = T j+1 − T1 and
∑i

k=1 Ck = Ti − Bi − ∑i−1
k=1 Ck =

T1 − Bi.
From Eq. (1),

Bi +Ci +
∑
τ j∈hp(τi)

Ii j ≤ Bi +Ci + 2
i−1∑
j=1

C j

= Bi +

i∑
j=1

C j +

i−1∑
j=1

C j = Bi + T1 − Bi + Ti − T1 = Ti.

Thus, we can see that the hard-to-schedule task set satisfies
the condition given by Theorem 1.

Now consider a task set {τi} = {(Ti,Ci)} where i =
1, . . . , n and Ti < 2T1, which satisfies Eq. (1) or (2). For a
task subset {τ1, . . . , τi}, we can make a corresponding hard-
to-schedule task set {τ′j} = {(T j,C′j)}, where C′j = T j+1 − T j

for j < i and C′i = Ti − 2
∑i−1

j=1 C′j − Bi.
Note that tasks τ1, . . . , τi−1 execute twice before Ti at

most. Since the processor utilization of {τi} is lower that

that of hard-to-schedule task set, it must be Ci +2
∑i−1

j=1 C j ≤
Ti − Bi (if Ci + 2

∑i−1
j=1 C j > Ti − Bi, τi misses its deadline).

By definition, C′i +2
∑i−1

j=1 C′j = Ti−Bi. So, Ci+2
∑i−1

j=1 C j ≤
C′i + 2

∑i−1
j=1 C′j. Then, we have

Bi +Ci +
∑
τ j∈hp(τi)

Ii j ≤ Bi +Ci + 2
i−1∑
j=1

C j

= Bi +C′i + 2
i−1∑
j=1

C′j ≤ Ti

since
∑i−1

j=1 C′j = Ti − T1 and
∑i

j=1 C′j = T1 − Bi. Therefore,
Eq. (4) is satisfied.

(Part 2) Task sets with period ratio larger than or equal
to 2.

As in Chapter 6 of [8], we show that a task set with a
period ratio larger than or equal to 2 can be converted to a
task set with a period ratio less than 2.

For a task τ j with priority higher than or equal to

τi, let vi j =

⌊
Ti

T j

⌋
T j. Then task set {(vi j,

vi j

T j
C j)}, where

j = 1, . . . , i, has the same utilization as the task set {(T j,C j)},
j = 1, . . . , i. Note that this transformation does not affect Bi

because tasks (Ti+1,Ci+1), . . . , (Tn,Cn) remain unchanged.
If we apply the task set {(vi j,

vi j

T j
C j)} to Eq. (1), we have∑i−1

j=1
vi jC j/T j

vi j
+

viiCi/Ti+Bi

vii
=

∑i−1
j=1

C j

T j
+ Ci+Bi

Ti
since vii = Ti.

Thus the schedulability test results using Eq. (1) on task sets
{(vi j,

vi j

T j
C j)} and {(T j,C j)} are the same for a given i. We can

easily see that the task set {(T j,C j)}, j = 1, 2, . . . , i, satisfies
Eq. (2) if and only if task set {(vi j,

vi j

T j
C j)} satisfies Eq. (2).

Since it is trivial that min{vi j} < Ti < 2 min{vi j}, the task set
{(vi j,

vi j

T j
C j)} is a transformation of {(T j,C j)} with period ra-

tio less than 2. Therefore, if a task set satisfies Eq. (1) or (2),
the task set must have utilization lower than or equal to the
hard-to-schedule task set, which is shown to satisfy Eq. (4).

On the other hand, we can find a task set that does
not satisfy either Eq. (1) or (2), but, satisfies the condi-
tion given in Theorem 1. Let us consider the task set
{T1 = (35, 7),T2 = (45, 29),T3 = (46, 3)} as an example.
For this task set, B1 = 28, B2 = 2, and B3 = 0. The worst
case response times are R1 = 35, R2 = 38, and R3 = 46, so
the task set is schedulable. However, this task set has higher
utilization than the LL bound and the hyperbolic bound;

(1) LL bound
T1: 7+28

35 ≤ 1 (2 − 1)

T2: 7
35 +

29+2
45 = 0.888 > 2

(
2

1
2 − 1

)
= 0.828

T3: 7
35 +

29
45 +

3
46 = 0.909 > 3

(
2

1
3 − 1

)
= 0.779

(2) Hyperbolic bound
T1:

(
1 + 7+28

35

)
≤ 2

T2:
(
1 + 7

35

) (
1 + 29+2

45

)
= 2.026 > 2

T3:
(
1 + 7

35

) (
1 + 29

45

) (
1 + 3

46

)
= 2.102 > 2



LETTER
2155

Table 1 Schedulable task sets by non-preemptive RM.

Average Exact LL-bound Hyperbolic Proposed
utilization test bound test

10% 100% 100% 100% 100%
20% 98% 98% 98% 98%
30% 96% 96% 96% 96%
40% 92% 92% 92% 92%
50% 90% 90% 90% 90%
60% 93% 92% 93% 93%
70% 78% 73% 78% 78%
80% 74% 0% 26% 71%
90% 34% 0% 13% 19%

But, by Theorem 1, we can derive;

T1: 28 + 7 ≤ 35
T2: G2(35) + 2 = 9 < 35. So 2 + 7 + 29 = 38 ≤ 45
T3: G3(35) = 36 ≥ 35,

G3(45) = 2 × 7 + 29 = 43 < 45
Thus 2 × 7 + 29 + 3 = 46 ≤ 46.

Therefore, the task set is determined to be schedulable.

4. Simulation Results

To show the effectiveness of the proposed test method, we
performed a simulation using randomly generated tasks.
Task parameters were generated using the UNIX random()
function. Periods were smaller than 100,000 and the worst
case execution times were restricted to be smaller than
10,000. Any particular task does not have a utilization ex-
ceeding 70%, and all tasks have at least 0.5% utilization.
We generated and tested a total of 1,300 task sets, contain-
ing 8,337 tasks. We compared the percentage of task sets
that were determined to be schedulable by non-preemptive
RM scheduling. The results are summarized in Table 1.

As shown in Table 1, while all polynomial time tests
show a good acceptance ratio if the average utilization is
less than or equal to 70%, the schedulability test given in
Theorem 1 performs better than the other test overall. For
task sets with a processor utilization of less than or equal

to 70%, the proposed test method determines the schedu-
lability of all task sets exactly. For task sets with 80% of
the average utilization, the proposed method shows an er-
ror rate of only 4% in determining the schedulability (4% of
task sets are determined as “not schedulable,” even though
they are schedulable). For task sets with high utilization, the
error rate in determining the schedulability becomes larger,
but it shows a better ratio than that of other methods.

5. Conclusion

In this letter we proposed a new schedulability test for non-
preemptive fixed priority scheduling. The proposed test can
be used for any fixed priority assignment, including RM. It
was shown that the proposed test method is less pessimistic
than existing methods. The proposed test is useful for sys-
tems with a large number of tasks, while exact tests are not.

References

[1] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard real-time environment,” J. ACM, vol.20, no.1, pp.46–61,
1973.

[2] K. Jeffay, D.F. Stanat, and C.U. Martel, “On non-preemptive schedul-
ing of periodic and sporadic tasks,” Proc. IEEE Real-Time Systems
Symposium, pp.129–139, Dec. 1991.

[3] E. Bini, G.C. Buttazzo, and G.M. Buttazzo, “Rate monotonic analysis:
The hyperbolic bound,” IEEE Trans. Comput., vol.52, no.7, pp.933–
942, 2003.

[4] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with pre-
emption threshold,” Proc. 6th International Conference on Real-Time
Computing Systems and Applications, pp.328–335, Dec. 1999.

[5] T.M. Parks and E.A. Lee, “Non-preemptive real-time scheduling of
dataflow systems,” Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp.3225–3238, May 1995.

[6] L. George, N. Riviere, and M. Spuri, “Preemptive and non-preemptive
real-time uniprocessor scheduling,” Tech. Rep., INRIA, RR-2966,
1996.

[7] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Trans. Com-
put., vol.39, no.9, pp.1175–1185, 1990.

[8] J.W.S. Liu, Real-Time Systems, Prentice-Hall, 2000.


