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SUMMARY In equational theorem proving, convergent term rewriting
systems play a crucial role. In order to compute convergent term rewriting
systems, the standard completion procedure (KB) was proposed by Knuth
and Bendix and has been improved in various ways. The multi-completion
system MKB developed by Kurihara and Kondo accepts as input a set of
reduction orders in addition to equations and efficiently simulates parallel
processes each of which executes the KB procedure with one of the given
orderings. Wehrman and Stump also developed a new variant of completion
procedure, constraint-based completion, in which reduction orders need
not be given by using automated modern termination checkers. As a result,
the constraint-based procedures simulate the execution of parallel KB pro-
cesses in a sequential way, but naive search algorithms sometimes cause
serious inefficiency when the number of the potential reduction orders is
large. In this paper, we present a new procedure, called a constraint-based
multi-completion procedure MKBcs, by augmenting the constraint-based
completion with the framework of the multi-completion for suppressing
the combinatorial explosion by sharing inferences among the processes.
The existing constraint-based system Slothrop, which basically employs
the best-first search, is more efficient when its built-in heuristics for pro-
cess selection are appropriate, but when they are not, our system is more
efficient. Therefore, both systems have their role to play.
key words: equational theorem proving, term rewriting system, Knuth-
Bendix completion, multi-completion, constraint-based multi-completion

1. Introduction

Term rewriting systems [2], [4], [8], [16] play an important
role in various areas, such as automated theorem proving,
functional and logic programming languages, and algebraic
specification of abstract data types. In many applications,
termination and confluence are crucially important proper-
ties of term rewriting systems. A term rewriting system
which has both of these properties is said to be convergent.

In order to compute a convergent term rewriting sys-
tem, the standard completion procedure (KB) was proposed
by Knuth and Bendix [9] and has been improved in various
ways [3]. Given a set of equations E0 (or rewrite rules R0)
and a reduction order on a set of terms, the procedure tries to
generate a convergent term rewriting system which is equa-
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tionally equivalent to E0 (or R0) by adding or modifying
rewrite rules. The reduction orders are used for orienting
the equations (either from left to right or from right to left)
in order to ensure the termination of the resultant systems.
The success of the procedure heavily depends on the choice
of the reduction order to be supplied. Such a choice is of-
ten difficult for general users to make unless they have good
insight in termination proof techniques. Unfortunately, one
cannot try out potentially-appropriate reduction orders one
by one (sequentially), because one of those runs may lead to
infinite, divergent computation and prohibit the exploration
of the remaining possibilities.

Kurihara and Kondo [10] partially solved this problem
by developing a completion procedure called MKB, which,
accepting as input a set of reduction orders as well as equa-
tions, efficiently simulates (in a single process) parallel ex-
ecution of KB procedures each working with one of those
orders. The key idea is the development of the data struc-
ture for storing a pair s : t of terms associated with the in-
formation to show which processes contain the rule s → t
(or t → s) and which processes contain the equation s ≈ t.
This structure makes it possible to define a meta-inference
system for MKB that effectively simulates a lot of closely-
related inferences made in different processes all in a single
operation. We call this type of procedure a multi-completion
procedure.

As another approach to this problem, Wehrman, Stump
and Westbrook [18] developed a new procedure in which no
orders need to be provided by the users. The idea is that the
procedure keeps constraints (a set of rewrite rules) on re-
duction orders and checks the existence of a reduction order
satisfying those constraints by using an external automated
termination checker. Using the state-of-the-art, modern ter-
mination checkers, the procedure can be virtually supplied
with the richest family of mechanically-checkable reduction
orders and can solve the widest variety of completion prob-
lems. This is true at least theoretically, but in reality, there is
an inefficiency problem caused by the combinatorial explo-
sion. Unlike the standard completion, the constraint-based
procedures should orient the equations in both directions
(for example, by using the breadth-first search) in order to
ensure the completeness of the search algorithm. This often
causes the exponential increase in the number of reduction
orders before creating the solution.

In this paper, we present a new multi-completion pro-
cedure MKBcs by combining MKB with the constraint-

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



SATO et al.: CONSTRAINT-BASED MULTI-COMPLETION PROCEDURES FOR TERM REWRITING SYSTEMS
221

based completion procedures. The inference rules of
MKBcs are almost the same as MKB, but the semantics of
“processes” are totally different and we have had to develop
a special scheme for encoding the indexes of the dynami-
cally created processes. The most notable feature of MKBcs
can be seen in its Orient rule, which can virtually orient an
equation in both directions in parallel in some (often many)
processes simulated by the procedure. This mechanism to-
gether with the framework of MKB and appropriate heuris-
tics for choosing the most promising processes turns out to
be most effective for suppressing the combinatorial explo-
sion. The experimental results show that the performances
of MKBcs and Slothrop, the existing constraint-based sys-
tem, are incomparable. Actually, MKBcs has solved some
problems more efficiently than Slothrop.

The paper is organized as follows. We review the
multi-completion in Sect. 2 and the constraint-based com-
pletion in Sect. 3. In Sect. 4, we present MKBcs and estab-
lish its soundness and completeness. In Sect. 5, we present
a variant of MKBcs suitable for using the dependency-pair
method for termination checking. In Sect. 6, we discuss the
implementation, and in Sect. 7, we report the results of the
experiments and discuss the effectiveness of the new pro-
cedure. Sect. 8 contains the conclusion and possible future
work.

2. Multi-Completion Procedures

Given a set E0 of equations and a reduction order �, the
standard completion procedure KB tries to compute a con-
vergent set Rω of rewrite rules that is contained in � and that
induces the same equational theory as E0.

Starting from the initial state (E0,R0), where R0 = ∅,
the procedure obeys the inference system defined in Fig. 1
to generate a sequence (E0,R0) � (E1,R1) � · · · of deduc-
tion†. The role of each inference rule is as follows. Delete
removes a trivial equation. Orient takes from E an equation
that can be oriented by the reduction order �, and adds the
resultant rule to R. Simplify reduces an equation using R.
Compose reduces the right-hand side of a rule. Collapse re-
duces the left-hand side of a rule and adds the result as an
equation to E, where � in the rule is the encompassment or-
der, i.e. s � l iff some subterm of s is an instance of l but
not vice versa. Deduce adds a critical pair in R to E as an
equation.

Let S = (E0,R0) � (E1,R1) � . . . be a (finite or infinite)
deduction sequence of KB. An equation s ≈ t is persisting if
there exists i(i ≥ 0) such that for all j( j ≥ i),s ≈ t ∈ E j. The
set of all persisting equations is denoted by Eω. Similarly, a
rewrite rule s → t is persisting if there exists i(i ≥ 0) such
that for all j( j ≥ i), s → t ∈ R j. The set of all persisting
rewrite rules is denoted by Rω. We say that the sequence
S is successful if Eω is empty and Rω is convergent; S is
failing if Eω is nonempty; and S is fair if every critical pair
ofRω belongs to some E j( j ≥ 0). A completion procedure is
correct if it generates only successful or failing sequences.
It is known that this condition holds iff it generates only fair

Fig. 1 Inference rules of KB.

or failing sequences.
A multi-completion procedure accepts as input a finite

set O = {�1, . . . ,�m} of reduction orders as well as a set
E0 of equations. The mission of the procedure is basically
the same as KB: it tries to compute a convergent set Rω of
rewrite rules that is contained in some �i and that induces
the same equational theory as E0. To achieve this mission,
the multi-completion procedure simulates the execution of
m parallel processes P = {P1, . . . , Pm}, with Pi executing
KB for the reduction order �i and the common input E0.

For efficient simulation of multiple processes, the
multi-completion procedure MKB developed in [10] ex-
ploits the data structure called nodes and represents the state
of the procedure by a set of nodes. Let I = {1, 2, . . . ,m} be
the set of indexes for orders in O (also for processes in P). A
node is a tuple 〈s : t,R0,R1, E〉, where s : t (called a datum)
is an ordered pair of terms, and R0,R1, and E (called labels)
are subsets of I satisfying the following condition (called
label condition):

• R0 ∩ R1 = R1 ∩ E = E ∩ R0 = ∅ and
• i ∈ R0 implies s �i t, and i ∈ R1 implies t �i s.

Intuitively, R0 (R1) denotes the set of indexes of pro-
cesses in which the current set of rules contains a rule s→ t
(t → s). Similarly, E denotes the set of indexes of processes
in which the current set of equations contains an equation
s ≈ t. The node 〈s : t,R0,R1, E〉 is considered to be identi-
cal with the node 〈t : s,R1,R0, E〉.

The MKB procedure is defined by the inference system
working on a set N of nodes, as given in Fig. 2, where the
relation t � l in Rewrite-1 means that t is an instance of
l and vice versa: i.e., t and l are syntactically the same up
to renaming variables. Delete, Orient, and Deduce simu-
late the corresponding inference rules of KB, respectively.
Rewrite-1 simulates the Simplify and Compose rules of KB.
Rewrite-2 simulates the Simplify, Compose, and Collapse
rules of KB. Gc and Subsume are called optional rules: they
do not necessarily simulate KB, but can affect the efficiency
of MKB. Starting from the initial set of nodes,

N0 = {〈s : t, ∅, ∅, I〉 | s ≈ t ∈ E0},
†In practice, the set union in the left-hand side of the inference

rules should be interpreted as the disjoint union, as explicitly de-
noted by the symbol ∪′ in [8]. In a theoretical setting, however,
most authors prefer the symbol ∪, as there is no problem (at least
theoretically) if it is interpreted as the standard union.
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Fig. 2 Inference rules of MKB.

the procedure generates a sequence N0 � N1 � · · · . In the
semantics of MKB, the following definition of projections
relates the information on nodes to the states of processes.

Definition 2.1: Let n = 〈s : t,R0,R1, E〉 be a node and
i ∈ I be an index. The E-projection E[n, i] of n onto i is a
(singleton or empty) set of equations defined by

E[n, i] =

{ {s ≈ t}, if i ∈ E,
∅, otherwise.

Similarly, the R-projection R[n, i] of n onto i is a set of rules
defined by

R[n, i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{s→ t}, if i ∈ R0,
{t → s}, if i ∈ R1,
∅, otherwise.

The definitions above are extended for a set N of nodes, as
follows:

E[N, i] =
⋃
n∈N
E[n, i], R[N, i] =

⋃
n∈N
R[n, i]

Intuitively, E[N, i] (R[N, i]) denotes the set of equations
(rewrite rules) contained in the simulated process Pi, when
the state of MKB is N.

If, for some N and i, E[N, i] is empty and all critical
pairs of R[N, i] have been created, MKB returns R[N, i] as
the final result, as the semantics of MKB shows that it is
the convergent system obtained from the successful KB se-
quence computed by the process Pi. In this case, we call

the index i the successful index. The notions of fairness and
correctness are discussed in [10]. We illustrate a sample ex-
ecution of MKB in the following example.

Example 2.2: Let E0 = {a ≈ b, b ≈ c} and O = {�1

, . . . ,�4} where each reduction order is a partial order on
{a, b, c} induced by the following specification.

a �1 b �1 c a �2 b, c �2 b
b �3 a �3 c b �4 a, c �4 a

Let I = {1, . . . , 4}. The initial set of nodes is

N0 = {n1 = 〈a : b, ∅, ∅, I〉, n2 = 〈b : c, ∅, ∅, I〉}.
By applying Orient to n1 (in both directions), we obtain

N1 = {n′1 = 〈a : b, {1, 2}, {3, 4}, ∅〉, n2}.
By applying Rewrite-1 to n2 using b → a (from n′1) as a
rewrite rule, we obtain

N2 = {n′1, n′2 =〈b : c, ∅, ∅, {1, 2}〉,
n3 =〈a : c, ∅, ∅, {3, 4}〉}.

This means that in the processes P3 and P4, the equation
b ≈ c has been reduced to a ≈ c. By applying Orient to n′2,
we obtain

N3 = {n′1, n′′2 = 〈b : c, {1}, {2}, ∅〉, n3}.
At this point, the state of the process P2 is (E[N3, 2],R[N3, 2])
= (∅, {a→ b, c→ b}). Since E[N3, 2] is empty and R[N3, 2]
is convergent, MKB returns R[N3, 2] as the result.

For the convenience of the interested readers, we con-
tinue the execution of the procedure. By applying Rewrite-
1 to n′1 using b→ c (from n′′2 ) as a rewrite rule, followed by
the application of Subsume to n3 and a temporarily-created
node 〈a : c, {1}, ∅, ∅〉, we obtain

N4 = {n′′1 =〈a : b, {2}, {3, 4}, ∅〉, n′′2 ,
n′3 =〈a : c, {1}, ∅, {3, 4}〉}.

At this point, P1 have succeeded in obtaining another con-
vergent system {a → c, b → c}. By applying Orient to n′3,
we obtain

N5 = {n′′1 , n′′2 , n′′3 = 〈a : c, {1, 3}, {4}, ∅〉}.
At this point, P4 have succeeded in obtaining yet another
result {b→ a, c→ a}.

3. Completion Procedures with Constraint Systems

Wehrman, Stump, and Westbrook proposed a new comple-
tion procedure which requires no reduction orders as in-
put [18]. We call this procedure KBcs. KBcs ensures the
termination of the generated systems using a termination
checker instead of the given reduction order. In order to
check the existence of a reduction order for ensuring the
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Fig. 3 Inference rules of KBcs.

termination, the procedure keeps a constraint system, rep-
resented by a set of rewrite rules consisting of all previously
added rewrite rules, because checking the termination of
only the current R results in an unsound system [14]. Sup-
pose an equation is orientable in both directions. Such a
situation never arises in KB, but in KBcs, the system can
orient the equation in either direction. This choice is non-
deterministic, but in practical implementations, the system
should eventually orient the equation in both directions in
order to ensure the completeness of the search algorithm.

KBcs is defined by the inference system in Fig. 3 work-
ing on a triple (E,R,C), where E is a set of equations, and
R and C are sets of rewrite rules. We write (E,R,C) �KBcs

(E′,R′,C′) if the latter is obtained from the former by one
application of an inference rule of KBcs. The constraint sys-
tem C accumulates rewrite rules each time an equation is
oriented, but unlike R, it never removes any rewrite rules if
a rule is removed from R in Compose or Collapse. If C is
terminating, the transitive closure of the reduction relation
→+C is a reduction order containing R.

KBcs has two advantages over KB. First, KBcs need
not force the users to input any reduction orders. Instead
of using reduction orders explicitly, KBcs implicitly con-
structs the reduction order→+C by checking the termination
of C. KBcs can benefit from various fully-automated termi-
nation checkers for checking the termination. Second, KBcs
can exploit modern termination proving methods such as
the dependency-pair method. Classical termination proving
methods are based on the local orientation check for each
rewrite rule with the given reduction order. This simplifies
the Orient inference rule in the classical completion proce-
dures. Some modern termination proving methods, on the
other hand, have an ability of global termination analysis
that considers structural relationship among rewrite rules.
This often makes the modern methods more powerful than
the classical methods in terms of termination proving abili-
ties. Of course, the modern methods tend to take more time
than the classical methods, but this is due to the fact that the
modern methods typically call the classical methods (many
times); so what really costs time within the modern methods
are the classical methods. Note, however, that the ability of
global termination analysis can be a disadvantage for com-
pletion, because we cannot reuse a termination proof for R

when proving termination of R∪ {s→ t}. In order to reduce
the difficulty caused by this disadvantage, we will present
a special inference system based on the dependency-pair
method in Sect. 5 and a technique for caching termination
conditions in Sect. 6.2.

For finite execution, KBcs is sound, but for infinite ex-
ecution, KBcs may be unsound because termination of each
intermediate constraint system Ci does not imply termina-
tion of their union

⋃
i≥0 Ci [18]. However, KBcs is complete

in the sense that if a successful KB sequence exists, KBcs
can simulate it.

Since KBcs is unsound for infinite execution, we only
consider finite execution. Let S = (E0,R0,C0) �KBcs

(E1,R1,C1) �KBcs . . . �KBcs (En,Rn,Cn) be a finite deduc-
tion sequence of KBcs. By removing the constraint sys-
tems, we can obtain the deduction sequence S ′ = (E0,R0) �
(E1,R1) � · · · � (En,Rn) of KB. We say that S is successful
(failing, fair) if S ′ is successful (failing, fair). A comple-
tion procedure of KBcs is correct if it generates only fair or
failing sequences of KBcs.

4. Constraint-Based Multi-Completion Procedures

In this section we present a new procedure MKBcs which
simulates multiple execution of KBcs in the framework of
MKB.

4.1 Basic Idea

As described in the previous section, KB orients an equa-
tion in the direction determined by the given reduction or-
der, but KBcs can orient the equation in either direction and
this decision is non-deterministic. Thus, in terms of the tree-
search algorithms, we have two branches to explore. When
the completeness of the search algorithms is required, we
can think of at least two types of major implementation
schemes for the non-determinism, based on the so-called
“don’t know” non-determinism and the “don’t care” non-
determinism. In the “don’t know” non-determinism, the
procedure is implemented as a single sequential process
which explores an arbitrary branch for the moment but can
backtrack to this decision point later in order to explore the
other branches. Slothrop [18] is such an implementation
based on the best-first search (rather than the backtracking
or the depth-first) strategy in connection with a cost function
that evaluates tree nodes in order to determine which branch
to explore next.

In the “don’t care” non-determinism, on the other hand,
the procedure is implemented as a single sequential process
which explores an arbitrary branch and never backtracks.
If the completeness is required, the overall system should
be implemented as a set of concurrent processes which cor-
respond one-to-one with the set of branches. Each process
commits itself to exploring the given branch and never back-
tracks. Combined with a fair scheduler for the execution of
processes, the search procedure is ensured to be complete.
The semantics of MKBcs we will present in this section is
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based on this non-determinism.
In reality, the multi-completion procedure MKBcs

never creates multiple concurrent processes but only sim-
ulates a part of their concurrent execution efficiently in a
single process. To capture the general idea intuitively, con-
sider a process P1 executing KBcs based on the “don’t care”
non-determinism. Let (E ∪ {s ≈ t},R,C) be the current state
of the process P1 and suppose that P1 is about to make a de-
cision on the orientation of the equation s ≈ t which can be
oriented in both directions. In this situation, we assume that
P1 splits itself into two processes P2 and P3. More exactly,
after the split operation, P1 will vanish, P2 will start from
the initial state (E,R ∪ {s → t},C ∪ {s → t}), and P3 will
start from (E,R ∪ {t → s},C ∪ {t → s}). P1 is called the
parent of P2 and P3, and P2 and P3 are called the children
of P1.

This computation can be simulated by the framework
of the multi-completion in a way similar to MKB, except
that the interpretation of the notion of “processes” should
be different. In the semantics of MKB, a “process” means a
computational process which, for a given reduction order,
generates a KB deduction sequence. In the semantics of
MKBcs, however, it means one which, for a given branch,
generates a (part of) KBcs deduction sequence based on the
“don’t care” non-determinism. Another difference is that in
MKB the number of processes is fixed by the number of the
given reduction orders, while in MKBcs the number of pro-
cesses is variable because of the dynamic nature of process
creation. This affects the representation of indexes for pro-
cesses. In MKB, each process is identified with a natural
number, called the index. In MKBcs, however, each process
is identified with a bit string, say, b1b2 . . . bn. The bit string
is also called the index in MKBcs. If the process with the
index b1b2 . . . bn has two children, their indexes are defined
to be b1b2 . . . bn0 and b1b2 . . . bn1, respectively. With this
notation, we can obtain the index of the parent process by
removing the rightmost bit of the children.

Let us illustrate how MKBcs can simulate the splitting
of processes. In MKBcs, a node structure is extended to
a 6-tuple 〈s : t,R0,R1, E,C0,C1〉, where s : t is a pair of
terms (as in MKB) and the labels R0, R1, E, C0, and C1 are
sets of indexes (bit strings) of processes. The purpose of
the labels is almost the same as that of the labels in MKB
except that the interpretation of processes are different (as
discussed before) and we have introduced new labels C0 and
C1 for keeping constraint systems. Suppose the system has
a process P1 (with the index 1) which is to be split into two
processes P10 and P11 (with the indexes 10 and 11, respec-
tively) when orienting an equation s ≈ t. The splitting is
simulated by the following operations on nodes in MKBcs.
First, we modify the target node 〈s : t,R0,R1, E∪{1},C0,C1〉
to 〈s : t,R0 ∪ {10},R1 ∪ {11}, E,C0 ∪ {10},C1 ∪ {11}〉. This
ensures that the process P10 contains the rewrite rule s → t,
the process P11 contains t → s, and the process P1 vanishes.
Moreover, for each node other than the target node, we re-
place the index 1 in all the labels by two indexes 10 and 11.
For example, the node 〈a : b,R0 ∪ {1},R1, E,C0 ∪ {1},C1〉

is modified to 〈a : b,R0 ∪ {10, 11},R1, E,C0 ∪ {10, 11},C1〉.
This ensures that the equations and rewrite rules contained
in the process P1 are also contained in the processes P10 and
P11.

4.2 Bit String Encoding for Process Indexes

Let us formally define the bit string encoding for indexes.
Let P be the set of all bit strings. We will associate each
KBcs process with an element of P in the following way,
and in the rest of the papers, identify processes (previously
denoted by Pb1b2...bn ) with their indexes (the bit strings). We
assume that KBcs starts with the initial process denoted by
the empty bit string ε. Let p be (the index of) a KBcs process
and suppose p is to be split into two children when orienting
an equation. We define the indexes of those children as p0
and p1 by concatenating p with a bit 0 and 1, respectively.
In the process p0(p1), the equation is oriented from left to
right (from right to left) and we add the resultant rewrite rule
to the current constraint system.

One may imagine a binary tree to intuitively understand
the encoding. Each process corresponds to a leaf of the tree,
and each leaf is associated with a bit string showing how one
can get there from the root by following the bits on outgoing
edges one by one at each non-terminal node (go left if the
bit is 0 and go right otherwise).

When p = b1b2 . . . bn is a bit string, the strings
b1b2 . . . b j( j ∈ {0, 1, . . . , n}) are called the prefixes of p. In
particular, the empty bit string ε (for j = 0) is a prefix of p.
The prefixes other than p are proper prefixes.

The concatenation of a bit string p and a bit b is de-
noted by pb. Conversely, we define the cut function by
cut(pb) = p and cut(ε) = ε.

This idea of encoding processes by bit strings is for-
mally described in the notion of well-encoding defined as
follows.

Definition 4.1 (well-encoding): A set of bit strings Q is
well-encoded if for every p ∈ Q, Q contains no proper pre-
fixes of p.

For example, Q = {0, 10, 11} is a well-encoded set. The
following proposition shows two basic properties of well-
encodings. The easy proofs are omitted.

Proposition 4.2: Let Q be a well-encoded set. Then:

(1) Every subset of Q is well-encoded.
(2) If p ∈ Q, then p0 � Q and p1 � Q.

The second part of this proposition ensures that we
can create a fresh bit string (for representing an index for
a dynamically-created new process) by the concatenation of
p ∈ Q and a bit. By using this property, we can introduce an
operation for splitting a process as follows.

Definition 4.3 (splitting): Let Q be a well-encoded set and
p be a bit string. Then we define the function splitp(Q) as
follows.
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splitp(Q) =

{
Q \ {p} ∪ {p0, p1}, if p ∈ Q
Q otherwise

Note that the two sets Q \ {p} and {p0, p1} are disjoint,
by Proposition 4.2 (2).

Let P be a well-encoded set. Then the definition above
is extended to the function splitP(Q) defined as follows.

splitP(Q) = Q \ P ∪ {p0, p1 | p ∈ P ∩ Q}
Note that only the bit strings contained in both P and Q

are removed from Q and split into two fresh strings. The re-
maining strings of Q are still contained in splitP(Q). For
example, if P = {0, 10, 111} and Q = {0, 10, 110}, then
splitP(Q) = {00, 01, 100, 101, 110}.

In the binary tree interpretation, splitting corresponds
to the operation of attaching two children p0 and p1 to the
leaf p of the tree associated with Q (if p ∈ Q). The follow-
ing lemma ensures that splitting preserves the well-encoding
property.

Lemma 4.4: If Q is well-encoded, then splitp(Q) is well-
encoded.

Proof. The case p � Q is trivial. Consider the case p ∈ Q
and suppose Q is well-encoded. Then Q contains no proper
prefixes of p. By the definition, splitp(Q) does not contain
p. Therefore, splitp(Q) contains no proper prefixes of p0
and p1. Thus if splitp(Q) were not well-encoded, splitp(Q)
would contain a proper prefix q of some q′ ∈ Q \ {p}. Since
Q \ {p} is well-encoded, q must be either p0 or p1. How-
ever, this implies that p is a proper prefix of q′ ∈ Q. This
contradicts our assumption that Q is well-encoded. �

This lemma can be easily lifted to the general case as
follows.

Lemma 4.5: Let P be a set of bit strings. If Q is well-
encoded, then splitP(Q) is well-encoded.

The ancestor function defined below is needed for
rewinding the splitting operation.

Definition 4.6 (ancestor function): Let q be a bit string and
P be a set of bit strings. The direct ancestor of q with respect
to P is defined by

ancP(q) =

{
cut(q) if cut(q) ∈ P

q otherwise

The following two lemmas are just technical and used
in some proofs later (often implicitly).

Lemma 4.7: Let Q be well-encoded and P ⊆ Q. Then
q ∈ Q⇒ ancP(q) = q.

Proof. Since Q is well-encoded, if q ∈ Q, then cut(q) � Q,
thus cut(q) � P. Therefore, ancP(q) = q. �

Lemma 4.8: Let Q be well-encoded and P ⊆ Q. Then

(1) q ∈ splitP(Q)⇒ ancP(q) ∈ Q for all bit strings q.
(2) ancP(q) ∈ Q⇒ q ∈ splitP(Q) for all q � P.

Proof. (1) If ∃p ∈ P such that q ∈ {p0, p1}, then cut(q) =
p ∈ P, thus ancP(q) = p ∈ Q. Otherwise, we have q ∈ Q
and ancP(q) = q ∈ Q by Lemma 4.7.

(2) If ∃p ∈ P such that q ∈ {p0, p1}, then ancP(q) = p
and splitP(Q) contains both p0 and p1, so q ∈ splitP(Q).
Otherwise, we have ancP(q) = q and q ∈ Q. From the
assumption q � P, we have q ∈ splitP(Q). �

4.3 MKBcs

In order to develop MKBcs in the framework of MKB, we
extend the definition of the node structure by adding two
labels C0,C1 for keeping constraint systems.

Definition 4.9 (node): A node n in MKBcs is a 6-tuple
〈s : t,R0,R1, E,C0,C1〉, where the labels R0, R1, E,C0, and
C1 are well-encoded sets of bit strings satisfying the follow-
ing label condition:

• (R0 ∪C0) ∩ (R1 ∪C1) = ∅
• E ∩ (R0 ∪ R1 ∪C0 ∪C1) = ∅

We denote a node by n and a set of nodes by N, and
assume n = 〈s : t,R0,R1, E,C0,C1〉 unless explicitly speci-
fied. The node n is considered to be identical with the node
〈t : s,R1,R0, E,C1,C0〉. We denote the set of bit strings
(representing processes) R0 ∪R1 ∪ E ∪C0 ∪C1 occurring in
a node n by P(n) and define P(N) =

⋃
n∈N P(n).

Definition 4.10 (E- and R-projections): Let N be a set of
nodes, and p a process (a bit string). The E- and R-
projections of N onto p are defined as follows:

E[N, p] =
⋃
n∈N
E[n, p]

E[n, p] =

{ {s ≈ t}, if p ∈ E,
∅, otherwise.

R[N, p] =
⋃
n∈N
R[n, p]

R[n, p] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{s→ t}, if p ∈ R0,
{t → s}, if p ∈ R1,
∅, otherwise.

Definition 4.11 (C-projection and constraints): Let N be a
set of nodes, and p a process (a bit string). The C-projection
C[N, p] of N onto p is defined as follows:

C[N, p] =
⋃
n∈N
C[n, p]

C[n, p] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{s→ t}, if p ∈ C0,
{t → s}, if p ∈ C1,
∅, otherwise.

A process p satisfies the constraints in N if C[N, p] is termi-
nating. A set of nodes N satisfies the constraints if for all p
in P(N), C[N, p] is terminating.
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Fig. 4 Inference rules of MKBcs.

The C-projection C[N, p] computes the constraint sys-
tem maintained in the process p. The definition 4.3 of the
split function is extended for a node n and a set of nodes N
as follows.

splitP(n) = 〈s : t, splitP(R0), splitP(R1),

splitP(E), splitP(C0), splitP(C1)〉
splitP(N) = {splitP(n) | n ∈ N}
Based on this notation, the inference rules of MKBcs

are given in Fig. 4. MKBcs works on a set of extended
nodes. The general idea is almost the same as MKB, and
as in MKB, the Gc and Subsume rules are optional rules.
The key change lies in the Orient rule. This rule works
as follows. The system focuses attention on a node n and
for each process p in the E label of n, it tries to orient the

equation s ≈ t (stored in n as a datum) while satisfying the
constraints. More precisely, if C[N, p]∪ {s→ t} is terminat-
ing, p is collected in a set Elr. Similarly, if C[N, p]∪{t → s}
is terminating, p is collected in Erl. Then P = Elr ∩ Erl de-
notes the set of processes in which the equation is orientable
in both directions. All of such processes p are split into p0
and p1 for orienting from left to right and vice versa. Fi-
nally, a new node n′ is created by modifying the labels of
n. The processes Elr ∪ Erl are removed from the E label,
and the processes Rlr (Rrl) in which the equation is oriented
from left to right (from right to left) are added to the R0 and
C0 (R1 and C1) labels.

Let N and N′ be two sets of nodes. We write N �MKBcs

N′ if the latter is obtained from the former by one appli-
cation of an inference rule of MKBcs. Given a set E0

of equations, MKBcs starts from the initial set of nodes
N0 = {〈s : t, ∅, ∅, {ε}, ∅, ∅〉 | s ≈ t ∈ E0} since we start with
the single (root) process denoted by the empty bit string ε.
MKBcs generates a sequence N0 �MKBcs N1 �MKBcs · · · . Let
N be a state of the generation process (i.e., N = Ni for some
i). MKBcs keeps the following conditions invariant.

• P(N) is a well-encoded set.
• Every node of N satisfies the label condition.
• N satisfies the constraints.

The proofs are straightforward by using the following
lemmas and induction. (The easy proofs are omitted.)

Lemma 4.12: If N �MKBcs N′ and P(N) is well-encoded,
then P(N′) is also well-encoded.

Lemma 4.13: If N �MKBcs N′ and every node of N satisfies
the label condition, then every node of N′ also satisfies the
label condition.

Lemma 4.14: If N �MKBcs N′ and N satisfies the con-
straints, then N′ also satisfies the constraints.

If a process p has succeeded in obtaining a convergent
system at a state N, that is, E[N, p] is empty and all critical
pairs of R[N, p] have been created, MKBcs can return the
convergent system R[N, p] as the final result. In this case,
we call the process (index) p the successful index. Let us
illustrate a sample execution of MKBcs.

Example 4.15: Let E0 = {a ≈ b, b ≈ c}. The initial set of
nodes is

N0 = {n1 = 〈a : b, ∅, ∅, {ε}, ∅, ∅〉,
n2 = 〈b : c, ∅, ∅, {ε}, ∅, ∅〉}.

By applying Orient to n1, we obtain:

N1 = {n′1 = 〈a : b, {0}, {1}, ∅, {0}, {1}〉,
n′2 = 〈b : c, ∅, ∅, {0, 1}, ∅, ∅〉}

By applying Rewrite-1 to n′2 using b → a (from n′1) as a
rewrite rule, we obtain:

N2 = {n′1,n′′2 = 〈b : c, ∅, ∅, {0}, ∅, ∅〉,
n3 = 〈a : c, ∅, ∅, {1}, ∅, ∅〉}
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By applying Orient to n′′2 , we obtain:

N3 = {n′′1 = 〈a : b, {00, 01}, {1}, ∅, {00, 01}, {1}〉,
n′′′2 = 〈b : c, {00}, {01}, ∅, {00}, {01}〉, n3}

At this point, we see that E[N3, 01] = ∅ and no critical pairs
can be created from R[N3, 01] = {a → b, c → b}. There-
fore, P01 have succeeded in obtaining the convergent system
R[N3, 01].

We only present a brief sketch of the proof of the
soundness of the Orient rule. The soundness means that the
Orient rule of MKBcs correctly simulates the Orient rule
of KBcs in some processes q and has no effect on other pro-
cesses. This situation is described in the following lemma
by introducing the symbol �=KBcs for denoting the reflexive
closure of �KBcs.

Lemma 4.16 (Soundness of Orient):
If N �MKBcs N′ by the Orient rule, then there exists P ⊆
P(N) such that for all q′ ∈ P(N′),

(E[N, q],R[N, q],C[N, q]) �=KBcs

(E[N′, q′],R[N′, q′],C[N′, q′])

where q = ancP(q′).

Proof. In this proof, we use the symbol Ni for referring to
N in the Orient rule. Taking Elr, Erl, P, Rlr, Rrl and E′
as specified in the Orient rule, we let N = Ni ∪ {n},N′ =
splitP(Ni) ∪ {n′}, n = 〈s : t,R0,R1, E,C0,C1〉 and n′ = 〈s :
t,R0 ∪ Rlr,R1 ∪ Rrl, E′,C0 ∪ Rlr,C1 ∪ Rrl〉. By the definition
of E-projection,

E[N, q] = E[Ni, q] ∪ E[n, q]

and

E[N′, q′] = E[splitP(Ni), q
′] ∪ E[n′, q′].

Since equations other than s ≈ t (stored as a datum of n) are
untouched, they are preserved in all processes, thus formally
we have

E[Ni, q] = E[splitP(Ni), q
′].

(By the way, this is true if Ni contains another node with
datum s : t.) We denote this set by E. Likewise, R[Ni, q] =
R[splitP(Ni), q′] and C[Ni, q] = C[splitP(Ni), q′] and we de-
note them by R and C, respectively. Then the inference we
should verify for this lemma is written as

(E ∪ E[n, q],R ∪ R[n, q],C ∪ C[n, q]) �=KBcs

(E ∪ E[n′, q′],R ∪ R[n′, q′],C ∪ C[n′, q′]).

We consider three cases:
(Case 1) We assume q′ ∈ Rlr. This implies that

R[n′, q′] = C[n′, q′] = {s → t} and E[n′, q′] = ∅. We will
show that q = ancP(q′) ∈ E. By q′ ∈ Rlr, either q′ ∈ Elr \Erl

or q′ ∈ {p0, p1 | p ∈ P} must hold. If q′ ∈ Elr \ Erl then

ancP(q′) = q′, thus we have q = q′ and q ∈ Elr ⊆ E. On
the other hand, if q′ = pb for some p ∈ P and a bit b, then
q = ancP(q′) = p ∈ P ⊆ E. Therefore, in either case, we
have q ∈ E, and thus E[n, q] = {s ≈ t}, R[n, q] = C[n, q] = ∅.
It follows that MKBcs has simulated the KBcs inference

(E ∪ {s ≈ t},R,C) �KBcs

(E,R ∪ {s → t},C ∪ {s → t}),
and C ∪ {s→ t} is terminating since q′ ∈ Rlr.

(Case 2) We assume q′ ∈ Rrl. In this case, we can
follow the arguments similar to Case 1 to verify that (E∪{s ≈
t},R,C) �KBcs (E,R ∪ {t → s},C ∪ {t → s}) and C ∪ {t → s}
is terminating.

(Case 3) We assume q′ � (Rlr ∪ Rrl). This is
combined with q′ � P to get q′ � (Elr ∪ Erl) and
q′ � {p0, p1 | p ∈ P}. From the last condition, we
see that ancP(q′) = q′ and thus q = q′. Therefore,
E[n, q] = E[n′, q′], R[n, q] = R[n′, q′] and C[n, q] =
C[n′, q′]. It follows that (E[N, q],R[N, q],C[N, q]) =
(E[N′, q′],R[N′, q′],C[N′, q′]). �

We have implicitly used the ancestor function ancP(q)
for relating the processes before and after the application of
the Orient rule so far. Note, however, that it may be also
associated with other rules without the splitting operation,
because by setting P = ∅, we have ancP(q) = q. Actually,
before and after the application of those rules, the indexes of
the processes should be unchanged. The following two theo-
rems exploit this extension to make the descriptions concise.

Theorem 4.17 (Soundness of MKBcs):
If N �MKBcs N′, then there exists a set P ⊆ P(N) such that
for all p′ ∈ P(N′),

(E[N, p],R[N, p],C[N, p]) �=KBcs

(E[N′, p′],R[N′, p′],C[N′, p′])

where p = ancP(p′). The strict part, �KBcs, holds for at least
one p′ if the employed rule is not optional.

Theorem 4.18 (Completeness of MKBcs):
If (E[N, p],R[N, p],C[N, p]) �KBcs (E′,R′,C′), then there
exists a set N′ of nodes, P ⊆ P(N), and p′ ∈ P(N′) such
that p = ancP(p′), E′ = E[N′, p′],R′ = R[N′, p′],C′ =
C[N′, p′], and N �MKBcs N′.

Finally, we discuss the fairness of MKBcs. Since KBcs
is unsound for infinite execution, we only consider finite
execution of MKBcs. Let S = N0 �MKBcs N1 �MKBcs

· · · �MKBcs Nn be a finite deduction sequence of MKBcs. By
using the soundness and the projections, we can obtain a se-
quence S ′ = (E0,R0,C0) �=KBcs (E1,R1,C1) �=KBcs · · · �=KBcs
(En,Rn,Cn), where E j = E[Nj, p j],R j = R[Nj, p j],C j =

C[Nj, p j]( j ∈ {0, 1, . . . , n}), and pj are defined by

p j = ancPj (p j+1)

for some Pj ⊆ P(Nj)( j ∈ {0, 1, . . . , n − 1}) and some pn ∈
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P(Nn). By removing all the equivalent steps (Ei,Ri,Ci) =
(Ei+1,Ri+1,Ci+1), we get a proper deduction sequence S ′′
of KBcs (as described in [10]). Let KBcs[S ] be the set of
all such deduction sequences of KBcs induced from S . We
define the success, failure, and fairness of S as follows:

• S is successful if there exists a successful deduction
sequence in KBcs[S ]. (In this case, the process pn ∈
P(Nn) is called the successful index.)
• S is failing if all deduction sequences of KBcs[S ] are

failing.
• S is fair if there exists a non-failing, fair deduction se-

quence in KBcs[S ].

A procedure for generating deduction sequences of MKBcs
is correct if it generates only fair or failing sequences. Sup-
pose we have a non-failing, fair deduction sequence S of
MKBcs. Then there exists in KBcs[S ] a non-failing, fair
deduction sequence of KBcs. If the sequence ends with an
element (Eω,Rω,Cω) with Eω = ∅, thenRω is the convergent
system, the final result of MKBcs.

5. Constraint-Based Multi-Completion Procedures with
the Dependency-Pair Method

In this section, we present a more efficient variant (referred
to as MKBdp) of MKBcs when we use the dependency-pair
method [1], [7], [12] for termination checking. The empha-
sis is on how we can take advantage of additional node struc-
tures to improve the efficiency of MKBcs.

We begin by reviewing some basic notions on the
dependency-pair method. LetR be a set of rewrite rules over
a set of function symbols Σ, and let Σ# = Σ ∪ { f # | f ∈ Σ}.
If s = f (s1, . . . , sn), then s# = f #(s1, . . . , sn). We denote the
root symbol of a term s by root(s). The set of all defined
symbols of R is defined by D(R) = {root(l) | l → r ∈ R}.
Let S ub(t) be the set of all subterms of t and PS ub(t) be the
set of all proper subterms of t. We define S ubs(t) = S ub(t) \
PS ub(s) and SP(R) = {s → u | s → t ∈ R, u ∈ S ubs(t)}.
The elements of S P(R) are called subterm-pairs. Then the
set of dependency-pairs of R is defined by DP(R) = {s# →
u# | s→ u ∈ SP(R), root(s) ∈ D(R), root(u) ∈ D(R)}.

Now, we introduce new node structures which will turn
out to be helpful for handling dependency pairs.

Definition 5.1 (subterm-pair node): A subterm-pair node
is a pair 〈s → u,Q〉 of a rewrite rule s → u and a set of
bit strings Q (representing processes).

Definition 5.2 (defined-symbol node):
A defined-symbol node is a pair 〈 f ,Q〉 of a function symbol
f and a set of bit strings Q (representing processes).

Intuitively, the subterm-pair node claims that the
rewrite rule s → u is contained in SP(R) of all processes
of Q, and the defined-symbol node claims that f is a defined
symbol in all processes of Q.

Let us define the inference rules of MKBdp working
on a tuple 〈N, S P,D〉, where N is a set of (extended) nodes,

S P is a set of subterm-pair nodes, and D is a set of defined-
symbol nodes. When MKBcs derives N′ from N, MKBdp
derives 〈N′, S P′,D′〉 from 〈N, S P,D〉. In almost all cases,
we define S P′ = S P and D′ = D. The exceptional case is
when the Orient rule has been applied in MKBcs. Suppose
that an equation s ≈ t has been oriented from left to right
to create a rewrite rule s → t in a process p in Rlr. Then
for each subterm u ∈ S ubs(t) of t, we have a subterm-pair
s → u to be added in SP(R). By considering all such pro-
cesses of Rlr, this situation can be represented by the set of
subterm-pair nodes {〈s → u,Rlr〉 | u ∈ S ubs(t)}. Similar
consideration is needed for the case in which a rewrite rule
t → s is created in processes p in Rrl. In addition, we have to
split processes P (in which the equation has been oriented in
both directions, as defined in the Orient rule) stored in the
labels Q of the existing subterm-pair nodes. Combining all
of these operations, we get

S P′ = {〈l→ r, splitP(Q)〉 | 〈l→ r,Q〉 ∈ S P}
∪ {〈s → u,Rlr〉 | u ∈ S ubs(t)}
∪ {〈t → u,Rrl〉 | u ∈ S ubt(s)}

To see how we can maintain the defined-symbol nodes,
suppose again that s → t has been created in a process p
in Rlr. Then the symbol root(s) must be a defined symbol
in the process p. Therefore, we have to look up a defined-
symbol node 〈 f ,Q〉 in D such that f = root(s) and add p
in the label Q. By considering all such processes of Rlr, the
set of processes to be added in the label Q of 〈 f ,Q〉 is Rlr if
f = root(s), and ∅ otherwise. Similarly, we have to consider
the case of the opposite orientation (t → s). In addition,
we have to consider the splitting. Considering all of these
operations, we get

D′ = {〈 f , splitP(Q) ∪ Df (s,Rlr) ∪ Df (t,Rrl)〉
| 〈 f ,Q〉 ∈ D}

where

Df (s,Q) =

{
Q if f = root(s)
∅ otherwise

and other symbols s, t,Rlr,Rrl, and P denote those symbols
defined in the Orient rule.

MKBdp starts from the initial tuple 〈N0, S P0,D0〉
where N0 is the initial set of nodes of MKBcs, S P0 = ∅,
and D0 = {〈 f , ∅〉 | f ∈ Σ}. We write 〈N, S P,D〉 �MKBdp

〈N′, S P′,D′〉 if the latter is obtained from the former by
one application of an inference rule of MKBdp. Let S =
〈N0, S P0,D0〉 �MKBdp 〈N1, S P1,D1〉 �MKBdp · · · �MKBdp

〈Nn, S Pn,Dn〉 be a finite deduction sequence of MKBdp. Let
MKBcs[S ] = N0 �MKBcs N1 �MKBcs · · · �MKBcs Nn be the
deduction sequence of MKBcs obtained by taking the first
elements Ni from each tuple of S . We say that S is success-
ful (fair, failing) if MKBcs[S ] is successful (fair, failing). A
procedure for generating deduction sequences of MKBdp is
correct if it generates only fair or failing sequences. Sup-
pose we have a non-failing, fair deduction sequence S of
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MKBdp. Then there exists in KBcs[MKBcs[S ]] a non-
failing, fair deduction sequence of KBcs. If the sequence
ends with an element (Eω,Rω,Cω) with Eω = ∅, then Rω is
the convergent system, the final result of MKBdp.

We define a projection for relating the state of MKBdp
to the set of dependency-pairs maintained in a process. The
projection DP[S P,D, p] is defined as follows. For each
subterm-pair node 〈s → u, P〉 in S P such that p ∈ P, we
check to see if the root symbols of s and u are the defined
symbols in the process p. This can be checked by looking up
the defined-symbol nodes 〈root(s),Q〉 and 〈root(u),Q′〉 in
D. A dependency-pair s# → u# is collected inDP[S P,D, p]
if and only if p ∈ Q and p ∈ Q′. Thus this procedure is sum-
marized concisely as follows:

DP[S P,D, p] = {s# → u# | 〈s→ u, P〉 ∈ S P,

〈root(s),Q〉 ∈ D, 〈root(u),Q′〉 ∈ D,

p ∈ P ∩ Q ∩ Q′}
Theorem 5.3:
Let 〈N0, S P0,D0〉 �MKBdp 〈N1, S P1,D1〉 �MKBdp · · · be a de-
duction sequence of MKBdp. For every i ≥ 0 and q ∈ P(Ni),
DP(C[Ni, q]) = DP[S Pi,Di, q].

This theorem ensures that we can obtain all
dependency-pairs of all processes by maintaining S P and
D, instead of calculating DP(C[N, p]) from scratch. The
easy proof is omitted.

Example 5.4: Let 〈N, S P,D〉 be the MKBdp state defined
as follows:

N = {n1 = 〈 f (x) : g(h(x)), {0}, {1}, ∅, {0}, {1}〉,
n2 = 〈g(x) : h(x), ∅, ∅, {0, 1}, ∅, ∅〉}

S P = {〈 f (x)→ g(h(x)), {0}〉,
〈 f (x)→ h(x), {0}〉,
〈g(h(x))→ f (x), {1}〉}

D = {〈 f , {0}〉, 〈g, {1}〉, 〈h, ∅〉}
By orienting the node n2, we obtain the state 〈N′, S P′,D′〉
as follows:

N′ = {n′1 = 〈 f (x) : g(h(x)),

{00, 01}, {10, 11}, ∅, {00, 01}, {10, 11}〉,
n′2 = 〈g(x) : h(x),

{00, 10}, {01, 11}, ∅, {00, 10}, {01, 11}〉}
S P′ = {〈 f (x)→ g(h(x)), {00, 01}〉,

〈 f (x)→ h(x), {00, 01}〉,
〈g(h(x))→ f (x), {10, 11}〉,
〈g(x)→ h(x), {00, 10}〉,
〈h(x)→ g(x), {01, 11}〉}

D′ = {〈 f , {00, 01}〉, 〈g, {00, 10, 11}〉, 〈h, {01, 11}〉}

6. Implementation

In this section, we briefly describe our implementation of

Fig. 5 Implementation of MKBcs.

MKBcs. The techniques of caching conditions for reduction
orders are also described.

6.1 Pseudo Code for MKBcs

A possible MKBcs completion procedure is given in Fig. 5
as an imperative pseudo code. The set N of all nodes, which
represents the state of MKBcs, is partitioned into two sets of
nodes: the open set No and the closed set Nc as in [10]. Let
us refer to Delete, Orient, and Gc as the single-node op-
erations, and Rewrite(-1, -2), Deduce, and Subsume as the
double-node operations. The former is applied to a single
node, while the latter to a pair of nodes. Initially, No con-
tains all nodes and Nc is empty. The outer while loop of
Fig. 5 keeps the following conditions invariant.

• Every node in Nc has been fully considered for appli-
cation of the single-node operations.
• Every pair of nodes in Nc has been fully considered for

application of the double-node operations.

Thus the major mission of the loop is to take a node n from
No and apply the single-node operations to it, followed by
the application of the double-node operations with n sup-
plied as an argument. Finally, n is moved to Nc in order to
preserve the loop invariant.

The success(No,Nc) function checks if there exists a
successful process, i.e., a process p such that p is not con-
tained in any labels of No nodes and any E labels of Nc

nodes. If such p exists, the function returns p; otherwise,
it returns false. Note that for such p, R[Nc, p] is the conver-
gent set to be returned from MKBcs.

The choose(No,Nc) function selects a node from No.
The strategy for node selection heavily affects the number
of inference steps required for leading processes to success.
Based on the idea of [18], we define a cost function

cost(E,R,C) = |E| + |CP(R)| + |C|
for evaluating the states (E,R,C) of KBcs processes, where
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CP(R) is the set of all critical pairs of R. In MKBcs, this
function is used to define the cost function for evaluating
the states of processes p ∈ P(N) as follows.

cost(p) = cost(E[N, p],R[N, p],C[N, p])

where N = No ∪ Nc. (Note that choose takes Nc as the sec-
ond argument in order to compute the cost function above,
unlike the choose of [10] with only one argument No.) We
prefer a process p with smaller cost containing unoriented
equations, because processes with smaller cost would have
less possibility of divergence, and the orientation is neces-
sary for executing the inner while loop which contains the
essential inference steps of MKBcs in its body.

Based on this idea, we have developed a cost function
for evaluating nodes as follows.

cost(n) =

{
(minp∈Ecost(p), |s| + |t|) if E � ∅

(∞, |s| + |t|) if E = ∅
where n = 〈s : t, . . . , . . . , E, . . . , . . . 〉, and |s| (|t|) is the num-
ber of occurrences of function symbols and variables in s (t),
respectively. The symbol∞ denotes a natural number which
is large enough to ensure that the nodes with non-empty E
labels are preferred.

Note that the cost of a node n is represented by a pair
of natural numbers. The pairs should be compared in the
lexicographic order of elements (from left to right): when
the first elements are the same, the ties are broken with the
second elements.

The procedure rewrite(N,N′) repeatedly applies
Rewrite(-1,-2) rules to N ∪ N′, rewriting the data of N by
the rules of N′ until no more rewriting is possible. It re-
turns the set of nodes created in those inferences. The la-
bels of the nodes of N are directly modified in order to
have the updated nodes stored in the same memory loca-
tion. For example, when N = {〈a : b, {0, 1}, ∅, ∅,C0,C1〉}
and N′ = {〈b : c, {1}, ∅, ∅,C′0,C′1〉}, the procedure rewrite
modifies N to {〈a : b, {0}, ∅, ∅,C0,C1〉} and returns the result
{〈a : c, {1}, ∅, ∅,C0,C1〉}. The union(N,N′) function com-
putes the union of N and N′ and applies the Subsume rule as
much as possible such that at least one node is taken from
N′. The deduce(n,N) function applies the Deduce rule to
{n}∪N and returns the set of all critical nodes (i.e., the nodes
which capture the critical pairs in some processes) between
n and a node from {n} ∪ N.

The specifications of the procedures described above
are almost the same as those of MKB in [10]. The main
difference lies in the procedure orient(n,No,Nc), which ac-
cepts a node n (containing a datum s : t) together with No

and Nc, and tries to orient the equation s ≈ t for each pro-
cess in the E label of n. No and Nc are used to extract the
constraints for those processes. In MKB, the direction of
the equation in each process is uniquely determined by the
reduction order stored in that process. In MKBcs, how-
ever, we have to consider the potential existence of pro-
cesses in which the equation can be oriented in both di-
rections. Our implementation of Orient is given in Fig. 6,

Fig. 6 Implementation of orient.

where we assume all arguments of this procedure are mu-
table (i.e. can be modified by the side effect of the assign-
ment statements). Note that the potential processes men-
tioned above are collected in a set P and split into q0 and
q1 for each q in P. The processes in which the equation
can be oriented only from left to right (from right to left)
are collected in Rlr(Rrl). The labels of the node are updated
by appropriate assignment. Also, No and Nc are updated by
the splitting. Finally, the procedure returns true if and only
if the equation has been oriented (in either way) in at least
one process. For example, when n = 〈a : b, ∅, ∅, {ε}, ∅, ∅〉,
No = {〈b : c, ∅, ∅, {ε}, ∅, ∅〉}, and Nc = ∅, the proce-
dure orient modifies n to {〈a : b, {0}, {1}, ∅, {0}, {1}〉}, No to
{〈b : c, ∅, ∅, {0, 1}, ∅, ∅〉}, and returns the result true. Nc re-
mains to be the empty set.

The line enclosed by /* and */ should be skipped as a
comment in order to continue the loop for computing the
maximal Elr and Erl that satisfy the conditions specified in
the Orient rule. By collecting in Elr ∪ Erl all processes that
can orient the equation s ≈ t, we can exploit the pseudo-
parallelism and the node structure of the MKBcs system
most effectively in later stages, as all those processes can
share the rewrite rule s → t or t → s. In the next section,
however, this line will be uncommented and executed just
for experimental reasons. In this case, the loop will termi-
nate as soon as Elr ∪ Erl becomes a singleton set, so there
will be only a single process that orients the equation s ≈ t.

6.2 Caching Conditions for Reduction Orders

In general, for proving a proposition p in the given logical
system L, automated theorem provers often transform p into
a proposition in another logical system M. Let us denote
this proposition by [[p]]. The two propositions are logically
equivalent in the sense that p is true in L iff [[p]] is true in M.
Computationally, however, it is often expected that proving
[[p]] in M should take less CPU time than proving p in L.
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We can use this idea in the proof of termination as well.
For example, a proposition f (a) �LPO b in the theory of
the lexicographic path orders (LPO) may be transformed to
[[ f (a) �LPO b]] = Xab ∨ Xf b in the classical, propositional
logic as in [11]. As another example, when we consider
the polynomial orders, the resultant proposition might be a
Diophantine constraint x f

0 + x f
1 xa

0 > xb
0, as discussed in [5].

In the implementation of MKBdp, we use this tech-
nique for efficiently finding a reduction order compatible
with the dependency pairs. Actually, we cache each propo-
sition [[s � t]] by associating it with the node 〈s : t, . . . 〉
and the subterm-pair node 〈s : t, P〉. The reason the caching
technique is promising is that the constraint system grows
incrementally and the propositions once generated for ter-
mination of C can be reused later for termination of another
system containing C. In addition, the cache can be shared
among the processes. Therefore, the caching technique is
effective for difficult problems, which require long deduc-
tion sequences and many processes.

7. Experimental Results

We have experimented with our implementation of MKBcs
on a set of the standard benchmark problems [15] and some
difficult problems experimented in [17], [18]. We have not
used problems in the Termination Problem Data Base† be-
cause almost all problems contained in it are already conver-
gent or too easy to complete. For comparative experiments,
we have used all examples that we succeeded in completion
within 24 hours. However, we have omitted the results of
too easy examples (for which the computation time was less
than 0.1 seconds). Our built-in termination checker is based
on the dependency-pair method. Moreover, in order to find
reduction orders for ensuring termination, we have used the
combination of polynomial interpretation and SAT solving
proposed in [5]. The built-in termination checker has the
following features:

• the dependency-graph analysis (finding strongly con-
nected components)
• no use of the subterm criteria
• the argument filtering and usable rules with polynomial

orderings [7]
• the linear polynomial orderings with coefficients in
{0, 1}

We refer to our implementation with this termination
checker as MKBcs/POL. All experiments have been per-
formed on a workstation equipped with Intel Xeon 2.13 GHz
CPU and 1 GB system memory.

7.1 Comparison with Unshared Orientation

Since the most essential, novel part of MKBcs is its Ori-
ent rule, we have examined its effectiveness by some exper-
iments. As described in Sect. 6.1, we can maximally share
the execution of the Orient rule in several processes by skip-
ping the comment line (as intended). To see the effective-

Table 1 Comparison with the unshared orientation.

Problem unshared shared
all re/de all re/de

SK90 3.01 1.0 0.7 0.6 0.3
SK90 3.03 0.6 0.5 0.3 0.2
SK90 3.04 190.3 150.1 55.9 30.2
SK90 3.05 1.7 1.3 0.8 0.5
SK90 3.06 3.6 2.1 2.0 0.6
SK90 3.07 4.1 2.3 2.3 0.6
SK90 3.09 146.6 115.1 29.4 7.2
SK90 3.27 21.1 3.2 19.1 1.7
SK90 3.28 410.5 133.4 207.9 2.1
SK90 3.29 1.0 0.4 0.5 0.0
WSW07 GE1 1.4 0.7 0.8 0.2
WSW07 CGE2 435.9 272.4 126.4 10.7
WSW07 CGE3 - - 32867.6 568.8
WS06 PR 28074.7 14690.5 10752.1 25.7

ness of this design, we have compared it with the design
in which the execution of the Orient rule is unshared. The
latter case, which we call the unshared orientation, can be
examined by removing /* and */ from Fig. 6, thus executing
the comment line in order to break the loop as soon as the
procedure orient finds a single process which can orient the
equation s ≈ t in either way.

The results are summarized in Table 1, where the “un-
shared” columns show the results for the unshared orien-
tation, and the “shared” columns for the shared orientation
(as intended by MKBcs). The “all” columns show the to-
tal time (in seconds) and the “re/de” columns show the time
consumed by the Rewrite-1,2 and Deduce rules. Hyphens
indicate that we could not get the results within 24 hours.
We can see that in the shared orientation the total time is
shorter (as shown in the “all” columns) and the node-based
(shared) rewriting and deducing by Rewrite-1,2 and Deduce
are more effective (as shown in the “re/de” columns) espe-
cially for the problems requiring a long computation time.

7.2 Comparison of MKBcs/AProVE with Slothrop

We have compared the performance of MKBcs with
Slothrop, the first constraint-based completion tool de-
scribed in [18]. The current implementation of Slothrop
uses AProVE [6], one of the most powerful termination
checkers known in the literature. In order to com-
pare MKBcs with Slothrop in the same environment, we
have developed MKBcs/AProVE, which is MKBcs us-
ing AProVE instead of our built-in termination checker,
and compared it with Slothrop. AProVE employs vari-
ous modern termination checking methods, including the
dependency-pair method. Thus MKBcs/AProVE is more
powerful than MKBcs/POL in terms of the ability to com-
plete equational theories, i.e. if MKBcs/POL succeeds in
completing a theory, MKBcs/AProVE also succeeds in com-
pleting the same theory.

The results are summarized in Table 2, where the “all”
columns show the total time and the “tc” columns show the

†The data base is available from: http://www.lri.fr/
∼marche/tpdb/
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Table 2 Comparison of MKBcs with Slothrop.

Problem MKBcs/AProVE Slothrop
all tc all tc

SK90 3.01 2.9 89 20.6 326
SK90 3.03 2.3 59 3.3 86
SK90 3.04 464.8 931 2275.1 1466
SK90 3.05 25.5 103 347.4 577
SK90 3.06 63.4 246 993.8 898
SK90 3.07 43.7 218 2722.5 1811
SK90 3.12 1.6 21 3.5 24
SK90 3.18 2.7 35 2.6 24
SK90 3.19 1.7 45 1.6 21
SK90 3.20 3.7 99 2.4 33
SK90 3.21 1.6 35 50.8 141
SK90 3.23 4.2 63 2.5 35
SK90 3.27 428.2 213 253.8 90
SK90 3.28 12962.8 10757 374.4 807
SK90 3.29 10.8 330 2.4 80
WSW07 GE1 3.9 113 5.8 105
WSW07 CGE2 10488.0 12984 457.6 1381

number of calls to the termination checker. The results show
that the two systems are incomparable in their performance:
for some problems, MKBcs is faster, but for other problems,
Slothrop is faster. This is because they are based on to-
tally different ideas. Slothrop works in a best-first manner
in the search space. When an equation can be oriented in
both directions, Slothrop chooses one of them, based on
some heuristics, and basically sticks to that decision until
that choice turns out to be less promising than other choices.
On the other hand, MKBcs works in a breadth-first man-
ner. When an equation can be oriented in both directions,
MKBcs splits processes and tries both directions in paral-
lel. Since this pseudo-parallelism requires some overhead
for managing nodes, Slothrop is more efficient when its
heuristics are appropriate. However, such heuristics are of-
ten difficult to design. When the heuristics are inappropriate,
there is a chance for MKBcs to be more efficient.

The major reason for the potential efficiency of MKBcs
is that the information (equations and rewrite rules) created
in one process can be shared by some (often many) other
processes in an inexpensive way based on the label compu-
tation for the nodes. Thus the computation time to create the
same information in those processes can be saved.

In addition, we can think of another reason for the po-
tential efficiency, noting that even if the heuristics are ap-
propriately designed, they work poor when they are pro-
vided with poor information. Actually, the shared infor-
mation can help the heuristic procedures work more effec-
tively when they try to change their focus on a promising
process to other, more promising processes, because, thanks
to the sharing, the processes would contain richer informa-
tion which could help them decide the seemingly “best” pro-
cesses leading to the earliest success.

Apart from the performance, the convergent term
rewriting systems generated by the two completion tools are
sometimes different from each other, because of the differ-
ence in their process selection. These observations mean
that both systems have a role to play in efficient completion

Table 3 Evaluation of MKBdp and caching.

Problem no soup no cache cache procs
SK90 3.01 0.61 0.59 0.55 13
SK90 3.03 0.31 0.31 0.30 5
SK90 3.04 63.90 60.67 55.71 14
SK90 3.05 0.89 0.86 0.81 8
SK90 3.06 2.14 2.16 1.97 21
SK90 3.07 2.51 2.43 2.26 21
SK90 3.12 0.12 0.11 0.11 3
SK90 3.18 0.20 0.17 0.14 11
SK90 3.19 0.10 0.10 0.08 20
SK90 3.20 0.13 0.12 0.11 32
SK90 3.23 0.19 0.16 0.15 17
SK90 3.27 20.85 20.09 19.08 9
SK90 3.28 353.51 253.25 207.94 791
SK90 3.29 0.61 0.54 0.50 166
WSW07 GE1 0.98 0.93 0.82 15
WSW07 CGE2 199.13 157.73 126.36 167
WSW07 CGE3 53885.42 41256.02 32867.56 2862
WS06 PR 16041.13 13210.79 10752.13 4872

with automated, modern termination checking.

7.3 Evaluation of MKBdp and Caching

We show the results when we have considered (1) the node-
based calculation of dependency-pairs described as MKBdp
in Sect. 5 and (2) the cache-based condition checking de-
scribed in Sect. 6.2. The total CPU time (in seconds) is
shown in Table 3, where the “no soup” column shows the
results when no node-based techniques have been applied,
the “no cache” column shows the results when node-based
calculation has been applied with no conditions cached, and
the “cache” column shows the results when all conditions
have been cached during the node-based calculation. The
“procs” column shows the number of all processes. From
the results, we can see that the node-based techniques of
MKBdp and the caching are effective for improving the per-
formance of MKBcs/POL, especially for the problems that
require a long CPU time and a large number of processes
such as WSW07 CGE3 and WS06 PR.

A more practical implementation of MKBcs is outlined
in our short, system description paper [13]. There is some
overlap between the current paper and [13], such as a basic
description of MKBcs and a part of experiments, but in [13],
the authors introduced the idea of MKBcs only informally
and briefly (without proofs and examples) and, instead, de-
scribed the implementation extensively. The implementa-
tion, called mkbTT, is implemented in OCaml and accepts
any termination prover that adheres to the format of the In-
ternational Competitions of Termination Tools [6]. The ex-
perimental results, when coupled with TTT [13], are also
shown.

In contrast, the current paper has established the the-
oretical background of MKBcs by developing the formal
framework of bit string encoding of processes, the formal
semantics based on the “don’t care” non-deterministic KBcs
processes, and the formal justifications for the soundness,
completeness, and correctness of the procedures. Moreover,
this paper has presented MKBdp, developed by more tightly
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coupling MKBcs with the dependency-pair-based termina-
tion provers, as anticipated in [13] as a future work.

8. Conclusion and Future work

We have presented a new multi-completion procedure
MKBcs which efficiently simulates parallel execution of
constraint-based procedures. The novel techniques involved
are (1) the development of well-encoded bit string sys-
tems for encoding and maintaining dynamic processes and
(2) the new Orient rule defined on the extended defini-
tion of the node structure. The idea has been further ex-
tended for (3) incorporating the dependency-pair method
as the associated termination checker. The experiments
show that the process sharing scheme of the Orient rule is
clearly more efficient than the unshared orientation. Supe-
riority of MKBcs/AProVE (our implementation of MKBcs)
to Slothrop (the well-known implementation of KBcs) de-
pends on the problems. In general, Slothrop is more ef-
ficient when its heuristics for process selection in the ori-
entation are correct. However, this is not always the case.
When the heuristics are inappropriate, MKBcs plays its role
in node-based efficient completion with automated, modern
termination checking.

As future work, we are planning to incorporate the
ideas of AC-completion and unfailing completion into the
framework of MKBcs.
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