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SUMMARY MEMS storage devices are new non-volatile secondary
storages that have outstanding advantages over magnetic disks. MEMS
storage devices, however, are much different from magnetic disks in the
structure and access characteristics in the following ways. They have thou-
sands of heads called probe tips and provide the following two major ac-
cess facilities: (1) flexibility : freely selecting a set of probe tips for ac-
cessing data, (2) parallelism: simultaneously reading and writing data with
the set of probe tips selected. Due to these characteristics, it is nontriv-
ial to find data placements that fully utilize the capability of MEMS stor-
age devices. In this paper, we propose a simple logical model called the
Region-Sector (RS) model that abstracts major characteristics affecting data
retrieval performance, such as flexibility and parallelism, from the physical
MEMS storage model. We also suggest heuristic data placement strategies
based on the RS model. To show the usability of the RS model, we de-
rive new data placements for relational data and two-dimensional spatial
data by using these strategies. Experimental results show that the proposed
data placements improve the data retrieval performance by up to 4.7 times
for relational data and by up to 18.7 times for two-dimensional spatial data
of approximately 320 Mbytes compared with those of existing data place-
ments. Further, these improvements are expected to be more marked as the
database size grows.
key words: MEMS storage device, data placement, logical model

1. Introduction

Micro-Electro-Mechanical Systems (MEMS) is a technol-
ogy that integrates electronic circuits and mechanical parts
into one chip [22]. MEMS storage devices are new non-
volatile secondary storages based on the MEMS technol-
ogy. Prototypes of MEMS storage devices have been de-
veloped by Carnegie Mellon University (CMU), IBM Lab-
oratory, and Hewlett-Packard Laboratories. Recently, there
have been a number of efforts to increase their capacities
and to improve performance [10].

MEMS storage devices have outstanding advantages
compared with magnetic disks: average access time is ten
times faster, average bandwidth is thirteen times larger, and
power consumption is 54 times lower; their size is as small
as 1 cm2 [19]. Due to these advantages, MEMS storage de-
vices are expected to be widely used in many places, such
as the secondary storage of a laptop [8] and the middle-level
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storage to reduce the performance gap between main mem-
ory and disk in the memory hierarchy [18], [25].

MEMS storage devices, however, are much different
from magnetic disks in the structure and access character-
istics. They have thousands of heads called probe tips to
access data. MEMS storage devices also have the following
two major access characteristics [20]: (1) flexibility: freely
selecting a set of probe tips for accessing data, (2) paral-
lelism : simultaneously reading and writing data with the set
of probe tips selected. For good data retrieval performance,
it is necessary to place data on MEMS storage devices while
taking advantage of their structures and access characteris-
tics [7], [20], [23]–[25].

There have been a number of studies on data place-
ment for MEMS storage devices. In the operating systems
field, methods have been proposed that abstract the MEMS
storage device as a linear array of fixed-size logical blocks
with one head [5], [7]. These methods allow us to use the
MEMS storage device easily just like a disk, but provide
relatively poor data retrieval performance because they do
not take full advantage of the characteristics of MEMS stor-
age devices [20]. In the database field, methods have been
proposed to directly place data on the MEMS storage de-
vice based on data access patterns of applications [23], [24].
These methods provide relatively good data retrieval perfor-
mance [20], but are quite sophisticated because they directly
manage MEMS storage devices having a complicated struc-
ture.

In this paper, we propose a logical model called the
Region-Sector (RS) model that abstracts the physical MEMS
storage model. The RS model abstracts major character-
istics affecting data retrieval performance – flexibility and
parallelism – from the physical MEMS storage model. The
RS model is simple enough for users to easily understand
and use the MEMS storage device and, at the same time, is
strong enough to provide capability comparable to that of
a physical MEMS storage model. We also suggest heuris-
tic data placement strategies based on the RS model. These
strategies allow us to find data placements efficiently for a
given application.

The contributions of this paper are as follows: (1) we
propose the RS model, which is a logical abstraction of the
MEMS storage device; (2) we suggest heuristic data place-
ment strategies based on the RS model; (3) we derive new
data placements for relational data and two-dimensional
spatial data by using those strategies; (4) through extensive
analysis and experiments, we show the cases where data re-

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



KIM et al.: A LOGICAL MODEL AND DATA PLACEMENT STRATEGIES FOR MEMS STORAGE DEVICES
2219

trieval performances of our new data placements are supe-
rior to those of existing data placements.

The rest of this paper is organized as follows. Section 2
introduces the MEMS storage device. Section 3 describes
prior art related to data placement for the MEMS storage de-
vice. Section 4 proposes the RS model. Section 5 presents
heuristic data placement strategies. Section 6 presents new
data placements derived by using heuristic data placement
strategies. Section 7 presents the results of performance
evaluation. Section 8 summarizes and concludes the paper.

2. MEMS Storage Devices

The MEMS storage device is composed of a media sled and
a probe tip array. Figure 1 shows the structure of the MEMS
storage device. The media sled is a square plate on which
data is read and written by recording techniques such as
magnetic, thermomechanical, and phase-change ones [20].
The media sled has Rx ×Ry squares called regions. Here, Rx

(Ry) is the number of regions in the X (Y) axis. Each region
contains S x × S y tip sectors, which are the smallest unit of
accessing data. Here, S x (S y) is the number of tip sectors in
a region in the X (Y) axis. A column is a set of tip sectors
that have the same position in the X axis of each region [7].
The probe tip array is a set of Rx×Ry heads called probe tips.
Each probe tip reads and writes data on the corresponding
region of the media sled.

The MEMS storage device reads and writes data by
moving the media sled on the probe tip array. Here, a num-
ber of probe tips can be activated so as to simultaneously
read and write data. Each activated probe tip reads or writes
data on the tip sector having the same relative position in
each region. Users are able to freely select a set of probe
tips to be simultaneously activated, the number of which is
restricted to 200 ∼ 2,000 due to the limitation in power con-
sumption and electric heat [8].

The major access characteristics [20] of the MEMS
storage device are summarized as follows.

Flexibility: freely selecting and activating a set of probe
tips for accessing data.

Fig. 1 The structure of the MEMS storage device.

Parallelism: simultaneously reading and writing data with
the set of probe tips selected.

The MEMS storage device reads or writes data by per-
forming the following three steps [7].

1. Activating step: activating a set of probe tips to use (the
activating time is negligible compared with seek or
transfer times).

2. Seeking step: moving the media sled so that the probe
tip is located on the target tip sector (the seek time is
dependent on the distance that the media sled moves).

3. Transferring step: reading or writing data on tip sectors
that are contiguously arranged within columns while
moving the media sled in the + (or −) direction of the
Y axis (the transfer time is proportional to the size of
data accessed).

If tip sectors to be accessed are not contiguous within a col-
umn but scattered over many columns, data are accessed by
performing the steps 2 and 3 repeatedly.

We explain the seek process in more detail since it is
quite different from that of the disk. The seek time can be
computed using Eqs. (1)∼(3). Let S eekT imex be the time to
seek in the direction of the X axis, and S eekT imey in the di-
rection of the Y axis. In S eekT imex, if the media sled moves
in the direction of the X axis, we have to wait until the vi-
bration of the media sled stops. The time to wait for such
vibration to stop is called the settle time. Thus, S eekT imex

is the sum of the move time and the settle time as in Eq. (1).
In S eekT imey, if the media sled moves in the opposite di-
rection of the current direction, the media sled has to turn
around. The time to turn around is called the turnaround
time. Thus, S eekT imey is the sum of the move time and the

Table 1 The parameters and values of the CMU MEMS storage device.

Symbols Definitions Values

Rx the number of regions in the 80
direction of the X axis

Ry the number of regions in the 80
direction of the Y axis

NR the number of regions (= Rx × Ry) 6,400
S x the number of tip sectors in a region 2500

in the direction of the X axis
S y the number of tip sectors in a region 27

in the direction of the Y axis
NS the number of tip sectors in a region 67,500

(= S x × S y)
NPT the number of probe tips 6,400
NAPT the maximum number of active 1,280

probe tips
S ectorS ize the size of data area in a tip sector 64

(bits)
Trans f erRate the transfer rate per probe tip 0.7

(Mbit/s)
TX the average move time in the 0.52

direction of the X axis (ms)
TY the average move time in the 0.35

direction of the Y axis (ms)
TS the average settle time (ms) 0.215
TT the average turnaround time (ms) 0.06
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turnaround time as in Eq. (2). If the media sled moves in
the same direction of the current direction, the turnaround
time is zero. Since the media sled is capable of moving in
the direction of both the X axis and the Y axis simultane-
ously, the total seek time is the maximum of S eekT imex and
S eekT imey as in Eq. (3).

S eekT imex = MoveTimex + S ettleT ime (1)

S eekT imey = MoveTimey + TurnaroundTime (2)

S eekT ime = MAX ( S eekT imex, S eekT imey ) (3)

Table 1 summarizes the parameters and values of the
CMU MEMS storage device being widely used for re-
search [3], [7]. We use them in this paper. In Table 1, TX

(TY ) is the average time to move from one random position
to another in the direction of the X (Y) axis [3].

3. Related Work

There have been a number of studies on data placement for
the MEMS storage device. We classify them into two cat-
egories – disk mapping approaches and device-specific ap-
proaches – depending on whether they take advantage of
the characteristics of the storage device. This classification
of the MEMS storage device is analogous to that of the flash
memory [6], which is another type of new non-volatile sec-
ondary storage. For the flash memory, device-specific ap-
proaches (e.g., Yet Another Flash File System (YAFFS) [14])
provide new mechanisms to exploit the features of the flash
memory in order to improve performance, while disk map-
ping approaches (e.g., Flash Translation Layer (FTL) [2])
abstract the flash memory as a linear array of fixed-size
pages in order to use existing disk-based algorithms on the
flash memory. In this section, we explain two categories for
the MEMS storage device in more detail.

3.1 Disk Mapping Approaches

Griffin et al. [7] and Dramaliev et al. [5] proposed models
to use the MEMS storage device just like a disk. They ab-
stract the MEMS storage device as a linear array of fixed-
size logical blocks with one head. This linear abstraction
works well for most applications using the MEMS storage
device as the replacement of the disk [7]. However, they
provide relatively poor data retrieval performance compared
with device-specific approaches [23], [24] because they do
not take full advantage of the characteristics of the MEMS
storage device [20].

3.2 Device-specific Approaches

Yu et al. [23], [24] proposed methods for placing data on the
MEMS storage device based on data access patterns of ap-
plications. Yu et al. [24] places relational data on the MEMS
storage device such that projection queries are performed
efficiently. Yu et al. [23] places two-dimensional spatial
data such that spatial range queries are performed efficiently.

Fig. 2 An example relation R.

Fig. 3 Yu et al.’s data placement.

These data placements identify that data access patterns of
such applications are inherently two-dimensional, and then,
place data so as to take advantage of parallelism and flex-
ibility of the MEMS storage device. We explain each data
placement in more detail for comparing them with our meth-
ods in Sect. 6.

3.2.1 Data Placement for Relational Data

Yu et al. [24] deals with the application that places a relation
on the MEMS storage device, and then, executes simple pro-
jection queries over that relation. Here, queries read the val-
ues of the specified attributes of all tuples. Figure 2 shows
an example relation R, which has k attributes attr1, . . . , attrk

and has n tuples. Here, ai, j represents the j th attribute value
of the i th tuple (1 ≤ i ≤ n, 1 ≤ j ≤ k).

Figure 3 shows Yu et al. [24]’s data placement of the
relation R on the MEMS storage device. Here, for simplicity
of explanation, we assume that the length of each attribute
value is equal to the size of the tip sector. First, a set of m
tuples (tuple1 ∼ tuplem, m = �NPT

k �) is placed on the first tip
sector of each region, i.e., the shaded tip sectors in Fig. 3.
Likewise, each set of m tuples (tuplem×(i−1)+1 ∼ tuplem×i)
is placed on the i th tip sector of the region (2 ≤ i ≤ � n

m �)
in the column-prime order. Equation (4) shows a mapping
function fRelationtoMEMS that puts the attribute value av,w into
the tip sector <rx, ry, sx, sy> of the MEMS storage device.
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fRelationtoMEMS (av,w) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rx = ((k × ((v − 1) mod m) + w) − 1) mod Rx + 1
ry = � (k×((v−1) modm)+w)

Rx
�

sx = � �
v
m �

S y
�

sy =

{
(� v

m � − 1) mod S y + 1 if sx is odd
S y − ((� v

m � − 1) mod S y) if sx is even

(4)

3.2.2 Data Placement for Two-dimensional Spatial Data

Yu et al. [23] deals with an application that places a set of
two-dimensional spatial objects on the multiple MEMS stor-
age devices, and then, executes region queries over those
objects †. Here, the two-dimensional spatial objects are uni-
formly distributed in the two-dimensional space, and queries
read objects contained in a rectangular region. Figure 4
shows an example set S of two-dimensional NPT ×NPT spa-
tial objects.

Figure 5 shows Yu et al. [23]’s data placement of the
set S in a single MEMS storage device ††. Here, for sim-
plicity of explanation, we assume that each object is stored
in one tip sector. In Fig. 5, the objects from o1,1 to oNPT ,1 are
first placed on the first tip sector of each region. Likewise,
the objects from o1,i to oNPT ,i on the i th tip sector of each

Fig. 4 An example set S of
two-dimensional spatial objects.

Fig. 5 Yu et al.’s data placement.

region (2 ≤ i ≤ 6400) in the column-prime order. Equa-
tion (5) shows a mapping function fS pacetoMEMS that places
the object ox,y on the tip sector <rx, ry, sx, sy> of the MEMS
storage device.

fS pacetoMEMS (ox,y) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rx = (x − 1) mod Rx + 1
ry = � x

Rx
�

sx = � y
S y
�

sy =

{
(y − 1) mod S y + 1 if sx is odd
S y − ((y − 1) mod S y) if sx is even

(5)

4. Region-Sector (RS) Model for the MEMS Storage
Device

In this Section, we propose the RS model for the MEMS
storage device. In Sect. 4.1, we provide an overview of the
RS model. In Sect. 4.2, we formally define the RS model. In
Sect. 4.3, we present the mapping function between the RS
model and the MEMS storage device.

4.1 Overview

The RS model can be regarded as a virtual view of the phys-
ical MEMS storage device. The purpose of the model is to
provide an abstraction making it easy to understand and sim-
ple to use the complex MEMS storage device while main-
taining its performance and flexibility.

When placing data on the disk, the operating systems
and applications abstract the disk as a relatively simple
logical view such as a linear array of fixed-sized logical
blocks because considering the physical structures (cylin-
ders, tracks, and sectors) of the disk is complex. This kind of
abstraction can also be applied to the MEMS storage device.
By abstracting the MEMS storage device as a relatively sim-
ple logical view such as the RS model, we can more easily
place data on the MEMS storage device than when we di-
rectly consider the physical structures (regions, columns, tip
sectors).

Figure 6 shows three kinds of system architectures for
using the MEMS storage device. Figure 6 (a) shows one
using the disk-based algorithms and the disk mapping layer
(explained in Sect. 3.1); Fig. 6 (b) one using the MEMS stor-
age device-specific algorithms (explained in Sect. 3.2) with-
out any mapping layer; and Fig. 6 (c) one using the RS
model-specific algorithms and the RS model layer. The ar-
chitecture in Fig. 6 (c) is capable of providing higher per-
formance compared with that in Fig. 6 (a) by taking advan-
tage of useful characteristics of the MEMS storage device

†Here, they exploit two kinds of parallelism: (1) simultane-
ously accessing data by using the multiple probe tips in a MEMS
storage device, (2) simultaneously accessing data by using the mul-
tiple MEMS storage devices.
††Yu et al. [23] exploit parallelism using the multiple MEMS

storage devices as well. We do not address such parallelism in this
paper, but it can also be applied to our method.
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through the RS model. It also helps us find good data place-
ments for a given application more easily than the architec-
ture in Fig. 6 (b) because it hides complex features of the
physical MEMS storage device.

4.2 Definition of the RS Model

The RS model maps the tip sectors of the MEMS storage
device into a virtual two-dimensional plane in order to ef-
fectively use parallelism and flexibility. For the mapping,
we first classify the tip sectors into two groups depending
on the possibility of using parallelism. It is possible to use
parallelism for the tip sectors having the same relative (x, y)
position in each region because we are able to freely select
a set of tip sectors and simultaneously access them. Here-
after, we call the set of tip sectors having the same relative
(x, y) positions in each region as the simultaneous-access
sector group. On the other hand, it is not possible to use
parallelism for the tip sectors existing in the same region
because we are able to access only one tip sector at a time
from them. Hereafter, we call the set of such tip sectors as
the non-simultaneous-access sector group.

Figure 7 shows the structure of the RS model. The
RS model is composed of a set of probe tips and a two-
dimensional plane. The set of probe tips are lined up
horizontally. We call them the probe tip line. The two-
dimensional plane has the Region axis and the Sector axis.
The RS model maps the tip sectors in a simultaneous-access
sector group in the direction of the Region axis and those

Fig. 6 The architectures of the system for the MEMS storage device.
(a) The disk mapping layer architecture. (b) The device-specific algorithm
architecture. (c) The RS model layer architecture.

Fig. 7 The structure of the RS model. (a) The MEMS storage device. (b) The Region-Sector (RS)
model.

in a non-simultaneous-access sector group in the direction
of the Sector axis. We map the tip sectors in the non-
simultaneous-access sector group (i.e., tip sectors in a re-
gion) in the column-prime order as shown in Fig. 7 since it is
the fastest order to access all the tip sectors in a region [19],
[24]. We call an ordered set of tip sectors that have the
same position in the Region axis a linearized region. The
RS model regards the tip sectors within a linearized region
as quasi-contiguous. Each probe tip reads and writes data
on the corresponding linearized region of the RS model.

The RS model simplifies the structure of the MEMS
storage device by reducing the number of parameters to rep-
resent the position of a tip sector. In the MEMS storage
device, the position of a tip sector is represented by four
parameters <rx, ry, sx, sy> (1 ≤ rx ≤ Rx, 1 ≤ ry ≤ Ry,
1 ≤ sx ≤ S x, 1 ≤ sy ≤ S y) as shown in Fig. 7 (a), where
<rx, ry> is the position of the region and <sx, sy> the posi-
tion of the tip sector within the region. On the other hand,
in the RS model, the position of a tip sector is represented
by only two parameters <r, s> as shown in Fig. 7 (b), where
r is the position of the tip sector in the Region axis and s in
the Sector axis.

The RS model reads or writes data by performing the
following three steps repeatedly (as compared to the physi-
cal MEMS storage device described in Sect. 2).

1. Activating step: activating a set of probe tips to use.
2. Seeking step: moving the probe tip line to the target row.
3. Transferring step: reading or writing data on tip sectors

that are quasi-contiguously arranged within linearized
regions while moving the probe tip line in the + (or −)
direction of the Sector axis.

The RS model considers quasi-contiguous tip sectors within
a linearized region to be sequentially accessed (the reason
will be explained later), while the MEMS storage device
is capable of sequentially accessing contiguous tip sectors
only within a column.

We explain the seek time and transfer rate of the RS
model. Through calculation using them, users can approxi-
mately estimate the data access time in the MEMS storage
device exactly mapping the data to the MEMS storage de-
vice. The calculation of data access time in the RS model is
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easier because the movement of probe tips in the RS model
is modeled simpler than that in the MEMS storage device.

For the seek time of the RS model, for simplicity, we
use the average seek time of the physical MEMS storage de-
vice. By using the average seek time instead of the real seek
time, we can significantly simplify the cost model for data
retrieval performance while little sacrificing the accuracy of
the cost model.

In the RS model, the transfer rate per probe tip is cal-
culated as the data size of a region divided by the time to
read all the tip sectors of a region in the column-prime order.
We note that the RS model considers all quasi-contiguous
tip sectors within a linearized region to be sequentially ac-
cessed. Table 2 summarizes some notation to be used for
calculating the transfer rate.

The transfer rate per probe tip in the RS model is
computed as in Eq. (6). The time to read data of a re-
gion in the column-prime order is the sum of the following
two terms: (1) the time to read data of each column, (2)
the time to seek to the adjacent column for each column.
The former is RegionS ize

Trans f erRate , and the latter S x × S eekT imead j.
S eekT imead j is computed as in Eq. (7). Because the move
time to the adjacent column MoveTimead j x is negligible
compared with S ettleT ime, and S ettleT ime is larger than
TurnaroundTime, S eekT imead j is approximately equal to
S ettleT ime.

Trans f erRaters =
RegionS ize(

RegionS ize
Trans f erRate

)
+ (S x×S eekT imead j)

(6)

Table 2 The notation to be used for calculating the transfer rate per probe
tip in the RS model.

Symbols Definitions

S x the number of columns in a region
S y the number of tip sectors in a column

S ectorS ize the size of a tip sector (bytes)
RegionS ize the size of a region (bytes)

(= S x × S y × S ectorS ize)
Trans f erRate the transfer rate per probe tip in the physical

MEMS storage device (Mbytes/s)
S eekT imead j the seek time from a column to an adjacent

column in the physical MEMS storage device (s)

Table 3 Comparison of the RS model with the physical MEMS storage model.

MEMS storage model RS model Remarks

addressing the position <rx, ry, sx, sy> <r, s> simpler
of a tip sector

movement of probe tips in the +/− direction of in the +/− direction of the Sector axis simpler
the X and Y axes

the area of S y tip sectors within a column NS = S x × S y tip sectors within linearized region expanded by S x times
sequential access (quasi-contiguous)

seek time real seek time average seek time from one random position equal in average
to another

transfer rate real transfer rate average transfer rate when accessing approximately equal
tip sectors in a region in the column-prime order

S eekT imead j = MAX ( MoveTimead j x + S ettleT ime ,

TurnaroundTime )

≈ S ettleT ime (7)

The characteristics of the RS model in both random
and sequential accesses are not much different from those of
the MEMS storage device. The seek time of the RS model
is equal to that of the MEMS storage device since the RS
model uses the average time to seek from one random posi-
tion to another in a certain region of the MEMS storage de-
vice. In Eq. (6), the total seek time (i.e., S x × S eekT imead j)
is only about 6 % of the time to read all the tip sectors of a
region. Thus, the transfer rate of the RS model is approxi-
mately equal to that of the MEMS storage device.

Table 3 summarizes the differences between the RS
model and the physical MEMS storage model.

4.3 Mapping Functions between the RS Model and the
MEMS Storage Device

In order to use the RS model, it is necessary to map the
position of each tip sector in the RS model into that in the
MEMS storage model, and vice versa. In this section, we
define two mapping functions fRS toMEMS and fMEMS toRS . In
Eq. (8), fRS toMEMS is for converting the position <r, s> in
the RS model into the position <rx, ry, sx, sy> in the MEMS
storage model. In Eq. (9), fMEMS toRS is for converting the
position <rx, ry, sx, sy> into the position <r, s>.

fRS toMEMS (< r, s >) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rx = (r − 1) mod Rx + 1
ry = � (r−1)

Rx
� + 1

sx = � (s−1)
S y
� + 1

sy =

{
(s − 1) mod S y + 1 if sx is odd
S y − ((s − 1) mod S y) if sx is even

(8)

fMEMS toRS (< rx, ry, sx, sy >) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
r = (Rx × (ry − 1)) + rx

s =

{
(S y × (sx − 1)) + sy if sx is odd
(S y × (sx − 1)) + (S y − sy + 1) if sx is even

(9)

In practice, two mapping functions fRS toMEMS and
fMEMS toRS are implemented as a driver between user algo-
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rithms (i.e., RS model-specific algorithms in Fig. 6 (c)) and
the MEMS storage device. If users write and execute pro-
grams that place and access data on the RS model, the data
are automatically placed and accessed on the MEMS storage
device by this driver.

5. Data Placement Strategies in the RS Model

For secondary storage devices, data retrieval performance is
significantly affected by data placement on them. The same
holds for the MEMS storage device. For good data retrieval
performance, we need to place data on the MEMS storage
device taking advantage of its structure and access char-
acteristics [7], [20], [23]–[25]. In this section, we present
heuristic data placement strategies that help us efficiently
find good data placements.

As the measure of data retrieval performance, we use
the time to read the data being retrieved by a query as was
done by Yu et al. [23], [24]. We call it the retrieval time.
Table 4 summarizes the notation to be used for analyzing
the retrieval time in the RS model.

The retrieval time in the RS model can be computed
as in Eq. (10). It is the sum of TotalTrans f erT ime and
TotalS eekT ime. TotalTrans f erT ime is RetrievalDataS ize
divided by the total transfer rate, which is Trans f erRaters×
Kparallel. TotalS eekT ime is S eekT imers × Krandom.

RetrievalT ime = TotalTrans f erT ime + TotalS eekT ime

=
RetrievalDataS ize

Trans f erRaters × Kparallel

+ S eekT imers × Krandom (10)

From Eq. (10), we know that RetrievalT ime decreases
as Kparallel gets larger and as Krandom gets smaller. Thus, for
good performance, it is preferable to place data such that
Kparallel is made as large as possible (its maximum value
is NAPT ) and Krandom as small as possible (its minimum
value is 0). Theoretically, the data placement that makes
Kparallel = NAPT and, at the same time, Krandom = 0 is the
optimal. However, it may not be feasible to find such data
placements. Hence, we employ two simple heuristic data
placement strategies as follows.

Strategy Sequential: a strategy that places the data being
retrieved by a query as contiguously as possible in the
direction of the Sector axis in the RS model. This strat-

Table 4 The notation to be used for analyzing the retrieval time in the
RS model.

Symbols Definitions

RetrievalDataS ize the size of the data being retrieved
by a query (bytes)

Trans f erRaters the average transfer rate per probe tip
in the RS model (Mbytes/s)

S eekT imers the average seek time in the RS model (s)
Kparallel the average number of probe tips used

during query processing
Krandom the average number of seek operations

occurring during query processing

egy aims at making Krandom be as close to 0 as possible.
Strategy Parallel: a strategy that places the data being re-

trieved by a query as widely as possible in the direction
of the Region axis on the RS model. This strategy aims
at making Kparallel be as close to NAPT as possible.

6. Applications of Data Placement Strategies

In this Section, we present data placements derived from
Strategy Sequential and Strategy Parallel for two applica-
tions. We present data placements for relational data in
Sect. 6.1, and data placements for two-dimensional spatial
data in Sect. 6.2.

6.1 Data Placements for Relational Data

In this section, we deal with an application that places a re-
lation on the MEMS storage device, and then, executes sim-
ple projection queries over that relation. This application
is the same one dealt with by Yu et al. [24] as described
in Sect. 3.2.1. We present two data placements for rela-
tional data. We name the data placement derived from Strat-
egy Sequential, which turns out to be identical to the place-
ment proposed by Yu et al. [24], as Relational-Sequential-
Yu, and the one derived from Strategy Parallel as Relational-
Parallel.

6.1.1 Relational-Sequential-Yu

Relational-Sequential-Yu intends to provide highly sequen-
tial reading of data by preventing seek operations in pro-
cessing queries. Here, it is preferable that the values of the
projected attributes are placed as contiguously as possible
in the direction of the Sector axis. Accordingly, Relational-
Sequential-Yu stores the tuples of the relation R such that
a linearized region is occupied with the values of only one
attribute. Thus, these values are stored quasi-contiguously.

Figure 8 shows Relational-Sequential-Yu and the data
area being retrieved by the query projecting Npro jection at-
tributes. Let us assume that at most Ntuples in a row tuples are
stored in one simultaneous-access sector group. As shown

Fig. 8 Relational-Sequential-Yu data placement and the data area being
retrieved by the query projecting attrp and attrq. (a) Relational-Sequential-
Yu. (b) The data area being retrieved by a query.
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in Fig. 8 (a), Relational-Sequential-Yu puts Ntuples in a row

tuples tupleNtuples in a row×(i−1)+ j (1 ≤ j ≤ Ntuples in a row)
into the i th simultaneous-access sector group (1 ≤ i ≤
� n

Ntuples in a row
�). Equation (11) shows the mapping function

fRelationtoRS that puts the attribute value av,w into the tip sec-
tor <r, s> in the RS model. In Fig. 8 (b), the shaded area in-
dicates the tip sectors accessed by the query projecting attrp

and attrq. If the width of the shaded area (i.e., the number of
tip sectors corresponding to attrp or attrq in a simultaneous-
access sector group = Ntuples in a row × Npro jection) is less
than or equal to NAPT , only one sequential scan suffices
for query processing. Otherwise, several sequential scans
(= �Ntuples in a row×Npro jection

NAPT
�) are required. We use column-

prime order among scans by activating another set of NAPT

probe tips †.

fRelationtoRS (av,w) ={
r = k × ((v − 1) mod Ntuples in a row) + w
s = � v

Ntuples in a row
� (11)

Relational-Sequential-Yu is in effect identical to the
data placement proposed by Yu et al. [24] in Sect. 3.2.1.
Eq. (11) is identical to the composition of Eq. (9) and
Eq. (4), i.e., fMEMS toRS ( fRelationtoMEMS (av,w)). Thus, both
Relational-Sequential-Yu and Yu et al.’s data placement
store the attribute value av,w in the same tip sector in the
MEMS storage device. Nevertheless, devising and under-
standing Relational-Sequential-Yu is easier than coming up
with Yu et al.’s data placement since the RS model provides
an abstraction of the MEMS storage device.

6.1.2 Relational-Parallel

Relational-Parallel intends to provide highly parallel read-
ing of data by increasing the number of probe tips used
during query processing. Here, it is preferable that the
values of the projected attributes are placed as widely as
possible in the direction of the Region axis. Accordingly,
Relational-Parallel stores the values of each attribute such
that a simultaneous-access sector group is occupied with the
values of only one attribute.

Figure 9 shows Relational-Parallel and the data area
being retrieved by the query. As shown in Fig. 9 (a),
Relational-Parallel stores the values of an attribute attrp

in a number of successive simultaneous-access sector
groups (1 ≤ p ≤ k). By such a placement, at most one
seek operation occurs when reading all the values of each
attribute. In Fig. 9 (b), the shaded area indicates the tip sec-
tors accessed by the query projecting attrp and attrq. Since
the width of the shaded area is NPT , � NPT

NAPT
� sequential scans

are required for each attribute ††.
For composing the result tuples, Relational-Parallel re-

quires a larger memory buffer than Relational-Sequential-
Yu does because, in Fig. 9 (b), it has to keep the values
of the attribute attrp in the buffer until reading the val-
ues of the attribute attrq. If we do not have a mem-
ory buffer large enough to keep the values of the at-

Fig. 9 Relational-Parallel data placement and the data area being re-
trieved by the query projecting attrp and attrq. (a) Relational-Parallel.
(b) The data area being retrieved by a query.

tribute attrp, we can reduce the required memory buffer
size by reading the values of attributes as follows: (1) for
each attribute, we read the values of tuples stored only in
Nrows successively accessed successive simultaneous-access sec-
tor groups, instead of reading the values of all the tu-
ples; (2) for the next Nrows successively accessed successive
simultaneous-access sector groups, we perform the step (1)
repeatedly. Here, Nrows successively accessed can be computed
as available memory buffer size

S ectorS ize×NPT×(Npro jection−1) . However, RetrievalT ime of
Relational-Parallel increases as Nrows successively accessed gets
smaller because of additional scans.

In order to show the excellence of Relational-Parallel,
we deal with another application that executes the range se-
lection query in Eq. (12). This was also dealt with by Yu et
al. [24]

SELECT attrh, attrp, attrq, . . .

FROM R (12)

WHERE attrh > Bound;

Figure 10 shows the data area being retrieved by the range
query. Relational-Parallel reads the values of attributes
as follows †††: (1) for the attribute in the WHERE clause
(attrh), it reads the value of attrh for every tuple, checks
whether each tuple satisfies the condition attrh > Bound,
and then, stores the positions of the tuples satisfying the
condition into memory; (2) for the remaining attributes in a
SELECT clause (attrp, attrq, . . . , excluding attrh), it reads

†For each scan, a turnaround operation occurs in practice. But,
the turnaround operation is not a seek operation, and the time is
negligible compared with seek time or transfer time.
††As in Footnote 1, for each scan, a turnaround operation occurs

in practice, but it is negligible compared with seek time or transfer
time.
†††This data retrieval method can also be applied to Relational-

Sequential-Yu. We call this method Relational-Sequential-Yu-
Parallel. In this case, �(Ntuples in a row × Ncondition) /NAPT � sequen-
tial scans are required for accessing the attributes in the WHERE
clause; �((Ntuples in a row × query selectivity) × Npro jection) /NAPT �
scans are required for accessing the attributes in the SELECT
clause. Here, Ncondition is the number of attributes in the WHERE
clause.
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Fig. 10 The data area being retrieved by the range query projecting attrh,
attrp, and attrq.

only those values that belong to the tuples satisfying the con-
dition by using these positions stored. That is, for every
simultaneous-access sector group, it changes a set of active
probe tips before reading the attribute values of the tuples
so as to access only the values of those tuples satisfying the
condition.

In Fig. 10, the shaded area indicates the tip sectors ac-
cessed by the range query projecting attrh, attrp, and attrq.
If the tuples to be retrieved by the range query are uniformly
distributed in the relation, � NPT

NAPT
� sequential scans are re-

quired for the attribute attrh; but only �NPT × query selectivity
NAPT

�
scans are required for the attributes attrp and attrq.

If a relation R has variable-sized attributes, Relational-
Sequential-Yu and Relational-Parallel can use two methods.
The first method considers a variable-sized attribute as a
fixed-sized attribute with its maximum size as was done by
Yu et al. [24]. However, this method has poor space utiliza-
tion since it consumes its maximum size. The other method
separates the value of a variable-sized attribute from the tu-
ple and stores it in a separate place while storing the length
and the pointer to the attribute value instead. In this method,
the values of variable-sized attributes are not accessed if the
attribute does not appear in the SELECT or WHERE clause
of a query. Thus, in this case, the method has good data
retrieval performance like when the relation has only fixed-
sized attributes. A variable-sized attribute appears in the
WHERE clause rather infrequently compared with fixed-
sized attributes [24]. Even if a variable-sized attribute ap-
pears in the SELECT clause, the performance is not much
affected if the query selectivity is low as is commonly the
case.

Relational-Parallel is a new data placement that focuses
on parallelism, which is an important characteristic of the
MEMS storage device, while Relational-Sequential-Yu is
the one that focuses on reducing the number of seek opera-
tions.

We present another data placement derived from Strat-
egy Parallel. We name the data placement as Relational-

Fig. 11 The Relational-Parallel2 data placement and the data area be-
ing retrieved by the range query projecting attrh, attrp, and attrq.
(a) Relational-Parallel2. (b) The data area being retrieved by the range
query.

Parallel2. Relational-Parallel2 intends to provide highly
parallel reading of data by increasing the number of probe
tips used for query processing as Relational-Parallel does.
Accordingly, Relational-Parallel2 stores the tuples of the re-
lation R so that a simultaneous-access sector group is occu-
pied by the values of only one attribute.

Figure 11 shows Relational-Parallel2 and the data area
being retrieved by the range query. As shown in Fig. 11 (a),
Relational-Parallel2 stores tupleNPT×(i−1)+ j into the j th lin-
earized region (1 ≤ i ≤ � total number o f tuples in R

NPT
�, 1 ≤ j ≤ NPT ).

Figure 11 (b) shows the data area being retrieved by the
range selection query in Eq. (12). In Fig. 11 (b), the shaded
area indicates the tip sectors accessed by the range query
projecting attrh, attrp, and attrq. Relational-Parallel2 reads
the values of attributes for NPT tuples as follows: (1) for
an attribute in the WHERE clause (attrh), it reads the value
of attrh, checks whether each tuple satisfies the condition
attrh > Bound, and then, stores the positions of the tuples
satisfying the condition into memory; (2) for the remaining
attributes in the SELECT clause (attrp, attrq, . . ., excluding
attrh), it reads only those values that belong to the tuples sat-
isfying the condition by using these positions stored. That
is, it changes a set of active probe tips before reading the val-
ues of attrp and attrq so as to access only the values of those
tuples satisfying the condition. For the next NPT tuples, we
perform the steps (1) and (2) repeatedly.

6.1.3 Comparison between Relation-Sequential-Yu and
Relational-Parallel

In data placements for relational data, the parameters affect-
ing the retrieval time are 1) the data size to be retrieved and
2) the number of attributes to be projected. In this section,
we compare the retrieval time of Relational-Sequential-Yu
and Relational-Parallel by using Eq. (10). Here, we assume
that query selectivity = 1 in order to show RetrievalT ime
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Table 5 The notation used for analyzing the retrieval time.

Symbols Definitions

RetrievalDataS ize the data size to be retrieved for query
processing (bytes)

Nattribute in a query the number of attributes in the SELECT
and WHERE clause of a query

Ntuples in a row the number of tuples stored in one
simultaneous-access sector group in
Relational-Sequential-Yu

of Relational-Parallel is smaller than that of Relational-
Sequential-Yu in the worst case. Table 5 summarizes the
notation used for analyzing the retrieval time.

For TotalS eekT ime, Relational-Sequential-Yu is better
than Relational-Parallel. In Relational-Parallel, Krandom ≤
Nsegments × Nattribute in a query because at most Nsegments ×
Nattributes in a query seek operations could occur during query
processing. Here, Nsegments is defined as (the number of
simultaneous-access sector groups occupied by each at-
tribute) /Nrows successively accessed. However, in Relational-
Sequential-Yu, Krandom = 1.

For TotalTrans f erT ime, Relational-Parallel is better
than Relational-Sequential-Yu. In Relational-Sequential-
Yu, Kparallel = min (Ntuples in a row×Nattribute in a query, NAPT ).
On the other hand, in Relational-Parallel, since NPT is usu-
ally a multiple of NAPT [7], all NAPT probe tips are used for
reading the data. Thus, Kparallel = NAPT .

The difference in TotalTrans f erT ime between the
two data placements increases as RetrievalDataS ize
gets larger, while the difference in TotalS eekT ime is
limited to (S eekT imers × Nsegments × Nattribute in a query).
Thus, as RetrievalDataS ize exceeds a certain threshold,
RetrievalT ime of Relational-Parallel becomes smaller than
that of Relational-Sequential-Yu because the advantage in
the transfer time overrides the disadvantage in the seek time.

We also compare the memory size required to
achieve maximum data retrieval performance. Relational-
Sequential-Yu, Relational-Parallel2, and Relational-Parallel
require (S ectorS ize × NAPT ), (S ectorS ize × NPT ×
query selectivity × Npro jection), and (data size ×
query selectivity × Npro jection

k ), respectively. Here, k is the
number of attributes in the relation. Thus, we note that
the memory size of three methods generally increases in
the following order: Relational-Sequential-Yu, Relational-
Parallel2, and Relational-Parallel.

6.1.4 Comparison with Disk-Based Data Placements

Relational-Sequential-Yu, Relational-Parallel, and Rela-
tional-Parallel2 are similar to the N-ary Storage Model
(NSM) [17], the Decomposition Storage Model (DSM) [4],
and the Partition Attributes Across (PAX) model [1], respec-
tively, which have been proposed as data placements for re-
lational data in a disk environment. Figure 12 shows the
data placements of the relational R by NSM, DSM, and
PAX. In Fig. 12 (a), NSM sequentially places tuples of the
relation R in slotted disk pages. In Fig. 12 (b), DSM par-

Fig. 12 Data placements of the relation R in slotted disk pages. (a) NSM.
(b) DSM. (c) PAX.

titions the relation R into sub-relations based on the num-
ber of attributes such that each sub-relation corresponds to
an attribute. Here, DSM places an attribute value of a tu-
ple together with the identifier of the tuple (simply, TID)
so as to be used for joining sub-relations. In Fig. 12 (c),
PAX places tuples of the relation R in slotted disk pages
like NSM, but the tuples in a slotted page are partitioned
into sub-pages such that each sub-page corresponds to an
attribute like DSM.

Although the data placements of NSM, DSM, and PAX
are similar to those of Relational-Sequential-Yu, Relational-
Parallel, and Relational-Parallel2, the data retrieval costs for
range select queries are quite different. As mentioned in
Sect. 3, NSM, DSM, and PAX consider NAPT probe tips
as one head. But, Relational-Sequential-Yu, Relational-
Parallel, and Relational-Parallel2 use multiple probe tips
for accessing data by freely selecting and activating them.
NSM reads all attribute values of the tuples [17], [24], while
Relational-Sequential-Yu reads only the projected attribute
values by using multiple probe tips. DSM reads all the val-
ues of the sub-relations corresponding to the projected at-
tributes [4], [24], while Relational-Parallel reads only those
values of the tuples that satisfy the condition by using mul-
tiple probe tips. PAX reads all attribute values of the tu-
ples [1] like NSM, while Relational-Parallel2 reads only
those values of the tuples that satisfy the condition like
Relational-Parallel. However, if we consider the simple pro-
jection queries with no range condition, Relational-Parallel
and Relational-Parallel2 read all the values of projected
attributes as well. In this case, Relational-Parallel and
Relational-Parallel2 become the same as DSM.

6.2 Data Placements for Two-Dimensional Spatial Data

In this section, we deal with an application that places a set
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Fig. 13 Spatial-Sequential-Yu. (a) The set S of two-dimensional spatial
objects. (b) Placement in the RS model.

of two-dimensional spatial objects, and then, executes re-
gion queries over those objects. This application is the same
one dealt with by Yu et al. [23] as described in Sect. 3.2.2.
We consider two data placements for spatial data. We define
the data placement derived by using Strategy Sequential as
Spatial-Sequential-Yu, and the one derived by using Strat-
egy Parallel as Spatial-Parallel. Spatial-Sequential-Yu turns
out to be identical to the placement proposed by Yu et
al. [23].

6.2.1 Spatial-Sequential-Yu

Spatial-Sequential-Yu intends to provide highly sequential
reading of data by preventing seek operations. We place
spatial objects such that a rectangular region in the two-
dimensional space is represented as a rectangular region in
the RS model. By such a placement, for any rectangular
query region, we make Krandom = 0 because objects in the
query region are already quasi-contiguously placed in the
Sector axis of the RS model †.

Figure 13 shows Spatial-Sequential-Yu. Spatial-
Sequential-Yu places a spatial object in the X-Y plane on
a tip sector in the Region-Sector plane. Here, we again as-
sume that one spatial object can be stored in one tip sec-
tor. Equation (13) shows a mapping function fS pacetoRS

that stores the object ox,y on the tip sector <r, s> in the RS
model.

fS pacetoRS (ox,y) =

{
r = x
s = y

(13)

In Fig. 14 (a), the shaded area indicates the query re-
gion in the two-dimensional space. In Fig. 14 (b), the shaded
area indicates the corresponding region in the RS model. Let
QueryRegionS izex be the width of the corresponding query
region. Then, �QueryRegionS izex

NAPT
� sequential scans are required

for query processing.
If the number of spatial objects in the direction of the

X axis is larger than NPT , we vertically partition the two-
dimensional space into components having a width of NPT

or less, and then, place the components on the Region-
Sector plane along the direction of the Sector axis. Then,
the query cost should reflect one additional seek time for

Fig. 14 The query region to be retrieved in Spatial-Sequential-Yu.
(a) The query region to be retrieved in the two-dimensional space. (b) The
query region to be retrieved in the RS model.

Fig. 15 Spatial-Parallel. (a) The set S of two-dimensional spatial ob-
jects. (b) Placement in the RS model.

each component.
Spatial-Sequential-Yu is in effect identical to the data

placement proposed by Yu et al. [23] in Sect. 3.2.2. Eq. (13)
is identical to the composition of Eq. (9) and Eq. (5),
i.e., fMEMS toRS ( fS pacetoMEMS (ox,y)). Thus, both Spatial-
Sequential-Yu and Yu et al.’s data placement put the ob-
ject ox,y in the same tip sector in the MEMS storage de-
vice. Nevertheless, as in Relational-Sequential-Yu, under-
standing Spatial-Sequential-Yu is much easier than under-
standing Yu et al.’s data placement due to the abstraction of
the RS model.

6.2.2 Spatial-Parallel

Spatial-Parallel intends to provide highly parallel reading
of data by increasing the number of probe tips used during
query processing. We partition the two-dimensional space
into blocks, and then, place spatial objects in a block into a
simultaneous-access sector group of the RS model. By such
a placement, for any rectangular query region, we can make
Kparallel to be as close to NAPT as possible.

Figure 15 shows Spatial-Parallel, which places spatial
objects through the following three steps.

†If the number of objects along the X axis exceeds NAPT for
the query region, more than one scan is required. As in Footnote 1,
for each scan, a turnaround operation occurs in practice, but it is
negligible compared with seek time or transfer time.
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Fig. 16 The query region to be retrieved in Spatial-Parallel. (a) A two-
dimensional space. (b) The RS model.

1. Partitioning step: We partition the two-dimensional
space into blocks that form a rectangular grid such that
the total size of spatial objects in one block is equal to
the total size of tip sectors in one simultaneous sector
group.

2. Ordering step: We sort the partitioned blocks according
to a space filling curve [11]. A space filling curve such
as the Z-order [16] or Hilbert order [9], [15], is a way of
linearly ordering regions in a multi-dimensional space
into a one-dimensional space so as to keep the cluster-
ing [11]. Here, We use the Hilbert order.

3. Placement step: We place spatial objects of the i th
block in the sequence constructed in Step 2 on the i th
simultaneous-access sector group of the RS model in
the row-major order (1 ≤ i ≤ Nblock).

Figure 16 shows the region being retrieved by a query.
In Fig. 16 (a), the shaded area indicates the query region,
and the slashed area indicates the set of blocks overlap-
ping with the query region. Hereafter, we call this set of
overlapping blocks the QueryBlockS et. In Fig. 16 (b), the
shaded area indicates the corresponding query region to be
retrieved in the RS model. For data retrieval, we first find the
set of simultaneous-access sector groups corresponding to
QueryBlockS et, and then, read the data on tip sectors over-
lapping with the query region †. Here, seek operations oc-
cur at most as many times as the number of blocks in the
QueryBlockS et.

Here, we use two physical database design tech-
niques to reduce the number of seek operations during
query processing. First, in the partitioning step, we set
the aspect ratio of a block (BlockAspectRatio) to be the
weighted average aspect ratio of a query region defined as
QueryAspectRatio =

∑
i ( fi×QueryResionS izeix )∑
i ( fi×QueryResionS izeiy ) , where fi is the

query frequency. It has been proven by Lee et al. [13] that
the number of blocks in QueryBlockS et is minimized when
this condition is met. Second, in the ordering step, we
use the Hilbert order as the space filling curve. The more
contiguously the simultaneous-access sector groups corre-
sponding to QueryBlockS et are placed, the fewer seek op-
erations occur during query processing. Here, the degree of
clustering of the blocks in QueryBlockS et is dependent on
the space filling curve to be used. It is known that the Hilbert

Table 6 The notation for analyzing the retrieval time.

Symbols Definitions

QueryRegionS izex the width of a query region
QueryRegionS izey the height of a query region
QueryRegionS ize the size of a query region (=

QueryRegionS izex × QueryRegionS izey)
QueryAspectRatio the ratio of width to height of a query

region (= QueryRegionS izex
QueryRegionS izey

)

#QueryBlocks the number of blocks in QueryBlockS et

order achieves the best clustering [15].
Spatial-Parallel is a new data placement technique that

focuses on parallelism, while Spatial-Sequential-Yu focuses
on reducing the number of seek operations as in the tradi-
tional disk-based approach.

6.2.3 Comparison between Spatial-Sequential-Yu and
Spatial-Parallel

The parameters affecting the retrieval time in data place-
ments for two-dimensional spatial data are the size and the
aspect ratio of the query region. In this section, we com-
pare the retrieval time of Spatial-Sequential-Yu and Spatial-
Parallel by using Eq. (10). Table 6 summarizes the notation
to be used for analyzing the retrieval time.

For TotalS eekT ime, Spatial-Sequential-Yu is better
than Spatial-Parallel. For Spatial-Sequential-Yu, Krandom =

1 because a query region is retrieved without seek opera-
tions. For Spatial-Parallel, Krandom ≤ #QueryBlocks. Thus,
from Eq. (10), Spatial-Parallel has additional seek time of at
most #QueryBlocks × S eekT imers compared with Spatial-
Sequential-Yu.

For TotalTrans f erT ime, either Spatial-Sequential-Yu
or Spatial-Parallel is better than the other depending on
the size and aspect ratio of the query region. In Spatial-
Sequential-Yu, Kparallel decreases as QueryRegionS ize or
QueryAspectRatio gets smaller because less probe tips can
be used to read the tip sectors in the query region. On the
other hand, in Spatial-Parallel, Kparallel is less affected by
QueryAspectRatio than in Spatial-Sequential-Yu because
a query region is represented as a set of simultaneous-
access sector groups rather than as a rectangular region.
For example, when QueryAspectRatio is very small (e.g.,
QueryAspectRatio = 1

16 ), in Spatial-Sequential-Yu, only a
few probe tips may be used; but in Spatial-Parallel, much
more probe tips will be used because objects in the query
region are placed widely in the direction of the Region axis.
Therefore, Spatial-Parallel has more advantage over Spatial-
Sequential-Yu as QueryRegionS ize or QueryAspectRatio
gets smaller.

If QueryRegionS ize or QueryAspectRatio decreases
below a certain threshold, the retrieval time of Spatial-
Parallel becomes smaller than that of Spatial-Sequential-

†If the number of tip sectors overlapping with the query region
exceeds NAPT , more than one scan is required. As in Footnote 1,
for each scan, a turnaround operation occurs in practice, but it is
negligible compared with seek time or transfer time.
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Yu because its advantage in the transfer time more than
compensates for its disadvantage in seek time. Conse-
quently, Spatial-Parallel has the following two good charac-
teristics: (1) the data retrieval performance is superior to that
of Spatial-Sequential-Yu for highly selective queries, (2) the
performance is largely independent of the aspect ratio of the
query region.

7. Performance Evaluation

7.1 Experimental Data and Environment

We compare the data retrieval performance of the new data
placements proposed in this paper with those of existing data
placements. We use retrieval time as the measure of the per-
formance.

7.1.1 Experiments for Relational Data

We compare data retrieval performance of the follow-
ing seven data placements: Relational-Parallel, Relational-
Parallel2, Relational-Sequential-Yu, Relational-Lower-
Bound, NSM-Griffin, DSM-Griffin, and PAX-Griffin. Here,
Relational-LowerBound is a virtual data placement that has
a lower bound of retrieval time in the RS model (i.e.,
Kparallel = NAPT and Krandom = 0). We use this data place-
ment in order to show how close the performance of each
of the other data placements is to a lower bound of the RS
model. NSM-Griffin, DSM-Griffin, and PAX-Griffin are the
data placements using NSM [17], DSM [4], and PAX [1] in
Sect. 6.1.4 based on the linear abstraction proposed by Grif-
fin et al. [7], which corresponds to the disk mapping layer of
Fig. 6 (a). In NSM-Griffin, DSM-Griffin, and PAX-Griffin,
NAPT probe tips are activated for accessing data.

For experimental data, we use the synthetic relational
data that is used by Yu et al. [24]. Here, we set the number
of attributes of the relation to be 16 and the size of each
attribute to be 8 bytes as in Yu et al. [24].

We perform two experiments for the range selection
query in Eq. (12). In Experiment 1, we measure the retrieval
time while varying data size from 5 Mbytes to 320 Mbytes.
Here, we set Npro jection = 8 and selectivity = 0.1. In Ex-
periment 2, we measure the retrieval time while varying
Npro jection from 1 to 16. In Experiment 3, we also briefly
compare the data retrieval performance of Relational-
Sequential-Yu-Parallel with those of Relational-Sequential-
Yu and Relational-Parallel (x %). Here, Relational-
Sequential-Yu-Parallel is Relational-Sequential-Yu using
the data retrieval method of Relational-Parallel, which has
been introduced in Sect. 6.1.2, and Relational-Parallel (x %)
indicates that we have an available memory buffer of x % of
(the relational data size × query selectivity). Table 7 sum-
marizes these experiments and the parameters.

7.1.2 Experiments for Two-Dimensional Spatial Data

Here, we compare data retrieval performance of three

Table 7 Experiments and parameters for relational data.

Experiments Parameters

Exp. 1 comparison of data data size 5 ∼ 320 MB
retrieval performance Npro jection 8
as the size of data is selectivity 0.1

varied available 100 %
buffer size

Exp. 2 comparison of data data size 320 MB
retrieval performance as Npro jection 1 ∼ 16

Npro jection is varied selectivity 0.1
available 100 %

buffer size
Exp. 3 comparison of data data size 320 MB

retrieval performance Npro jection 1 ∼ 16
of Relational-Sequential- selectivity 0.1, 0.5

Yu-Parallel with those available 0.5, 1,
of the others buffer size 5, 100 %

Exp. 4 comparison of data data size 320 MB
retrieval performance Npro jection 8
as the available buffer selectivity 0.1

size is varied available 1
16 ∼ 32 MB

buffer size

Table 8 Experiments and parameters for two-dimensional spatial data.

Experiments Parameters

Exp. 5 comparison of data QueryRegionS ize 0.01 ∼
retrieval performance 10 %
as QueryRegionS ize QueryAspectRatio 1

is varied
Exp. 6 comparison of data QueryRegionS ize 0.001,

retrieval performance 1 %
as QueryAspectRatio QueryAspectRatio 16 ∼

is varied 1
16

data placements: Spatial-Parallel, Spatial-Sequential-Yu,
and Spatial-LowerBound. As in Sect. 7.1.1, Spatial-
LowerBound is defined to be the case where Kparallel = NAPT

and Krandom = 0.
For the experimental data, we use the synthetic spatial

data that is generated by the same method used by Yu et
al. [23]. Here, we set the number of spatial objects to be
40,960,000 and the size of each object to be 8 bytes.

We perform two experiments. In Experiment 4, we
measure the retrieval time while varying QueryRegionS ize
from 0.01% to 10% of that of the spatial data. Here, the
shape of a query is a square (i.e., QueryAspectRatio =
1). In Experiment 5, we measure the retrieval time while
varying QueryAspectRatio from 16 to 1

16 . Here, we fix
QueryRegionS ize to be 1% of the size of the spatial data.
Table 8 summarizes the experiments and the parameters.

7.1.3 An Emulator of the MEMS Storage Device

We have implemented an emulator of the MEMS storage de-
vice since a physical MEMS storage device is not available
on the market yet. We have implemented an emulator of the
CMU MEMS storage device using formulas and parameters
proposed by Griffin et al. [7], [8]. We conduct all experi-
ments on a Pentium 4 3.0 GHz Linux PC with 2 GBytes of
main memory.
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Fig. 17 Retrieval time for relational data as the data size is varied
(Npro jection = 8, selectivity = 0.1).

7.2 Results of the Experiments

7.2.1 Relational Data

Experiment 1:
Figure 17 shows the retrieval time of seven data place-
ments as the data size is varied †. As analyzed in Sect. 6.1,
Relational-Parallel and Relational-Parallel2 are superior to
Relational-Sequential-Yu. As the size of data is varied from
5 Mbytes to 320 Mbytes, the performance of Relational-
Parallel improves from 2.6 to 4.0 times over that of
Relational-Sequential-Yu. We note that the query perfor-
mance of NSM-Griffin and PAX-Griffin are much poorer
than those of the others. This result indicates that disk map-
ping approaches provide relatively poor performance com-
pared with device-specific approaches since the characteris-
tics of the MEMS storage device are not fully utilized.
Experiment 2:
Figure 18 shows the retrieval time of seven data place-
ments as Npro jection is varied. As Npro jection increases,
the retrieval times of Relational-Parallel and Relational-
Parallel2 increase linearly. In contrast, that of Relational-
Sequential-Yu increases in a stepwise manner. The rea-
son for this behavior is that the number of sequen-
tial scans (�Ntuples in a row×Npro jection

NAPT
�) in Relational-Sequential-

Yu increases by an integer number. We note that
Relational-Parallel is closer to Relational-LowerBound than
Relational-Parallel2 and Relational-Sequential-Yu. As
Npro jection is varied from 1 to 16, the performance of
Relational-Parallel improves from 2.3 to 4.7 times over that
of Relational-Sequential-Yu. The retrieval times of NSM-
Griffin and PAX-Griffin are constant over all Npro jection be-
cause they always read all the attribute values of the relation
regardless of Npro jection.

In Fig. 18, we note that the retrieval time of Relational-
Sequential-Yu is slightly larger than those of NSM-Griffin,
DSM-Griffin, and PAX-Griffin when accessing the entire re-
lation (i.e., Npro jection = 16). It is because the linear abstrac-
tion proposed by Griffin et al. [7] is optimized for sequential

Fig. 18 Retrieval time for relational data as Npro jection is varied (data size
= 320 Mbytes, selectivity = 0.1).

access. The linear abstraction arranges tip sectors so as to
fast access all the tip sectors in the MEMS storage device.
It first accesses all the tip sectors of the first column of ev-
ery region by activating another set of NAPT probe tips, and
then, accesses all the tip sectors of the second column, and
so on. Thus, when accessing the entire tip sectors in the
MEMS storage device, the RS model is worse than the lin-
ear abstraction in seek time. The number of seek operations
of the RS model (S x×� NPT

NAPT
�) is larger than that of the linear

abstraction (S x).
Experiment 3:
Figure 19 shows the retrieval time of Relational-
Parallel, Relational-Parallel2, Relational-Sequential-Yu,
and Relational-Sequential-Yu-Parallel as Npro jection is var-
ied. In Fig. 19 (a), we note that Relational-Parallel
is superior to Relational-Sequential-Yu and Relational-
Sequential-Yu-Parallel when the available buffer is larger
than 5 % of (the relational data size × query selectivity).
However, the performance of Relational-Parallel becomes
worse as the available buffer size gets smaller and be-
comes partially inferior to Relational-Sequential-Yu and
Relational-Sequential-Yu-Parallel when it is less than 1 %
of (the relational data size × query selectivity). Relational-
Parallel (1 %) improves the data retrieval performance by
0.9 ∼ 3.2 times (when selectivity = 0.5) and by 2.0 ∼ 3.3
times (when selectivity = 0.1) compared with Relational-
Sequential-Yu. It also improves the data retrieval per-
formance by 0.7 ∼ 3.7 times (when selectivity = 0.5)
and by 0.9 ∼ 4.9 times (when selectivity = 0.1) com-
pared with Relational-Sequential-Yu-Parallel. We can ex-
pect that Relational-Parallel becomes superior to Relational-
Sequential-Yu and Relational-Sequential-Yu-Parallel as the
selectivity of the query gets lower.
Experiment 4:
Figure 20 shows the retrieval time of Relational-Parallel,
Relational-Parallel2, and Relational-Sequential-Yu as the

†Here, for the sake of fairness, we did not include the TIDs
in DSM-Griffin that are used for joins. Our method Relational-
Parallel, Relational-Parallel2, and Relational-Sequential-Yu do not
use TIDs.
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Fig. 19 Retrieval time for relational data as Npro jection is varied (data size
= 320 Mbytes, available buffer size = 0.5, 1, 5, 100 %). (a) Selectivity =
0.5. (b) Selectivity = 0.1.

Fig. 20 Retrieval time for relational data as the available buffer size is
varied (data size = 320 Mbytes, selectivity = 0.1, Npro jection = 8).

available buffer size is varied. As analyzed in Sect. 6.1.3,
in Fig. 20, Relational-Sequential-Yu, Relational-Parallel2,
and Relational-Parallel approximately require 10 Kbytes,
41 Kbytes, and 16 Mbytes to achieve maximum perfor-
mance. Figure 20 shows that Relational-Parallel is supe-
rior to Relational-Sequential-Yu even when the available
buffer size is small (i.e., when the available buffer size =
1

16 Mbytes).

Fig. 21 Retrieval time of spatial data as QueryRegionS ize is varied
(QueryAspectRatio = 1).

7.2.2 Two-Dimensional Spatial Data

Experiment 5:
Figure 21 shows the retrieval time of three data placements
as QueryRegionS ize is varied. As we argued in Sect. 6.2, we
observe that Spatial-Parallel becomes superior to Spatial-
Sequential-Yu as QueryRegionS ize gets smaller, that is,
as the selectivity of the query gets lower. In Fig. 21, as
QueryRegionS ize is varied from 10 % to 0.01 %, the per-
formance of Spatial-Parallel improves from 1.1 to 4.8 times
over that of Spatial-Sequential-Yu.
Experiment 6:
Figure 22 shows the retrieval time as queryAspectRatio
is varied. As we argued in Sect. 6.2, we observe that
Spatial-Sequential-Yu degrades as QueryAspectRatio de-
creases (i.e., QueryRegionS izex decreases). This is be-
cause Kparallel in Spatial-Sequential-Yu decreases. The per-
formance of Spatial-Parallel, however, stays largely flat re-
gardless of QueryAspectRatio. Figure 22 also shows that
Spatial-Parallel is close to Spatial-LowerBound. Spatial-
Parallel improve the data retrieval performance by 0.6 ∼
4.5 times (when QueryRegionS ize = 1 %) and by 1.5
∼ 18.7 times (when QueryRegionS ize = 0.01 %) com-
pared with Spatial-Sequential-Yu. We can expect that
Spatial-Parallel becomes superior to Spatial-Sequential-Yu
as QueryRegionS ize gets smaller.

In Fig. 22 (a), we note that the retrieval time of Spatial-
Sequential-Yu when QueryAspectRatio = 8 is slightly
larger than the time when QueryAspectRatio = 4. It is
because the case of QueryAspectRatio = 8 requires more
scan operations for accessing the query region than that of
QueryAspectRatio = 4. The case of QueryAspectRatio = 8
requires two scans (� 1820

1280 � = 2) as mentioned in Sect. 6.2
while the case of QueryAspectRatio = 4 only one scan
(� 1280

1280 � = 1). Although the case of QueryAspectRatio =
16 also requires two scans (� 2560

1280 � = 2), it takes less re-
trieval time than the case of QueryAspectRatio = 8 because
the height of the query region (i.e., QueryRegionS izey) is
shorter than the case of QueryAspectRatio = 8.
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Fig. 22 Retrieval time of spatial data as QueryAspectRatio is varied.
(a) QueryRegionS ize = 1 %. (b) QueryRegionS ize = 0.01 %.

8. Conclusions

We have proposed a logical model called the RS model that
abstracts the physical MEMS storage model. The RS model
simplifies the structure of the MEMS storage device by rear-
ranging its tip sectors into a virtual two-dimensional plane.
As a result, the RS model represents the position of a tip
sector with only two parameters while the physical MEMS
storage model requires four parameters. Despite this sim-
plification, the RS model provides characteristics for ran-
dom access and sequential access (i.e., seek time and trans-
fer rate) almost identical to those of the physical MEMS
storage model.

We have presented an analytic formula for retrieval per-
formance of the RS model in Eq. (10), and then, proposed
heuristic data placement strategies – Strategy Sequential
and Strategy Parallel – based on that formula. Strat-
egy Parallel makes best effort to maximize the number of
probe tips to be used while Strategy Sequential makes best
effort to minimize the number of seek operations.

By using those strategies, we have derived data place-
ments for relational data and two-dimensional spatial data.
We have identified that data placements derived by Strat-
egy Sequential are in effect identical to those in Yu et
al. [23], [24] and that those derived by Strategy Parallel are
new ones discovered. Further, through extensive analy-

sis and experiments, we have compared the retrieval per-
formance of our new data placements with those of ex-
isting ones. Experimental results using relational data of
320 MBytes show that Relational-Parallel improves the per-
formance by 2.0 ∼ 3.3 times (when the query selectivity =
0.1 and the available buffer size = 1 %) as Npro jection is var-
ied from 1 to 16 compared with Yu et al. [24] (Relational-
Sequential-Yu). However, for smaller buffer sizes, the per-
formance of Relational-Parallel degrades and becomes par-
tially inferior to other methods. The choice of the method
should be made depending on the available buffer mem-
ory. Experimental results using two-dimensional spatial
data of 328 MBytes show that Spatial-Parallel improves
data retrieval performance by 1.5 ∼ 18.7 times (when
QueryRegionS ize = 0.01 %) as QueryAspectRatio is var-
ied from 16 to 1

16 compared with Yu et al. [23] (Spatial-
Sequential-Yu). Furthermore, these improvements are ex-
pected to become more marked as the size of the data grows,
reflecting the strength of our model.

Overall, these results indicate that the RS model is a
new logical model for the MEMS storage device that al-
lows users to easily understand and effectively use this rather
complex device.
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