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Comparative Analysis of Automatic Exudate Detection between
Machine Learning and Traditional Approaches

Akara SOPHARAK†a), Nonmember, Bunyarit UYYANONVARA†, Member, Sarah BARMAN††,
and Thomas WILLIAMSON†††, Nonmembers

SUMMARY To prevent blindness from diabetic retinopathy, periodic
screening and early diagnosis are neccessary. Due to lack of expert oph-
thalmologists in rural area, automated early exudate (one of visible sign of
diabetic retinopathy) detection could help to reduce the number of blind-
ness in diabetic patients. Traditional automatic exudate detection methods
are based on specific parameter configuration, while the machine learning
approaches which seems more flexible may be computationally high cost.
A comparative analysis of traditional and machine learning of exudates de-
tection, namely, mathematical morphology, fuzzy c-means clustering, naive
Bayesian classifier, Support Vector Machine and Nearest Neighbor classi-
fier are presented. Detected exudates are validated with expert ophthalmol-
ogists’ hand-drawn ground-truths. The sensitivity, specificity, precision,
accuracy and time complexity of each method are also compared.
key words: exudate, diabetic retinopathy, morphological, fuzzy c-means,
naive Bayesian classifier, support vector machine, nearest neighbor classi-
fier

1. Introduction

For people with diabetes, diabetic retinopathy is the major
cause of blindness. Early screening for diabetic retinopathy
could improve the prognosis of proliferative retinopathy and
reduce risk factor to lower the rate of blindness [1]–[4]. The
appearance of microaneurysms, haemorrhages and exudates
would represent the degree of disease. From visual inspec-
tion, exudates appear to be a yellowish or white colour with
varying sizes, shape and locations. In this paper, we con-
centrate on exudate detection as a marker for the presence
of macular edema. If the exudates extend into the macular
area, vision loss can occur. In addition, the location of ex-
udates based on macular position is important information
for an ophthalmologist [5], [6]. They show the severity of
disease, where exudates that appear closer to the macular
indicate an increased severity of disease. A grid circle cen-
tred on the macular is added to provide improved diagnosis
to the ophthalmologist [7]. Automatic exudate detection can
assist ophthalmologists prevent and treat the disease more
efficiently.

Many techniques have been employed to the exudate

Manuscript received May 7, 2009.
†The authors are with Sirindhorn International Institute of

Technology, Thammasat University, 131 Moo 5, Tiwanont Road,
Bangkadi, Muang, Pathumthani, 12000, Thailand.
††The author is with Kingston University, Penrhyn Road,

Kingston Upon Thames, Surrey, KT1 2EE, UK.
†††The author is with the Department of Ophthalmology, St

Thomas’ Hospital London, SE1 7EH, UK.
a) E-mail: akara@siit.tu.ac.th

DOI: 10.1587/transinf.E92.D.2264

detection. B. Ege et al. [1] use thresholding to segment
bright lesions and dark lesions, perform region growing, and
then identify exudate regions with Bayesian, Mahalanobis
and nearest neighbor classifiers. C. Sinthanayothin et al. [2]
report the result of an automated detection of diabetic
retinopathy using recursive region growing segmentation
(RRGS). A. Osarah et al. [8], [9] use fuzzy c-means (FCM)
clustering to segment colour retinal image, then neural net-
work and support vector machines (SVMs) are used to sep-
arate exudate and non-exudate areas. T. Walter et al. [10]
use morphological reconstruction techniques to detect con-
tour of exudates. C.I. Sanchez et al. [11] combine colour and
sharp edge features to detect exudates. D. Usher et al. [12]
use a combination of RRGS and adaptive intensity thresh-
olding to detect candidate exudate regions and a neural net-
work is used to classify exudate and non-exudate. X. Zhang
and O. Chutatape [13] use local contrast enhancement and
FCM to segment candidate bright lesion areas. SVMs is
also used to classify exudates and cotton wool spots.

Most techniques mentioned earlier work on images
taken where the pupils of the patient are dilated in which
the exudates and other retinal features are clearly visible.
Good quality images are required. The examination time
and effect on the patient could be reduced if the system can
succeed on non-dilated pupils. Automatic exudate detection
on images acquired without pupil dilation is investigated
to provide decision support and reduce ophthalmologists’
workload.

In previous work, we have proposed and evaluated
method for automatic exudate detection using mathemat-
ical morphology techniques [7], [14], FCM [15], a combi-
nation of FCM and mathematical morphology [16], naive
Bayesian classifier [17], SVMs classifier [18] and nearest
neighbor classifier.

Because the nature of exudates appearing in the im-
age varies in shapes and sizes, in order to detect exudates
effectively using traditional approaches, such as mathemat-
ical morphology or fuzzy c-means (FCM) clustering, these
methods require predefined setting of many parameters spe-
cific to the data set. Machine learning approaches may help
eliminate the process of parameter configuration. However,
it may be costly. In this paper, comparative analysis of
both traditional and machine learning approaches, namely,
mathematical morphology, FCM, naive Bayesian, SVMs
and nearest neighbour classifier are presented. Section 2
briefly describes each detection method. Performances of
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classifiers are compared in Sect. 3. The paper is discussed
and concluded in Sect. 4.

2. Method

All digital retinal images are taken without pupil dilation
with a KOWA-7 non-mydriatic retinal camera with a 45�
field of view. The images are stored in JPEG image format
files (.jpg) with lowest compression rates. The image size is
752 × 500 pixels at 24 bits per pixel.

In order to enhance the contrast of the image, a prepro-
cessing method, as described in Sect. 2.1, is applied. Optic
disc (OD) area has to be removed prior to the exudate detec-
tion and OD detection is described in Sect. 2.2. Classifica-
tion experiments are clarified in Sect. 2.3.

2.1 Preprocessing

Each original RGB image is transformed to HSI colour
space. A median filtering operation is then applied on in-
tensity band to reduce noise. A contrast-limited adaptive
histogram equalization (CLAHE) operator [19] is then ap-
plied to enhance the local contrast.

2.2 Optic Disc Detection

Exudate detection is our main purpose; however the optic
disc has to be removed first because it has characteristics
similar to exudates. It appears with similar intensity, colour
and contrast to other features on the retinal images [20],
[21]. Two separated techniques are used to ensure reliability
of the optic disc detection. The first technique is based on
a morphology method [7]. The optic disc is characterized
by the largest high contrast among circular shape areas. Ap-
plying a grayscale closing operator on the intensity channel
eliminates the vessels which may remain in the optic disc
region. A flat disc-shaped structuring element with a fixed
radius of eight is used. The resulting image is binarized
and the image is then used as a mask. All the pixels in the
mask are inverted before they are overlaid on the original
image to remove candidate bright regions. The morpholog-
ical reconstruction by dilation is then applied on the pre-
vious overlaid image. The difference between the original
image and the reconstructed image is thresholded. The op-
tic disc is then detected as the largest high contrast among
circular shape area from the resulting image. On the sec-
ond technique, the optic disc is detected by using entropy
feature on preprocessed intensity image [15]–[17]. The lo-
cal pixel intensity entropy measure is high when the region
around a pixel is complex and low when it is smooth. After
filtering with the entropy operator, Otsu’s binarization algo-
rithm [22] is applied to separate the complex regions from
the smooth regions. The optic disc is then detected by the
largest connected component whose shape is approximately
circular. Intersect of result from both methods is used as an
OD mask.

2.3 Exudate Detection

Exudate detection using mathematical morphology, FCM,
a combination of FCM and mathematical morphology, naive
Bayesian classifier, SVMs and nearest neighbor classifier
are presented.

2.3.1 Mathematical Morphology

Similar to the optic disc detection steps using morphologi-
cal method, high contrast vessels can be eliminated first by
a closing operator before a local variation operator is ap-
plied. The resulting image is thresholded to get rid of all
regions with low local variation. To ensure that all the neigh-
boring pixels are also included in the candidate region, a di-
lation operator is also applied. The detected optic disc is
then removed. The resulting image is used as a mask, show-
ing all possible candidate regions of exudates. The exudate
detection areas are obtained by applying a threshold oper-
ator to the difference between the original image and the
reconstructed image.

2.3.2 Fuzzy C-Means Clustering

Four features are experimentally selected as input for FCM
clustering. They are the intensity value after pre-processing,
the standard deviation of intensity, hue and number of edge
pixels from an edge image. For the number of edge pixels,
we apply a Sobel edge operator then eliminate the strong
edges arising from blood vessels and the optic disc using
decorrelation stretch [23] on the red band. To determine the
suitable number of cluster for FCM clustering, quantitative
experiments with a parameter of a number of clusters vary-
ing from two to eight clusters are tested.

2.3.3 Combination of FCM and Mathematical Morphol-
ogy Method

In this experiment we combine both FCM and Morphology
for exudate detection. The image is coarsely segmented first
using FCM clustering and then a fine segmentation using
morphological reconstruction is applied. Four features from
previous experiment are selected as input for clustering in
FCM. The result from FCM clustering is a rough estimation
of the exudates; a fine segmentation using morphological
reconstruction is applied to get a better result.

2.3.4 Naive Bayesian Classifier

Fifteen features (including 4 features from previous experi-
ments) are proposed to distinguish exudate pixel from non-
exudate pixels. They are 1. the pixel’s intensity value af-
ter preprocessing, 2. the standard deviation of the prepro-
cessed intensity value, 3. the pixel’s hue, 4. the number of
edge pixel in a region around the pixel, 5. the average inten-
sity of the pixel’s cluster, 6. the size (measured in pixels) of
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Fig. 1 Input features. (a) Preprocessed intensity. (b) Standard deviation
of intensity. (c) Hue. (d) Number of edge pixels. (e) Cluster intensity.
(f) DoG1. (g) DoG2. (h) DoG3. (i) DoG4. (j) DoG5. (k) DoG6.

the pixel’s cluster, 7. the average intensity of the pixels in
the neighborhood of the pixel’s cluster, 8. the ratio between
the size of the pixel’s cluster and the size of the optic disc,
9. the distance between the pixel’s cluster and the optic disc
and six Difference of Gaussian (DoG) filter responses with
six different standard deviation values, namely DoG1, DoG2
and so on. Examples of some of the features are shown in
Fig. 1. Before feature selection or classification, we z-scale
(transform to a mean of 0 and a standard deviation of 1) all
15 features using the statistics of each feature over the train-
ing set.

Feature selection proceeds as follows. We first esti-
mate the model from a training set using all features then
evaluate the resulting classifier’s performance on a separate
test set. Then we iteratively delete features until the aver-
age of the precision and recall (PR, see next section) stops
improving. On each step, for each feature, we delete that
feature from the model, train a new classifier, and evaluate
its performance on the test set. The PR of the best such clas-
sifier is compared to the PR of the classifier without deleted
features. If PR improves, we permanently delete that fea-
ture then repeat the process. Finally, the best feature set and
classifier are retained.

2.3.5 Support Vector Machines Classifier

SVMs map training data into a high-dimensional feature
space in which we can construct a separating hyper-plane
maximizing the margin, or distance from the hyperplane to
the nearest training data points. The ν-SVM [24] with a ra-
dial basis function (RBF) kernel is used in which the pa-
rameter ν ∈ [0, 1] controls how many support vectors are al-
lowed to lie on the wrong side of the separating hyper-plane.

We use the best feature set obtained from naive
Bayesian classifier as an initial feature set for the SVM.
We then add features to the SVM classifier one at a time
and compare the PR of each classifier to that of the previ-
ous classifier. The first feature added in is always the last
feature removed as the same sequence of previous naive
Bayesian classifier’s feature selection process. The feature-
adding process is repeated until all features are added back.
The best feature set is the set which provides the highest PR.

2.3.6 Nearest Neighbor Classifier

The nearest neighbor classifier simply classifies a test in-
stance with the class of the nearest training instance accord-
ing to two distance measures, Mahalanobis and Euclidean
distance.

2.3.7 Macular Detection

The macular is detected from the intensity image by the
darkest region on the retinal image; it is not always the case
due to high illumination. The typical characteristics of the
macular (for example, it is within the neighborhood of the
optic disc) is also used to detect the macular more accu-
rately. The darkest area in the neighborhood of the optic
disc (approximately 2.5 times the diameter of the optic disc
from the centre of optic disc) is considered as a macular.
A Macular grid is drawn according to the ETDRS report [5]
with a radius of one third of the optic disc diameter, one op-
tic disc diameter and two optic disc diameters respectively.

2.3.8 Performance Measurement

We evaluate performance on the test set quantitatively by
comparing the classifier’s result to ground truth. To obtain
ground truth for each image, we used image processing soft-
ware to hand label candidate exudate regions, then two oph-
thalmologists are asked to verify or reject each candidate
region.

To evaluate classifier performance, we use sensitivity,
specificity, precision, PR and accuracy on a per-pixel ba-
sis. All measures can be calculated based on four values,
namely the true positive (TP) rate (the number of exudate
pixels correctly detected), the false positive (FP) rate (the
number of non-exudate pixels wrongly detected as exudate
pixels), the false negative (FN) rate (the number of exudate
pixels not detected), and the true negative (TN) rate (the
number of non-exudate pixels correctly identified as non-
exudate pixels).

Sensitivity (recall) is the percentage of the actual exu-
date pixels that are detected, and specificity is the percentage
of non-exudate pixels that are correctly classified as non-
exudate pixels. Precision is the percentage of detected pixels
that are actually exudate, and PR is the average of the pre-
cision and recall. Accuracy is the overall per-pixel success
rate of the classifier.
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3. Results

In this section, the experiment result of exudate detection us-
ing mathematical morphology techniques, FCM, a combina-
tion of FCM and mathematical morphology, naive Bayesian,
SVMs and nearest neighbor classifier is presented. A pop-
ulation of 60 retinal images comprised of 40 images with
exudates and 20 images without exudates are tested on an
AMD Athlon 1.25 GHz PC using MATLAB for mathemat-
ical morphology, FCM and FCM with morphology. For
naive Bayesian and SVM, we use 29 images for training
and 30 images comprised of 10 images with exudates and
20 images without exudates for testing. All exudate pixels
and equal number of non-exudate pixels (randomly selected)
are included in the training set. Over all 29 training images,
we obtained 115,867 examples of positive (exudate) pix-
els and an equal number of negative (non-exudate) pixels.
Our 10 test images together contain 42,909 exudate pixels.
A naive Bayesian is tested on Weka data mining software
running on a standard PC while SVMs and nearest neighbor
are tested on a 20-node Gnu/Linux Xeon cluster. Because
all the algorithms run on different platforms, performance
of each algorithm cannot be measured and compared using
running time. Computation complexity of each algorithm
is compared instead as in Table 1. Finally, detected exu-
dates are compared with the ophthalmologist’ hand-drawn
ground-truth images for verification.

3.1 Experiment 1: Mathematical Morphology

Each image takes approximately 3 minutes to process, in-
cluding the optic disc removal step which takes around
1 minute. For our data set, the sensitivity, specificity, pre-
cision, PR and accuracy are 80%, 99.46%, 51.78%, 65.89%
and 99.29%, respectively.

3.2 Experiment 2: Fuzzy C-Means Clustering

The approximate time taken for running the whole process
for each image with number of cluster = 2, 3, 4, 5, 6, 7
and 8 are 1.5, 2, 5, 7, 10.5, 15, and 18 min, respectively.
With number of cluster equal 8, the sensitivity, specificity,
precision, PR and accuracy are 97.29%, 85.43%, 51.62%,
5.94% and 85.62%, respectively.

3.3 Experiment 3: Fuzzy C-Means Clustering and Mathe-
matical Morphology Method

Each image takes approximately 18 minutes for FCM clus-
tering and another 3 minutes for morphological reconstruc-
tion. After fine segmentation, most of the classified exu-
date regions are true exudate pixels, which give a smaller
true positive value; however, it also reduces the false pos-
itive value because misclassification of non-exudate pixels
is also lower. Figure 2 displays the comparison of exudate

Table 1 Time complexity (for one image).

Fig. 2 Comparison of exudates detection. (a) Result from FCM cluster-
ing. (b) Fine segmentation using morphological reconstruction (c) Ground
truth image.

detection from the experiment 3.2, result of FCM cluster-
ing followed by morphological reconstruction and a ground-
truth image. It is found that this method detects exudates
successfully with sensitivity, specificity, precision, PR and
accuracy of 87.28%, 99.24%, 42.77%, 65.02% and 99.11%,
respectively.

3.4 Experiment 4: Naive Bayesian Classification

We used Weka data mining software [25] running on a stan-
dard PC for feature discretization and naive Bayesian clas-
sification. We fit the naive Bayesian model to the training
set using all 15 features. The resulting classifier had an
overall per-pixel sensitivity, specificity, precision, PR and
accuracy of 95.84%, 96.56%, 33.49%, 64.67% and 96.55%,
respectively.

When we removed features from the classifier one by
one and compared the resulting PR to PR obtained on the
previous feature set, we obtained the best PR value by delet-
ing cluster intensity, presumably due to its redundancy with
the pixel intensity feature. We continued this process until
the PR stopped improving. Finally, the best classifier con-
tained six features: 1. the pixel’s intensity after preprocess-
ing, 2. the standard deviation of the preprocessed intensities
in a window around the pixel, 3. the pixel hue, 4. the num-
ber of edge pixels in a window around the pixel, 5. the ratio
between the size of the pixel’s intensity cluster and the optic
disc, and 6. DoG4.

3.5 Experiment 5: Support Vector Machine Classification

We used libSVM’s [26] implementation of the ν-SVM with
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the radial basis function kernel on a 20-node Gnu/Linux
Xeon cluster for training and testing SVM classifiers. For
a given feature set, to find optimal hyperparameters (ν, the
tolerance for misclassified training examples, and γ, the
width of the radial basis function) for the SVM, we per-
formed a grid search, retaining the parameter values for
which test set accuracy is maximized. We then added fea-
tures back into the classifier one by one and repeated the grid
search for each feature set combination. We found that PR
fluctuated as we performed feature inclusion, so we contin-
ued including features until all 15 features are included. The
best performance is obtained using 10 features: 1. pixel’s in-
tensity after preprocessing, 2. standard deviation of the pre-
processed intensities in a window around the pixel, 3. pixel
hue, 4. number of edge pixels in a window around the pixel,
5. ratio between the size of the pixel’s intensity cluster and
the optic disc, 6. distance between the pixel’s cluster and the
optic disc, 7. DoG1, 8. DoG2, 9. DoG4, and 10. DoG6, with
ν = 0.002 and γ = 0.98. This classifier has a sensitivity of
92.28%, specificity of 98.52%, precision of 53.05%, and PR
of 72.67%. The overall accuracy is 98.41%.

3.6 Experiment 6: Nearest Neighbor Classification

Nearest neighbor classifier with Euclidean and Mahalanobis
distance metrics are used as our baseline for comparison.
To be able to compare with naive Bayesian and SVM clas-
sifiers, we used the best feature sets obtained for naive
Bayesian and the SVM. On the best feature set obtained
from the naive Bayesian classifier, the nearest neighbor clas-
sifiers have a PR of 61.54% and 61.81%, respectively. On
the best feature set obtained from the SVM classifier, the
nearest neighbor classifier achieved a PR of 65.15% and
64.99%, respectively. The results indicate that the naive
Bayesian and SVM classifiers perform substantially better
in PR than the nearest neighbor classifier. In addition, the
nearest neighbor classifier using the best feature set obtained
from the SVM classifier performs better than that using the
best feature set for the naive Bayesian classifier.

3.7 Experiment 7: Macular Detection

The system also detects the macular region in order to
provide the ophthalmologists with the distance information
between the detected exudates and the macular. The exu-
dates within the inner circle will affect the vision of patients
more than the ones outside it. As shown in Fig. 3 (a), ex-
udates are present nearer to the macular than exudates in
Fig. 3 (b). This indicates that the exudates in Fig. 3 (a) will
be more harmful to vision than those in Fig. 3 (b).

3.8 Comparing Classifier Results

An example image of a diabetic retinopathy retinal image
and the detected result superimposed on the original image
are shown in Fig. 4. Graphical representations of PR and

Fig. 3 (a) and (b) Macular grid centred on the macular, superimposed on
the exudate detection result.

Fig. 4 Exudates detection. (a) Original images. (b) Detected result.
(c) Result of (b) superimposed on image (a).

Fig. 5 Graphical representation of PR and precision values of A (math-
ematical morphology), B (FCM), C (FCM with morphology), D (naive
Bayesian), E (SVMs), F (nearest neighbor with Euclidean distance on
best feature set obtained from naive Bayesian, G (nearest neighbor with
Mahalanobis distance on best feature obtained from naive Bayesian,
H (nearest neighbor with Euclidean distance on best feature set obtained
from SVMs, I (nearest neighbor with Mahalanobis distance on best feature
set obtained from SVMs.

precision values are shown in Fig. 5. Resulting images of ex-
udate detection from all experiments are shown in compari-
son in Fig. 6 (as examples of good detection) and Fig. 7 (as
examples of false detection). The training performances and
testing performance are compared in Table 2 and Table 3,
respectively. Classifier selection factor is also presented in
Table 4.

4. Conclusion and Discussion

In this paper we describe the comparative results of auto-
matic exudate detection using traditional and machine learn-
ing approaches. Mathematical morphology, FCM, combina-
tion of FCM and morphology method, naive Bayesian clas-
sifier, SVMs classifier and nearest neighbor classifier are
investigated.

The weakness of traditional exudate detection is that
they require many predetermined features while the machine
learning approaches takes time to learn and search for the
best feature set. Pre-defined number of cluster is also the
weakness of FCM clustering. The suitable number of clus-
ters is dependent on the requirements of the ophthalmologist
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Fig. 6 Result of exudate detection. (a) Original images (b) Morphol-
ogy classification results. (c) FCM classification results. (d) FCM with
Morphology classification results. (e) Naive Bayesian classification results.
(f) SVM classification results. (g) Nearest Neighbor (Euclidean distance)
classification results on best feature set obtained from Naive Bayesian.
(h) Nearest Neighbor (Mahalanobis distance) classification results on best
feature obtained from Naive Bayesian. (i) Nearest Neighbor (Euclidean
distance) classification results on best feature set obtained from SVM.
(j) Nearest Neighbor (Mahalanobis distance) classification results on best
feature set obtained from SVMs.

and the application. If the application requires high PPV
or PLR, such as an application of an automatic quantitative
measurement of exudates, n = 8 may be chosen because it
gives a higher accuracy with low false positive value. How-
ever, if the applications do not require such a high accu-
racy, such as an application of ophthalmologists’ visual aid
in exudate detection where the computer enhances the image
quality and shows an approximate location of the exudates
and the decision is still made by an expert ophthalmologist,
n = 2 is recommended. Also, with this parameter, n = 2,
the system runs faster. The naive Bayesian and SVM clas-
sification required learning phase which takes time. Many
parameters are also used in SVM classification and they can
affect the classification accuracy. Computational costs for
SVMs are very expensive.

Among all classifiers, our experimental results show
that the mathematical morphology method achieves high-
est specificity and accuracy with 99.46% and 99.29%, re-
spectively. In the other hand, the mathematical morphology
method achieves lowest sensitivity with 80%. As shown in
the result images of exudate detection using FCM, most of
exudates are detected. FCM achieves highest sensitivity of

Fig. 7 Example false detection of exudates on choroidal blood vessel
(sample 5 and 6) and on nerve fiber (sample 7 and 8). (a) Original im-
ages. (b) Morphology classification results. (c) FCM classification re-
sults. (d) FCM with Morphology classification results. (e) Naive Bayesian
classification results. (f) SVMs classification results. (g) Nearest Neigh-
bor (Euclidean distance) classification results on best feature set obtained
from Naive Bayesian. (h) Nearest Neighbor (Mahalanobis distance) classi-
fication results on best feature obtained from Naive Bayesian. (i) Nearest
Neighbor (Euclidean distance) classification results on best feature set ob-
tained from SVM. (j) Nearest Neighbor (Mahalanobis distance) classifica-
tion results on best feature set obtained from SVMs.

97.29%, and lowest specificity and accuracy of 85.43% and
85.62% at the same time. Rough exudates detection using
only FCM achieves very low PR value because of high false
positive values. The PR value is improved when fine exu-
dates detection using mathematical morphology technique is
combined to FCM. Among all classifiers we use in this pa-
per, SVMs classifier achieves the highest PR with 72.67%.

Considering time complexity, for SVMs the training
time is related to the number of support vectors, which de-
pend on the dataset and on the nonlinear mapping from input
space to the feature space but SVM’s time complexity of
testing process equal nearest neighbor’s if number of sup-
ports is equal to number of training points. We find that the
SVM classifier tends to delineate exudate boundaries more
accurately with fewer false detection. Retinal structures that
share some characteristics with exudates can be incorrectly
detected as exudates. High contrast choroidal blood vessels
appearing in the retinal background and nerve fiber can be
incorrectly detected as exudates. And due to the light reflec-
tion, there are some high intensity artifacts near large retinal
blood vessels. These artifacts are one of the main causes of
false classification of some normal images.
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Table 2 Training performance.

Table 3 Performance comparison.

Table 4 Classifier selection factor.

Mathematical morphology is a simple method and
computationally low cost but it does not achieve good sen-
sitivity. FCM clustering can detect most of the exudate re-
gions, however, lots of false positive are also high at the
same time. Additionally, sensitivity and specificity are de-
pending on the number of clusters which has to be pre-
defined. Using FCM clustering followed by mathemati-
cal morphology reconstruction, gives higher accuracy with
a lower false positive value. Even though, Naive Bayesian
and SVM which are supervised classifiers do not require
predefined features, they are computationally expensive dur-
ing training process. The SVMs classifier is also sensitive to
parameter modification but it gains higher precision value.

Performances of all exudate classifiers discussed in this
paper depend on optic disc and vessel detection. In future
work, we plan to explore using the system as a practical aid
to help ophthalmologists for diabetic retinopathy screening.
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