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2D Log-Gabor Wavelet Based Action Recognition

Ning LI†a), Student Member and De XU†b), Member

SUMMARY The frequency response of log-Gabor function matches
well the frequency response of primate visual neurons. In this letter,
motion-salient regions are extracted based on the 2D log-Gabor wavelet
transform of the spatio-temporal form of actions. A supervised classifica-
tion technique is then used to classify the actions. The proposed method
is robust to the irregular segmentation of actors. Moreover, the 2D log-
Gabor wavelet permits more compact representation of actions than the
recent neurobiological models using Gabor wavelet.
key words: action recognition, log-Gabor function, motion-salient regions,
visual neurons

1. Introduction

Action recognition is one of the most active research areas
in computer vision due to its potential applications such as
video surveillance, content based video retrieval and sports
events analysis. Most research has focused on studying the
computer vision-based features of moving objects such as
the contour, interesting points, and local or global spatio-
temporal volume. In these works, the affine translation, scal-
ing and moving direction of actors can impact the perfor-
mance of the systems. Primates outperform the best com-
puter vision systems for action recognition, so building a
system that emulates the primate visual cortex has always
been an attractive idea.

Motivated by the object recognition mechanism [1],
Jhuang et al. [2] and Ning et al. [3] use Gabor wavelet to
emulate the representation of motion information in the pri-
mate visual cortex. The performance of these studies is bet-
ter than typical computer vision-based algorithms for action
recognition. However, Hawken et al. [4] suggest that the Ga-
bor function fails to capture the precise form of the spatial-
frequency tuning curves in monkey cortical cells. The Ga-
bor function can not be constructed in terms of arbitrarily
wide bandwidth. It also over-represents low frequency com-
ponents, which, in essence, produces a correlated and redun-
dant response to the low frequencies.

Field [5] suggests that the log axis is the standard
method for representing the spatial-frequency response of
primate visual neurons. Theoretically, the frequency re-
sponse of a log-Gabor function is symmetric on a log axis,
while the Gabor function fails to capture the relative symme-
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try of the tuning curves on the axis. The frequency response
has an extended tail at the high frequency, which spreads
the information equally across the channels. Moreover, the
bandwidth of the log-Gabor function increases with fre-
quency. Therefore, the log-Gabor function permits a more
compact representation than the Gabor function.

In this letter, an action sequence is firstly represented as
the average motion energy (AME); the log-Gabor wavelet
transform is then applied to take a multi-channel geomet-
ric analysis on the AME image; finally, the spatial motion-
salient regions (MSR) is determined from the local energy
images that show unique athletic property along different
orientations. In the classification stage, a linear multi-class
SVM classifier is applied.

In the experiment, by altering the configuration of fil-
ter parameter of the proposed approach, we prove the 2D
log-Gabor wavelet allows more compact representation of
actions than the 2D Gabor wavelet; by using the same filter
configuration for our approach and neurobiological models
that use Gabor wavelet to simulate object representation in
the primate visual cortex, we prove the MSR of actions is
more invariant to the unstable segmentation and deforma-
tion of actors.

The rest of the paper is organized as follows: Section 2
introduces the proposed approach. Experimental results are
analyzed in Sect. 3. Conclusive remarks are addressed at the
end of this letter.

2. The Proposed Approach

2.1 Average Motion Energy

Actions are essentially spatio-temporal variations of silhou-
ettes which encode spatial information of postures and dy-
namic information of actions. To characterize an action,
we represent the associated sequence of action silhouettes
as the informative “average motion energy (AME)” image
which implicitly captures the motion properties of actions
and has been successfully used in gait-based human iden-
tification [6]. Given a sequence of binary silhouette frames
B(x, y, t) containing postures, the AME is defined by Eq. (1),
where x and y are the coordinates of pixels in the frames, and
τ is the duration of a complete action. Figure 1 (a) shows the
AME image for the example action “jack”.

A =
1
τ

τ∑
t=1

B(x, y, t) (1)
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The AME image contains the body parts taking local
movement (e.g. the limbs) and the parts taking global move-
ment (e.g. the torso). The local movement provides the key
clue to distinguish different action types. In the following
section, the multi-channel geometric analysis on the AME
image is proposed to extract the salient movement parts of
actors.

2.2 Log-Gabor Wavelet Analysis on AME Image

Gabor function is usually used to simulate object percep-
tion in primate simple visual neurons. The study of Field [5]
shows that compared with the Gabor function, the frequency
response of log-Gabor function can provide much broader
bandwidth, thus it gives wider coverage of the spectrum;
meanwhile the log-Gabor function has extended tails at high
frequency, therefore it can locate more precise local varia-
tion of natural image in the spatial domain. Another point in
support of the log-Gabor function is that the frequency re-
sponse of it has the Gaussian form when viewed on the log-
arithmic frequency scale, which is consistent with measure-
ments on primate visual systems. In these measurements,
the responses of primate visual cells are symmetric on the
log frequency scale.

Due to the singularity in the log function at the ori-
gin, the analytic expression for the shape of the log-Gabor
function can not be constructed in the spatial domain. Equa-
tion (2) shows the 2D log-Gabor wavelet function in the fre-
quency domain.

Hm
n ( f , θ) = exp

{ −[ln( f / fn)]2

2[ln(σ f / fn)]2

}
× exp

{
−(θ−θm)2

2σ2
θ

}
,

(n = 1 . . .N,m = 1 . . .M). (2)

Where fn represents the central frequency of the filter
with the scaling index n; σ f determines the bandwidth of
the log-Gabor filter in the radial direction; σθ determines
the bandwidth in the orientation direction; θm represents the
orientation angle of the filter with the orientation angle index
m. The central frequency is defined in Eq. (3):

fn =
(
λ1 × sn−1

)−1
. (3)

where the λ1 denotes the wavelength of the smallest filter
scale, s is the scaling factor between center frequencies of
successive filters. The orientation angle is fixed by the num-
ber of filter orientation which is predefined empirically.

During the process of image analysis, the dot product
between the log-Gabor filter set and the Fourier transform
of an AME image is firstly calculated, and then a numerical
inverse Fourier transform is performed to get the complex
valued action images of different scales and orientations in
the spatial domain. The complex valued action images are
to be used to extract the motion-salient regions of actions.

2.3 Motion-Salient Regions

Primate visual system does not perceive input image as a

Fig. 1 The extraction of the MSR from the sample action “jack”. (a) the
AME image; (b) the local energy image in the orientation 0, π/4, π/2 and
3π/4; (c) the MSR image obtained from the local energy images.

whole entity, it processes the image as many elements in
multiple orientations and scales [7]. Therefore, when we
view the AME image of an action, in our visual cortex the
spatio-temporal body shows different forms in accordance
with orientations. These forms are named as local energy in
this work.

In each orientation, the local energy at the pixel (x, y)
is calculated by adding the complex valued action images of
multiple scales from head to tail, see Eq. (3):

Em(x, y) =
N∑

n=1

An(x, y)

× [cos(ϕn(x, y) − ϕ̄(x, y)) − |sin(ϕn(x, y) − ϕ̄(x, y))|] . (4)

where An(x, y) and ϕn(x, y) respectively denote the ampli-
tude and the phase angle of the complex valued image at
scale n, and ϕ̄(x, y) denotes the phase angle of the local en-
ergy. Figure 1 (b) shows the local energy images for the
action “jack” in 4 orientations, which simulate the represen-
tation of the AME image in the primate visual cortex. Each
local energy image shows unique athletic property along dif-
ferent orientation.

The motion-salient regions (MSR) of an action is deter-
mined from these local energy images. The MSR consists of
the body parts taking the most remarkable movement along
different orientations, which means each component of the
MSR has high intensity in certain orientation but does not
show high intensity in other orientations in the local energy
image. Therefore, the MSR is determined by taking groups
of pixels having the highest intensity value from every local
energy image. Figure 1 (c) shows the MSR image obtained
from the local energy images.

2.4 Action Classification Using MSR

Features allow the association of an action to a point in a
multidimensional feature space. Good features should have
a large discriminatory capability and require a low computa-
tional time. Marco et al. [8] propose that a tradeoff between
these requisites is the histograms of horizontal and vertical
projections. In this letter, the horizontal and vertical his-
tograms of a MSR image are firstly normalized by dividing
every element by the total area, the normalized histograms
are then aligned as a row vector.

The classification stage is performed using a linear
multi-class SVM classifier. We apply the tool kit “LIB-
SVM” provided by Chih-Chung Chang and Chih-Jen Lin
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(http://www.csie.ntu.edu.tw/ cjlin/libsvm/) to the stage. For
the multi-class classification problem we use the one-
against-one strategy, where all pairs of classes are compared
to each other. In this way, a multi-class problem is decom-
posed into multiple binary classification problems. To clas-
sify a testing action, we combine all the pairwise decision.
That is, given an action dataset having N action categories,
N × (N − 1)/2 tests need to be performed for one testing ac-
tion; the action is then assign to the class that wins the most
pairwise comparisons (“max-wins” rule).

3. Experiment Evaluation

3.1 Action Datasets

The Weizmann and Weiz.Robust action datasets are used
in this letter. To increase the size of both datasets, each
video is divided into 4 pieces. Figure 2 shows the exam-
ple MSR images obtained from the datasets. The Weizmann
provides 90 video sequences shown by nine subjects, each
performing 10 types of natural actions repeatedly. The ac-
tions are “bend”, “jack”, “jump-forward”, “jump-up-down”,
“run”, “gallop-sideways”, “skip”, “walk”, “wave-one-hand”
and “wave-two-hands”. We split the dataset as: 6 subjects
are used as training set and the remaining 3 subjects are
used for testing. The experiment is repeated by 25 random
splits. The Weiz.Robust is designed for the robustness eval-
uation on recognition systems. It provides 10 walking ac-
tions present in various irregularities, which involve “walk
with bag”, “walk with case”, “walk with dog”, “knees-up”,
“limp”, “moonwalk”, “feet occluded by boxes”, “normal
walk”, “body occluded by pole”, “walk in skirt”. Each type
of walks is performed by only one subject. These “walk”
actions are tested against the SVM classifier trained by the
Weizmann dataset. Similar to the [2], we use a primitive
attention mechanism: the input is a sequence of fixed-size
image windows, centred at the person of interest.

3.2 The Benchmark Approaches

For benchmarking, we use the approaches proposed by
Jhuang et al. [2] and Ning et al. [3]. The [2] speculates
that neurons in intermediate visual areas of primate dorsal
stream such as MT, MST respond to spatio-temporal fea-
tures of target objects. Experimental results in [2] show that
the sparse C3 feature using the space-time oriented based S1

Fig. 2 First row: MSR images for 10 action categories in Weizmann.
Second row: MSR images for 10 types of “walk” actions in Weiz.Robust.

units can best represent actions. This feature is used as the
benchmark and is denoted as S tC3 [2]. The code was gra-
ciously provided by Hueihan Jhuang. The [3] also proposes
a neurobiological approach for action recognition, which is
closely related to the feedforward template matching archi-
tecture for static object representation in the primate visual
cortex. Both of the benchmarks use the Gabor wavelet as
the key technique to analysis input frames.

3.3 Experiment Results

Theoretically, the frequency response of the log-Gabor fil-
ters should have minimal overlap necessary to achieve fairly
even spectral coverage. In Eq. (3) the λ1 is assigned 3 pixels;
and in Eq. (2) σθ = π/(M × 1.5), which results in approx-
imately the minimum overlap needed to get even spectral
coverage in the angular direction. Table 1 shows a series
of parameter groups obtained experimentally, which result
minimal overlap necessary to achieve fairly even spectral
coverage in the radial direction. Figure 3 compares the ac-
tion recognition results on the Weizmann dataset using the
4 parameter groups. The fourth group generates the highest
recognition rate on each type of actions.

Field [5] concludes that when the parameter gener-
ates the bandwidth equals to about 1 octave, the log-Gabor
wavelet has the same performance as the Gabor wavelet.
Thus, the log-Gabor filter with the second parameter group
can be used to simulate the Gabor filter. The [2] and [3]
use 64 Gabor filters (4 orientations × 16 scales), thus in Ta-
ble 2 the proposed approach uses 64 log-Gabor filters with
the second parameter group for impartial comparison. In

Table 1 Parameter groups for 2D log-Gabor wavelet. s represents the
scaling factor, BW denotes bandwidth.

Para. group σ f / fi s BW (octave)

1 0.85 1.3 BW < 1
2 0.75 1.6 BW ≈ 1
3 0.65 2.1 1 < BW < 2
4 0.55 3 BW ≈ 2

Fig. 3 Comparison of the recognition results obtained by the 2D log-
Gabor wavelet using different parameter groups on Weizmann dataset.
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Table 2 Comparison between the benchmarks using 64 Gabor filters and
the proposed approach using 64 log-Gabor filters with the second parameter
group.

Datasets S tC3 [2] [3] Proposed approach

Weizmann 97.7 97.3 97.5
Weiz.Robust 89.3 92.4 94.2

Table 3 Comparison between the benchmarks using 24 Gabor filters and
the proposed approach using 24 log-Gabor filters with the fourth parameter
group.

Datasets S tC3 [2] [3] Proposed approach

Weizmann 97.7 96.4 98.1
Weiz.Robust 87.5 90.0 95.0

Table 3, the proposed approach uses 24 log-Gabor filters (4
orientations × 6 scales) with the fourth parameter group (in
the case of the fourth group, with the datasets providing the
frame size about 120×80, a larger scale will not generate
distinguishable output for different actions), therefore the
benchmarks utilize 24 Gabor filters for fair comparison.

The advantage of the log-Gabor wavelet over the Gabor
wavelet is then discussed. The recognition rates obtained
from the proposed approach using 64 log-Gabor filters with
the second parameter group in Table 2 are less than those
obtained from the proposed approach using 24 log-Gabor
filters with the fourth parameter group in Table 3. This di-
rectly proves the log-Gabor function covers much broader
spectral bandwidth than the Gabor function.

The validity of the MSR feature is proved in Table 2,
where the same number of filters and the same filter species
are used for benchmarks and the proposed approach. In this
way, the motion features are extracted based on the same
criterion. Table 2 shows our approach has similar recog-
nition rate with benchmarks on the Weizmann dataset, but
performs the best on the Weiz.Robust dataset. Therefore,
the MSR feature is more robust to the unstable segmenta-
tion and deformation of actors than the benchmark features.

Finally, the proposed approach is compared with the
benchmarks on the Weizmann and Weiz.Robust dataset.
In Table 3 the Gabor wavelet and the log-Gabor wavelet
with the fourth parameter group are initialized by 4 filter

orientation and 6 filter scales. Table 3 shows that the pro-
posed approach outperforms the benchmarks especially on
the Weiz.Robust dataset.

4. Conclusion

In this letter, the unique athletic property of a different
type of action is represented by the motion-salient regions
(MSR). The MSR is determined in terms of the local maxi-
mum of the 2D log-Gabor wavelet transform of the spatio-
temporal form of actions. Experiments on publicly available
action datasets demonstrate our approach outperforms some
successful neurobiological approaches using Gabor wavelet.
In the future work, more compact motion information will
be extracted so that a snippet of action sequence is sufficient
for action recognition. This would be more applicable for
practical scenarios, where decisions have to be taken online.
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